Quantum Coherence and Antidistinguishability

Nathaniel Johnston,
Shirin Moein, Rajesh Pereira, Sarah Plosker, (coherence) Vincent Russo, and Jamie Sikora (antidistinguishability)
Theory Canada 15
Mount Allison University

June 16, 2023

Distinguishability

Antidistinguishability

Distinguishability

A pure quantum state is a unit vector $|\phi\rangle \in \mathbb{C}^{d}$.
If we are given a single copy of an arbitrary pure state (in a lab, not
on paper), we cannot figure out exactly which one was given to us: measuring it gives some information but causes the state to collapse.

However, if we are given extra information about the state, sometimes we can figure out which state was given to us..

Distinguishability

A pure quantum state is a unit vector $|\phi\rangle \in \mathbb{C}^{d}$.
If we are given a single copy of an arbitrary pure state (in a lab, not on paper), we cannot figure out exactly which one was given to us: measuring it gives some information but causes the state to collapse.

However, if we are given extra information about the state, sometimes we can figure out which state was given to us.

Distinguishability

A pure quantum state is a unit vector $|\phi\rangle \in \mathbb{C}^{d}$.
If we are given a single copy of an arbitrary pure state (in a lab, not on paper), we cannot figure out exactly which one was given to us: measuring it gives some information but causes the state to collapse.

However, if we are given extra information about the state, sometimes we can figure out which state was given to us...

Distinguishability

Suppose we are given (on paper) a set of potential states:

$$
\begin{aligned}
& \qquad \mathcal{L}=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\} \subset \mathbb{C}^{d} . \\
& \text { Then we are given (in a lab) one of those } n \text { states. }
\end{aligned}
$$

Theorem

It is possible to determine which $\left|\phi_{j}\right\rangle$ was given to us (i.e., S is distinguishable) if and only if the members of S are mutually orthogonal (i.e., $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=0$ whenever $i \neq j$).

Distinguishability

Suppose we are given (on paper) a set of potential states:

$$
S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\} \subset \mathbb{C}^{d}
$$

Then we are given (in a lab) one of those n states.

Theorem
 It is possible to determine which $\left|\phi_{j}\right\rangle$ was given to us (i.e., S is distinguishable) if and only if the members of S are mutually orthogonal (i.e., $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=0$ whenever $i \neq j$).

Distinguishability

Suppose we are given (on paper) a set of potential states:

$$
S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\} \subset \mathbb{C}^{d}
$$

Then we are given (in a lab) one of those n states.

Theorem

It is possible to determine which $\left|\phi_{j}\right\rangle$ was given to us (i.e., S is distinguishable) if and only if the members of S are mutually orthogonal (i.e., $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=0$ whenever $i \neq j$).

Antidistinguishability

What if, instead of wanting to determine which state from S was given to us, we just want to determine some state from S that was not given to us?

In other words, we want to determine whether or not S is antidistinguishable

- If S is distinguishable then it is antidistinguishable.
- If $n=2$ then S is distinguishable iff S is antidistinguishable.
- If $n \geq 3$ then there are antidistinguishable sets that are not distinguishable.

Antidistinguishability

What if, instead of wanting to determine which state from S was given to us, we just want to determine some state from S that was not given to us?

In other words, we want to determine whether or not S is antidistinguishable.

- If S is distinguishable then it is antidistinguishable.
- If $n=2$ then S is distinguishable iff S is antidistinguishable.
- If $n \geq 3$ then there are antidistinguishable sets that are not distinguishable.

Antidistinguishability

What if, instead of wanting to determine which state from S was given to us, we just want to determine some state from S that was not given to us?

In other words, we want to determine whether or not S is antidistinguishable.

- If S is distinguishable then it is antidistinguishable.
- If $n=2$ then S is distinguishable iff S is antidistinguishable.
- If $n \geq 3$ then there are antidistinguishable sets that are not distinguishable.

Antidistinguishability

What if, instead of wanting to determine which state from S was given to us, we just want to determine some state from S that was not given to us?

In other words, we want to determine whether or not S is antidistinguishable.

- If S is distinguishable then it is antidistinguishable.
- If $n=2$ then S is distinguishable iff S is antidistinguishable.
- If $n \geq 3$ then there are antidistinguishable sets that are not distinguishable.

