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Evolution of the nuclear medium as seen through jets
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• Distribution of energy in heavy-ion collisions:
• 3 stages of heavy-ion collisions:

• Pre-equilibrium stage: production of hard jets
• Evolution of the nuclear fluid: viscous hydro
• Last stage: Boltzmann transport/free-streaming

• Most of 𝑇𝜇𝜈  is described by hydrodynamics 
Boltzmann hadronic transport. 

t ∼10 fm t ∼100 fm
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• Distribution of energy in heavy-ion collisions:
• 3 stages of heavy-ion collisions:

• Pre-equilibrium stage: production of hard jets
• Evolution of the nuclear fluid: viscous hydro
• Last stage: Boltzmann transport/free-streaming

• Most of 𝑇𝜇𝜈  is described by hydrodynamics 
Boltzmann hadronic transport. 

• Jets take a small portion of system’s 𝑇𝜇𝜈 , i.e. 
are a perturbative correction to hydro 𝑇𝜇𝜈

• Jets probe the entire evolution history of the 
QGP, sensitive to 𝑇 𝑥𝜇 , 𝑢𝜇 𝑥𝜇 …

• To help simulate these different aspects of heavy-ion collisions, the JETSCAPE 
(Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope) 
framework was established.

t ∼10 fm t ∼100 fm
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Nuclear medium viscosities

• The latest Bayesian constraints in the viscosities of the nuclear medium 𝑇𝜇𝜈  done by 
JETSCAPE (see talk on Wed, 1:45pm)
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The JETSCAPE Framework 

• JETSCAPE framework allows :
• Multiple energy loss formalisms to be present simultaneously, each applied in its region of validity. 

• Provides a set of Bayesian tools to characterize the interaction of hard probes with the QGP
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Factorization at work: Leading order diagram

𝑑𝜎1
ℎ

𝑑𝑦𝑑𝑝𝑇1

∼ න 𝑑𝑥𝑎𝑑𝑥𝑏𝐺 𝑥𝑎 𝐺 𝑥𝑏

𝑑 ො𝜎

𝑑 Ƹ𝑡
𝐷(𝑧1)

𝑥𝑎 =
𝑝𝑎

𝑃 𝑥𝑏 =
𝑝𝑏

𝑃

• Parton Distribution Function (PDF) 𝐺: Prob. of 
finding a parton from the hardon
• a non-perturbative process, most easily 

measured in 𝑒 + 𝑝 experiment (e.g. HERA) 
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• Parton Distribution Function (PDF) 𝐺: Prob. of 
finding a parton from the hardon
• a non-perturbative process, most easily 

measured in 𝑒 + 𝑝 experiment (e.g. HERA) 

• Perturbative scattering process 
𝑑ෝ𝜎

𝑑 መ𝑡
generates 

highly virtual (short-lived) particles that 
produce a shower known as a jet.



10

Factorization at work: Leading order diagram

𝑑𝜎1
ℎ

𝑑𝑦𝑑𝑝𝑇1

∼ න 𝑑𝑥𝑎𝑑𝑥𝑏𝐺 𝑥𝑎 𝐺 𝑥𝑏

𝑑 ො𝜎

𝑑 Ƹ𝑡
𝐷(𝑧1)

𝑥𝑎 =
𝑝𝑎

𝑃 𝑥𝑏 =
𝑝𝑏

𝑃

𝑧1 =
𝑝𝑇1

𝑝𝑐

𝑝𝑐

• Parton Distribution Function (PDF) 𝐺: Prob. of 
finding a parton from the hardon
• a non-perturbative process, most easily 

measured in 𝑒 + 𝑝 experiment (e.g. HERA) 

• Perturbative scattering process 
𝑑ෝ𝜎

𝑑 መ𝑡
generates 

highly virtual (short-lived) particles that 
produce a shower known as a jet.

• The showering and hadronization of quarks 
and gluons is encapsulated in the 
Fragmentation Function (FF) 𝐷: converts 
partons into hadrons 
• non-perturbative process measured in 𝑒+ + 𝑒−

(e.g. LEP) 
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Sketch of possible corrections

𝑥𝑎 =
𝑝𝑎

𝑃 𝑥𝑏 =
𝑝𝑏

𝑃

𝑝𝑐 𝑝𝑑

• To go a step further, another split is added, 
which introduces a different scale 𝑄2 (and 
∴ 𝛼𝑠) compared to the original production.

𝛼𝑠

𝑝 𝑄2 = 𝐸2 − Ԧ𝑝2 − 𝑚2

⇒ 𝑡𝑓 ∼ 1/𝑄.
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Sketch of possible corrections

𝑥𝑎 =
𝑝𝑎

𝑃 𝑥𝑏 =
𝑝𝑏

𝑃

𝑝𝑐 𝑝𝑑

• To go a step further, another split is added, 
which introduces a different scale 𝑄2 (and 
∴ 𝛼𝑠) compared to the original production.

• Need to use scale (𝑄) dependent PDFs 
and FFs

• Repeat the split recursively to get a 
shower

𝑧1

𝐺 𝑥𝑎 → 𝐺 𝑄, 𝑥𝑎 ; 𝐷 𝑧1 → 𝐷 𝑄, 𝑧1

𝛼𝑠

𝑝 𝑄2 = 𝐸2 − Ԧ𝑝2 − 𝑚2

⇒ 𝑡𝑓 ∼ 1/𝑄.



• Monte Carlo simulations (e.g., Pythia) 
develop a shower at the quark/gluon level in 
vacuum by adding multiple splits.

• In vacuum, the particles in a jet after 
hadronization occupy a narrow cone. 
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Monte Carlo jet shower simulation in vacuum
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Modified splitting inside the QGP

• In the nuclear medium, the particles in a jet 
after hadronization occupy a wider cone. 
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Modified splitting inside the QGP

QGP partons

• In the nuclear medium, the particles in a jet 
after hadronization occupy a wider cone. 

• This widening is given by 
• multiple scatterings in the QGP induce 

↓ 𝐸𝑡𝑦𝑝 of radiated quark/gluon (i.e. parton) 
⇒ ↑ 𝜃𝑡𝑦𝑝 radiation angle. 
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Modified splitting inside the QGP

Jet partons gained
from QGP 

QGP partons

• In the nuclear medium, the particles in a jet 
after hadronization occupy a wider cone. 

• This widening is given by 
• multiple scatterings in the QGP induce 

↓ 𝐸𝑡𝑦𝑝 of radiated quark/gluon (i.e. parton) 
⇒ ↑ 𝜃𝑡𝑦𝑝 radiation angle. 

• Scattering processes can pick-up (or deposit) 
partons into the QGP (see dashed to solid lines). 
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Modified splitting inside the QGP

Jet partons gained
from QGP 

Jet partons
lost to QGP 

QGP partons

The JETSCAPE framework combines high/low 
virtuality stages for an improved description 
of parton energy loss. 

• In the nuclear medium, the particles in a jet 
after hadronization occupy a wider cone. 

• This widening is given by 
• multiple scatterings in the QGP induce 
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parton content (chemistry) of the jet. [arxiv:2211.15553]
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the medium increase the number of emissions. 
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simulated emission induced by scattering 
(Boltzmann-like transport approach)



• Collisional energy-loss (from 2 → 2 scattering):
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Scatterings inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸

𝑑𝑥
= 

𝑎=𝑞,𝑔

න 𝑑2𝑞 න 𝑑3𝑘 𝐽 𝜌𝑎 𝑘  (𝜔 = 𝐸 − 𝐸′)
𝑑𝜎𝑄𝑎→𝑄𝑎

𝑑𝑞2

Flux of incoming 
particles

Exchanged energy

differential cross-section 

𝑞𝜇 = 𝜔, Ԧ𝑞

𝑝𝜇 = 𝐸, Ԧ𝑝 𝑝′𝜇 = 𝐸′, Ԧ𝑝′  

𝑘𝜇 = (𝑘0, 𝑘)

𝑘′𝜇
= 𝑘0′, 𝑘′

Δ𝐸 = 𝐸 − න 𝑑𝑥
𝑑𝐸

𝑑𝑥PRL 100, 072301 (2008)
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Scatterings inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸
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𝑎=𝑞,𝑔
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Flux of incoming 
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Exchanged energy

differential cross-section 

𝑞𝜇 = 𝜔, Ԧ𝑞

𝑝𝜇 = 𝐸, Ԧ𝑝 𝑝′𝜇 = 𝐸′, Ԧ𝑝′  

𝑘𝜇 = (𝑘0, 𝑘)