Antidistinguishability

What if, instead of wanting to determine which state from S was given to us, we just want to determine some state from S that was not given to us?

In other words, we want to determine whether or not S is antidistinguishable.

- If S is distinguishable then it is antidistinguishable.
- If $n=2$ then S is distinguishable iff S is antidistinguishable.
- If $n \geq 3$ then there are antidistinguishable sets that are not distinguishable...

Antidistinguishability Example

For example, consider the set of "trine" states:

$$
S=\left\{|0\rangle, \quad-\frac{1}{2}(|0\rangle+\sqrt{3}|1\rangle), \quad-\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle)\right\} \subset \mathbb{C}^{2} .
$$

Antidistinguishability Example

For example, consider the set of "trine" states:

$$
\begin{aligned}
& S=\{|0\rangle,\left.-\frac{1}{2}(|0\rangle+\sqrt{3}|1\rangle),-\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle)\right\} \subset \mathbb{C}^{2} . \\
&-\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle)
\end{aligned}
$$

Antidistinguishability Example

For example, consider the set of "trine" states:

$$
\begin{aligned}
S=\{|0\rangle, & \left.-\frac{1}{2}(|0\rangle+\sqrt{3}|1\rangle),-\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle)\right\} \subset \mathbb{C}^{2} . \\
& -\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle)
\end{aligned}
$$

Some Inner Product Bounds

Fact: Whether or not a set S is antidistinguishable depends only on the inner products between the $\left|\phi_{j}\right\rangle$'s.

If the inner products are large then S is not antidistinguishable:
\square
\square

then S is not antidistinguishable. Furthermore, this bound is tight

Some Inner Product Bounds

Fact: Whether or not a set S is antidistinguishable depends only on the inner products between the $\left|\phi_{j}\right\rangle$'s.

If the inner products are large then S is not antidistinguishable:

Some Inner Product Bounds

Fact: Whether or not a set S is antidistinguishable depends only on the inner products between the $\left|\phi_{j}\right\rangle$'s.

If the inner products are large then S is not antidistinguishable:
Theorem (Bandyopadhyay-Jain-Oppenheim-Perry '14)
Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right|>\frac{n-2}{n-1} \quad \text { for all } \quad i \neq j
$$

then S is not antidistinguishable. Furthermore, this bound is tight.

A Conjecture

Conversely, if the inner products are small (e.g., all less than $1 / 2$) then S is antidistinguishable.

Conjecture (Havlívcek-Barrett '20)

Let $n>2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right.$
then S is antidistinguishable.

When $n=2$ or $n=3$, the RHS bound is 0 or $1 / 2$, respectively, which are true (and tight)

A Conjecture

Conversely, if the inner products are small (e.g., all less than $1 / 2$) then S is antidistinguishable.

Conjecture (Havlívcek-Barrett '20)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq \frac{n-2}{n-1} \quad \text { for all } \quad i \neq j
$$

then S is antidistinguishable.

When $n=2$ or $n=3$, the RHS bound is 0 or $1 / 2$, respectively, which are true (and tight).

A Conjecture

Conversely, if the inner products are small (e.g., all less than $1 / 2$) then S is antidistinguishable.

Conjecture (Havlívcek-Barrett '20)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq \frac{n-2}{n-1} \quad \text { for all } \quad i \neq j
$$

then S is antidistinguishable.

When $n=2$ or $n=3$, the RHS bound is 0 or $1 / 2$, respectively, which are true (and tight).

Distinguishability and Antidistinguishability

Refutation of the Conjecture

Via a couple years of computer search, the $n=4$ case of this conjecture was recently disproved by Russo and Sikora:

- The conjecture says that if $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 2 / 3=0.6666 \ldots$ for all $i \neq j$ then S is antidistinguishable.
- They numerically found a non-antidistinguishable set of states with $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 0.6451$ for all $i \neq j$.

So what is the "correct" bound for $n=4$?

Refutation of the Conjecture

Via a couple years of computer search, the $n=4$ case of this conjecture was recently disproved by Russo and Sikora:

- The conjecture says that if $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 2 / 3=0.6666 \ldots$ for all $i \neq j$ then S is antidistinguishable.
- They numerically found a non-antidistinguishable set of states with $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 0.6451$ for all $i \neq j$.

So what is the "correct" bound for $n=4$?

Refutation of the Conjecture

Via a couple years of computer search, the $n=4$ case of this conjecture was recently disproved by Russo and Sikora:

- The conjecture says that if $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 2 / 3=0.6666 \ldots$ for all $i \neq j$ then S is antidistinguishable.
- They numerically found a non-antidistinguishable set of states with $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 0.6451$ for all $i \neq j$.

So what is the "correct" bound for $n=4$?

Refutation of the Conjecture

Via a couple years of computer search, the $n=4$ case of this conjecture was recently disproved by Russo and Sikora:

- The conjecture says that if $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 2 / 3=0.6666 \ldots$ for all $i \neq j$ then S is antidistinguishable.
- They numerically found a non-antidistinguishable set of states with $\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq 0.6451$ for all $i \neq j$.

So what is the "correct" bound for $n=4$?

Positive Semidefiniteness

A matrix $X \in M_{n}(\mathbb{C})$ is positive semidefinite (PSD) iff...

- ...it is Hermitian $\left(X^{*}=X\right)$ and has non-negative eigenvalues.
- Equivalent:
there exist vectors v_{1}, v_{2}, \ldots,

$$
x_{i, j}=v_{i}^{*} v_{j} \text { for all } i, j
$$

- Equivalent: ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}} \in \mathbb{C}^{n}$ such that

Positive Semidefiniteness

A matrix $X \in M_{n}(\mathbb{C})$ is positive semidefinite (PSD) iff...

- ...it is Hermitian $\left(X^{*}=X\right)$ and has non-negative eigenvalues.
- Equivalent:
there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}$

- Equivalent:
there exist vectors v_{1}, v_{2}

such that

Positive Semidefiniteness

A matrix $X \in M_{n}(\mathbb{C})$ is positive semidefinite (PSD) iff...

- ...it is Hermitian $\left(X^{*}=X\right)$ and has non-negative eigenvalues.
- Equivalent: ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathbb{C}^{d}$ such that

$$
x_{i, j}=v_{i}^{*} v_{j} \quad \text { for all } i, j .
$$

- Equivalent: ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}} \in \mathbb{C}^{n}$ such that

Positive Semidefiniteness

A matrix $X \in M_{n}(\mathbb{C})$ is positive semidefinite (PSD) iff...

- ...it is Hermitian $\left(X^{*}=X\right)$ and has non-negative eigenvalues.
- Equivalent: ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathbb{C}^{d}$ such that

$$
x_{i, j}=\mathrm{v}_{\mathrm{i}}^{*} \mathrm{v}_{\mathrm{j}} \text { for all } i, j .
$$

- Equivalent: ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}} \in \mathbb{C}^{n}$ such that

$$
X=\sum_{i=1}^{d} \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{*}
$$

k-Incoherence

Let $k \geq 1$ be an integer. A matrix $X \in M_{n}(\mathbb{C})$ is k-incoherent iff...

- ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}} \in \mathbb{C}^{n}$, each with at most k non-zero entries, such that

- Equivalent: ...we can write

for some PSD matrices X_{1}, X_{2}, \ldots that are 0 outside of a single $k \times k$ principal submatrix.

k-Incoherence

Let $k \geq 1$ be an integer. A matrix $X \in M_{n}(\mathbb{C})$ is k-incoherent iff...

- ...there exist vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}} \in \mathbb{C}^{n}$, each with at most k non-zero entries, such that

$$
X=\sum_{i=1}^{d} \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{*}
$$

- Equivalent: ...we can write

$$
X=\sum_{j} X_{j}
$$

for some PSD matrices X_{1}, X_{2}, \ldots that are 0 outside of a single $k \times k$ principal submatrix.

k-Incoherence

Let's look at some particular values of $k \ldots$

- When $k=1$: a matrix is 1-incoherent if and only if it is diagonal with non-negative (real) diagonal entries. For example:

k-Incoherence

Let's look at some particular values of k...

- When $k=1$: a matrix is 1 -incoherent if and only if it is diagonal with non-negative (real) diagonal entries.