𝑘′𝜇
= 𝑘0′, 𝑘′

Δ𝐸 = 𝐸 − න 𝑑𝑥
𝑑𝐸

𝑑𝑥

−
𝑑𝐸

𝑑𝑥
≈ 

𝑎=𝑞,𝑔

න 𝑑3𝑘
1

exp
𝑘0

𝑇  ± 1
න 𝑑𝑞2

𝑞2

2𝑘
𝐶𝑎

2𝜋𝛼𝑠
2

𝑞2 2

−
𝑑𝐸

𝑑𝑥
∼ 𝛼𝑠𝑇2 ln

𝐸

𝑇

PRL 100, 072301 (2008)



• Radiative energy-loss of long-lived partons via stimulated 
emission (induced by multiple coherent scatterings):
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Radiation inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸

𝑑𝑥
= න

0

𝐸

𝑑𝜔  𝜔
𝑑2𝑁

𝑑𝜔𝑑𝑥
≈ න

0

𝐸

𝑑𝜔
1

𝑙𝑐𝑜ℎ𝑒𝑟
 𝜔

𝑑𝑁

𝑑𝜔

𝑙𝑐𝑜ℎ𝑒𝑟

𝑞𝜇 = ω, q⊥, 𝑞𝑧

𝐸

𝐸′
𝜆

PRL 100, 072301 (2008)

Length 

dependence

Energy 
dependence 



• Radiative energy-loss of long-lived partons via stimulated 
emission (induced by multiple coherent scatterings):
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Radiation inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸

𝑑𝑥
= න

0

𝐸

𝑑𝜔  𝜔
𝑑2𝑁

𝑑𝜔𝑑𝑥
≈ න

0

𝐸

𝑑𝜔
1

𝑙𝑐𝑜ℎ𝑒𝑟
 𝜔

𝑑𝑁

𝑑𝜔

𝑙𝑐𝑜ℎ𝑒𝑟

𝑞𝜇 = ω, q⊥, 𝑞𝑧

𝐸

𝐸′

𝑙𝑐𝑜ℎ𝑒𝑟 =
𝜔

𝑞⊥
2 ≈

𝜔

⟨𝑞⊥
2⟩𝑐𝑜ℎ𝑒𝑟

𝜆

PRL 100, 072301 (2008)

Brownian-like motion ansatz



• Radiative energy-loss of long-lived partons via stimulated 
emission (induced by multiple coherent scatterings):
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Radiation inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸

𝑑𝑥
= න

0

𝐸

𝑑𝜔  𝜔
𝑑2𝑁

𝑑𝜔𝑑𝑥
≈ න

0

𝐸

𝑑𝜔
1

𝑙𝑐𝑜ℎ𝑒𝑟
 𝜔

𝑑𝑁

𝑑𝜔

𝑙𝑐𝑜ℎ𝑒𝑟

𝑞𝜇 = ω, q⊥, 𝑞𝑧

𝐸

𝐸′

𝑙𝑐𝑜ℎ𝑒𝑟 =
𝜔

𝑞⊥
2 ≈

𝜔

⟨𝑞⊥
2⟩𝑐𝑜ℎ𝑒𝑟

𝑞⊥
2

𝑐𝑜ℎ𝑒𝑟
≈

𝑙𝑐𝑜ℎ𝑒𝑟

𝜆
𝜇2 ⇒ 𝑙𝑐𝑜ℎ𝑒𝑟 ≈

𝜔𝜆

𝜇2

𝜆

PRL 100, 072301 (2008)

Brownian-like motion ansatz



• Radiative energy-loss of long-lived partons via stimulated 
emission (induced by multiple coherent scatterings):
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Radiation inside the nuclear medium at low virtuality

Light quarks (u,d,s)