For example:

k-Incoherence

Let's look at some particular values of $k \ldots$

- When $k=1$: a matrix is 1 -incoherent if and only if it is diagonal with non-negative (real) diagonal entries.

For example:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

k-Incoherence

Let's look at some particular values of $k \ldots$

- When $k=1$: a matrix is 1 -incoherent if and only if it is diagonal with non-negative (real) diagonal entries.

For example:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\sum_{i=1}^{3} v_{i} v_{i}^{*} \quad \text { if } \quad v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
0 \\
\sqrt{3}
\end{array}\right]
$$

k-Incoherence

Let's look at some particular values of $k \ldots$

- When $k=1$: a matrix is 1 -incoherent if and only if it is diagonal with non-negative (real) diagonal entries.

For example:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\sum_{i=1}^{3} v_{i} v_{i}^{*} \quad \text { if } \quad v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
0 \\
\sqrt{3}
\end{array}\right]
$$

k-Incoherence

Let's look at some particular values of $k \ldots$

- When $k=1$: a matrix is 1 -incoherent if and only if it is diagonal with non-negative (real) diagonal entries.

For example:

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] } & =\sum_{i=1}^{3} v_{i} v_{i}^{*} \quad \text { if } \quad v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
\sqrt{2} \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
0 \\
\sqrt{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right] .
\end{aligned}
$$

k-Incoherence

- When $k=n$: a matrix is n-incoherent if and only if it is PSD.
- When $n=3, k=2$: the following matrix is 2 -incoherent:

k-Incoherence

- When $k=n$: a matrix is n-incoherent if and only if it is PSD.
- When $n=3, k=2$: the following matrix is 2 -incoherent:

k-Incoherence

- When $k=n$: a matrix is n-incoherent if and only if it is PSD.
- When $n=3, k=2$: the following matrix is 2 -incoherent:

$$
\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 5
\end{array}\right]
$$

k-Incoherence

- When $k=n$: a matrix is n-incoherent if and only if it is PSD.
- When $n=3, k=2$: the following matrix is 2 -incoherent:

$$
\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 5
\end{array}\right]
$$

k-Incoherence

- When $k=n$: a matrix is n-incoherent if and only if it is PSD.
- When $n=3, k=2$: the following matrix is 2 -incoherent:

$$
\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 5
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 4
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] .
$$

k-Incoherence

Connection with $(n-1)$-Incoherence

It turns out that antidistinguishability is equivalent to k-incoherence in the $k=n-1$ case:

Theorem (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. Then S is antidistinguishable if and only if the Gram matrix

is ($n-1$)-incoherent.

Connection with $(n-1)$-Incoherence

It turns out that antidistinguishability is equivalent to k-incoherence in the $k=n-1$ case:

Theorem (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. Then S is antidistinguishable if and only if the Gram matrix

$$
G=\left[\begin{array}{cccc}
1 & \left\langle\phi_{1} \mid \phi_{2}\right\rangle & \cdots & \left\langle\phi_{1} \mid \phi_{n}\right\rangle \\
\left\langle\phi_{2} \mid \phi_{1}\right\rangle & 1 & \cdots & \left\langle\phi_{2} \mid \phi_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\phi_{n} \mid \phi_{1}\right\rangle & \left\langle\phi_{n} \mid \phi_{2}\right\rangle & \cdots & 1
\end{array}\right]
$$

is $(n-1)$-incoherent.

Connection with $(n-1)$-Incoherence

Cool! This provides a connection with ($n-1$)-incoherence that is useful for a few reasons...

Connection with $(n-1)$-Incoherence

Cool! This provides a connection with ($n-1$)-incoherence that is useful for a few reasons...

- ($n-1$)-incoherence can be checked (reasonably...) quickly via semidefinite programming. So antidistinguishability can too.
- We earlier (for completely separate reasons) already investigated lots of properties of $(n-1)$-incoherent matrices, and now can apply those results "for free" to antidistinguishability.

Connection with $(n-1)$-Incoherence

Cool! This provides a connection with ($n-1$)-incoherence that is useful for a few reasons...

- ($n-1$)-incoherence can be checked (reasonably...) quickly via semidefinite programming. So antidistinguishability can too.
- We earlier (for completely separate reasons) already investigated lots of properties of $(n-1)$-incoherent matrices, and now can apply those results "for free" to antidistinguishability.