−
𝑑𝐸

𝑑𝑥
= න

0

𝐸

𝑑𝜔  𝜔
𝑑2𝑁

𝑑𝜔𝑑𝑥
≈ න

0

𝐸

𝑑𝜔
1

𝑙𝑐𝑜ℎ𝑒𝑟
 𝜔

𝑑𝑁

𝑑𝜔

𝑙𝑐𝑜ℎ𝑒𝑟

𝑞𝜇 = ω, q⊥, 𝑞𝑧

𝐸

𝐸′

𝑙𝑐𝑜ℎ𝑒𝑟 =
𝜔

𝑞⊥
2 ≈

𝜔

⟨𝑞⊥
2⟩𝑐𝑜ℎ𝑒𝑟

𝑞⊥
2

𝑐𝑜ℎ𝑒𝑟
≈

𝑙𝑐𝑜ℎ𝑒𝑟

𝜆
𝜇2 ⇒ 𝑙𝑐𝑜ℎ𝑒𝑟 ≈

𝜔𝜆

𝜇2

−
𝑑𝐸

𝑑𝑥
≈ න

0

𝐸

𝑑𝜔
𝜇2

𝜆

1

𝜔

𝛼𝑠

𝜋
𝑁𝑐 ∼

𝜇2

𝜆
𝐸

𝜔
𝑑𝑁

𝑑𝜔
→

𝛼𝑠

𝜋
𝑁𝑐 (for 𝜔 → 0)

𝜆

Bethe-Heitler radiation spectrum

PRL 100, 072301 (2008)

Brownian-like motion ansatz
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Radiation inside the nuclear medium at low virtuality

Light quarks (u,d,s)

𝑙𝑐𝑜ℎ𝑒𝑟

𝑞𝜇 = ω, q⊥, 𝑞𝑧

𝐸

𝐸′
𝜆

Charm quarks

• Charm quarks behave similarly to light flavors, modulo 
finite mass effects on kinematics

• Together, scattering & radiation are used to solve the 
Boltzmann Transport (BT) equation:

• Linear BT (LBT) solves the Boltzmann eq. inside JETSCAPE

PRL 100, 072301 (2008) PRC 88, 044907 (2013)

𝑝 ⋅ 𝜕𝑓 𝑥, 𝑝 = 𝒞𝑠𝑐𝑎𝑡𝑡 + 𝒢𝑟𝑎𝑑



• Radiative energy-loss of short-lived partons (modified by 
single-scattering):
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Radiation inside the nuclear medium at high virtuality

𝐸

𝐸′

𝐸

𝐸′ = 𝑦𝐸

𝐸

𝐸′

+

+

𝑘⊥

𝑘⊥

𝑘⊥

How much the splitting function 𝒫 is modified in the medium 
depends on the lifetime/formation time 𝑡𝑓(𝑄2) of the split?

𝑑𝑁

𝑑𝑦𝑑𝑄2
=

𝛼𝑠

2𝜋𝑄2
𝒫 𝑦, 𝑄2 =

𝛼𝑠

2𝜋(𝐸2− Ԧ𝑝2)
𝒫 𝑦, 𝑄2

𝜔 = 1 − 𝑦 𝐸



• Radiative energy-loss of short-lived partons (modified by 
single-scattering):
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Radiation inside the nuclear medium at high virtuality

𝐸

𝐸′

𝑡𝑓(𝑄2) =
𝜔

𝑦(1 − 𝑦)𝑄2 =
𝜔

𝑞⊥
2 ≈

𝜔

⟨𝑞⊥
2⟩

𝐸

𝐸′ = 𝑦𝐸

𝐸

𝐸′

+

+

ො𝑞 =
𝑞⊥

2

𝜆
 

𝑘⊥

𝑘⊥

𝑘⊥

We parametrize ො𝑞 
and fit it to data! 

𝑑𝑁

𝑑𝑦𝑑𝑄2
=

𝛼𝑠

2𝜋𝑄2
𝒫 𝑦, 𝑄2 =

𝛼𝑠

2𝜋(𝐸2− Ԧ𝑝2)
𝒫 𝑦, 𝑄2

𝜔 = 1 − 𝑦 𝐸



• Radiative energy-loss of short-lived partons (modified by 
single-scattering):
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Radiation inside the nuclear medium at high virtuality

𝐸

𝐸′

𝑡𝑓(𝑄2) =
𝜔

𝑦(1 − 𝑦)𝑄2 =
𝜔

𝑞⊥
2 ≈

𝜔

⟨𝑞⊥
2⟩

𝐸

𝐸′ = 𝑦𝐸

𝐸

𝐸′

+

+

ො𝑞 =
𝑞⊥

2

𝜆
 

𝑘⊥

𝑘⊥

𝑘⊥

We parametrize ො𝑞 
and fit it to data! 