Connection with $(n-1)$-Incoherence

For example:

then G is ($n-1$)-incoherent, so S is antidistinguishable.

Connection with $(n-1)$-Incoherence

For example:

Theorem (J.-Moein-Pereira-Plosker-Russo-Sikora '23)

Let $n \geq 2$ be an integer, let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the Gram matrix G. If

$$
\sqrt{\lambda_{1}} \leq \sum_{j=2}^{n} \sqrt{\lambda_{j}}
$$

then G is ($n-1$)-incoherent, so S is antidistinguishable.
Furthermore, this inequality is tight.

Connection with $(n-1)$-Incoherence

For example:

Theorem (J.-Moein-Pereira-Plosker-Russo-Sikora '23)

Let $n \geq 2$ be an integer, let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the Gram matrix G. If

$$
\sqrt{\lambda_{1}} \leq \sum_{j=2}^{n} \sqrt{\lambda_{j}}
$$

then G is ($n-1$)-incoherent, so S is antidistinguishable. Furthermore, this inequality is tight.

Connection with $(n-1)$-Incoherence

The previous theorem has the following even simpler-to-use corollary:

Corollary (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer, let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$, and let G be the Gram matrix of S. If

then G is ($n-1$)-incoherent, so S is antidistinguishable.

Connection with $(n-1)$-Incoherence

The previous theorem has the following even simpler-to-use corollary:

Corollary (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer, let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$, and let G be the Gram matrix of S. If

$$
\|G\|_{F} \leq \frac{n}{\sqrt{2}}
$$

then G is ($n-1$)-incoherent, so S is antidistinguishable.
Furthermore, this inequality is tight.

Connection with $(n-1)$-Incoherence

The previous theorem has the following even simpler-to-use corollary:

Corollary (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer, let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$, and let G be the Gram matrix of S. If

$$
\|G\|_{F} \leq \frac{n}{\sqrt{2}}
$$

then G is ($n-1$)-incoherent, so S is antidistinguishable. Furthermore, this inequality is tight.

Correction of the Conjecture

We then get a correction to the antidistinguishability conjecture:
Theorem (J.-Russo-Sikora '23)
Let $n>2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

then S is antidistinguishable.

When $n=2$, 3 , or 4 , the RHS bound is $0,1 / 2$, or $1 / \sqrt{3}$ respectively, which are tight

Unknown if it's tight for $n>5$

Correction of the Conjecture

We then get a correction to the antidistinguishability conjecture:

Theorem (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq \frac{1}{\sqrt{2}} \sqrt{\frac{n-2}{n-1}} \quad \text { for all } \quad i \neq j
$$

then S is antidistinguishable.

When $n=2,3$, or 4 , the RHS bound is $0,1 / 2$, or $1 / \sqrt{3}$ respectively, which are tight.

Unknown if it's tight for $n \geq 5$

Correction of the Conjecture

We then get a correction to the antidistinguishability conjecture:

Theorem (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq \frac{1}{\sqrt{2}} \sqrt{\frac{n-2}{n-1}} \quad \text { for all } \quad i \neq j
$$

then S is antidistinguishable.

When $n=2,3$, or 4 , the RHS bound is $0,1 / 2$, or $1 / \sqrt{3}$ respectively, which are tight.

Unknown if it's tight for $n \geq 5$.

Correction of the Conjecture

We then get a correction to the antidistinguishability conjecture:

Theorem (J.-Russo-Sikora '23)

Let $n \geq 2$ be an integer and let $S=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots,\left|\phi_{n}\right\rangle\right\}$. If

$$
\left|\left\langle\phi_{i} \mid \phi_{j}\right\rangle\right| \leq \frac{1}{\sqrt{2}} \sqrt{\frac{n-2}{n-1}} \quad \text { for all } \quad i \neq j
$$

then S is antidistinguishable.

When $n=2,3$, or 4 , the RHS bound is $0,1 / 2$, or $1 / \sqrt{3}$ respectively, which are tight.

Unknown if it's tight for $n \geq 5$.

Thank You!

Thank you!

k-incoherence: Physical Review A, 106:052417, 2022 arXiv:2205.05110

antidistinguishability: coming soon