𝑑𝑁
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1 − 𝑦

PRC 101, 034908 (2020) 
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𝑸

𝟐

𝑻
𝟑

Typical 3-parameter shape



• To study the nuclear medium’s effects on parton shower, one computes nuclear 
modification factor 

• If an A-A collisions was the same as p-p collisions, then we can rescale the p-p collision by 
the 𝑁𝑏𝑖𝑛 binary collisions  ⇒ 𝑅𝐴𝐴

𝑋 → 1.

• 𝑅𝐴𝐴 < 1 stems from two different sources:
• Initial state effects: nuclear modifications to the parton distribution function.

• Final state effects: creation of the QGP through which partons loose energy and the jet is quenched.

• The other extreme 𝑅𝐴𝐴
𝑋 → 0, means that all jets in A-A collisions get absorbed by the 

nuclear medium, i.e. there is no leading hadron. 
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An experimental observable

𝑅𝐴𝐴
𝑋 =

𝑑𝜎𝐴𝐴
𝑋

𝑑𝑝𝑇

𝑁𝑏𝑖𝑛

𝑑𝜎𝑝𝑝
𝑋

𝑑𝑝𝑇

𝑋 is the leading (highest energy) hadron in a jet 
(which can be of an identified species or not)



• To explain the experimental data (charged hadrons/D-mesons), a combination of high- and 
low-virtuality energy-loss models is needed. 
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Comparison with experiment

PRC 107, 054901 (2023) PRC 107, 054901 (2023) 

𝑠𝑁𝑁 = 5.02 TeV 𝑠𝑁𝑁 = 5.02 TeV



• For short-lived partons, it is unclear how important scattering really is.

• Using 𝑄2-independent, i.e. formation-time independent ො𝑞𝐻𝑇𝐿, and turning on/off the 
scattering, we see that the latter has a dramatic effect on the nuclear modification factor 
𝑅𝐴𝐴. 
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Effects of scattering at high virtuality

PRC 107, 054901 (2023) PRC 107, 054901 (2023) 

𝑠𝑁𝑁 = 5.02 TeV 𝑠𝑁𝑁 = 5.02 TeV
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Effects of scattering at high virtuality

• Keeping scattering on and including ො𝑞 𝑄2  removes the high amount of quenching seen at 
high 𝑝𝑇.

PRC 107, 054901 (2023) PRC 107, 054901 (2023) 

𝑠𝑁𝑁 = 5.02 TeV 𝑠𝑁𝑁 = 5.02 TeV
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Effects of scattering at high virtuality

• Keeping scattering on and including ො𝑞 𝑄2  removes the high amount of quenching seen at 
high 𝑝𝑇.

⇒ Scattering and coherence effects are needed to explain the data. 

PRC 107, 054901 (2023) PRC 107, 054901 (2023) 

𝑠𝑁𝑁 = 5.02 TeV 𝑠𝑁𝑁 = 5.02 TeV



• A holistic Bayesian analysis is ongoing 
to determine ො𝑞 phenomenologically: 
• More collision energies and nuclear 

species: 
𝑠𝑁𝑁 = 0.2 TeV Au-Au 
𝑠𝑁𝑁 = 2.76, 5.02 TeV Pb-Pb

• More centralities:

    From central (0-5%) to 
    semi-peripheral (40-50%) collisions.

• Different observables:

𝑅𝐴𝐴
𝜋 , Rh±

, RAA
jet

𝑅 = 0.2,0.3,0.4,0.8,1.0 , … 

• ො𝑞 𝑄, 𝑇  is upcoming. Stay tuned…
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First results and outlook

Preliminary

Ji Chen (JETSCAPE Collaboration)
Hard Probes 2023



Conclusions and Outlook
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• There are two complementary ongoing efforts studying nuclear matter at high-energies:
• Explore the nuclear viscous transport coefficients (𝜁 𝑇 , 𝜂 𝑇 , …)

• Explore how calibrated observables are modified owing to in-medium interactions (e.g., ො𝑞)

• Bayesian analysis are starting to become commonly used to constrain the above-
mentioned properties of nuclear medium.

• As Bayesian analysis become more holistic (i.e., simultaneous extraction of viscous and 
jet-related transport coefficients) and computationally expensive ⇒ more robust 
extraction (hot) nuclear medium properties is foreseen.

• However, rigorously accounting for both theoretical systematic uncertainties (e.g. higher 
order corrections need to be calculated) and experimental systematic uncertainties 
(experiments need to publish the full covariance matrix of measurements) is a must.

• An era of concentrated and great collaborative work is foreseen! 
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