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Evolution of the nuclear medium as seen through jets
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Evolution of the nuclear medium as seen through jets
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* To help simulate these different aspects of heavy-ion collisions, the JETSCAPE
(Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope)

framework was established.
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* The latest Bayesian constraints in the viscosities of the nuclear medium T*" done by
JETSCAPE (see talk on Wed, 1:45pm)
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The JETSCAPE Framework
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e JETSCAPE framework allows :

* Multiple energy loss formalisms to be present simultaneously, each applied in its region of validity.

* Provides a set of Bayesian tools to characterize the interaction of hard probes with the QGP
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Factorization at work: Leading order diagram

e Parton Distribution Function (PDF) G: Prob. of
finding a parton from the hardon
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Factorization at work: Leading order diagram

e Parton Distribution Function (PDF) G: Prob. of
finding a parton from the hardon

* a non-perturbative process, most easily
measured in e + p experiment (e.g. HERA)

AN

. . do
* Perturbative scatterlng process E generates

highly virtual (short-lived) particles that
produce a shower known as a jet.

* The showering and hadronization of quarks
and gluons is encapsulated in the

Fragmentation Function (FF) D: converts
Dy partons into hadrons
Z; = — * non-perturbative process measured ine™ + e~
Pe (e.g. LEP)

h
doy

do

~ fdxadbe(xa)G(xb) [dt

D(z
dydpr, ] (71)



Sketch of possible corrections

* To go a step further, another split is added,
which introduces a different scale Q% (and
. i) compared to the original production.
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Sketch of possible corrections

* To go a step further, another split is added,
which introduces a different scale Q% (and
. i) compared to the original production.

* Need to use scale (Q) dependent PDFs
and FFs

G(xq) = G(Q,xq); D(z;) » D(Q,7,)

* Repeat the split recursively to get a
shower
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Monte Carlo jet shower simulation in vacuum

* Monte Carlo simulations (e.g., Pythia)
develop a shower at the quark/gluon level in
vacuum by adding multiple splits.

* In vacuum, the particles in a jet after
hadronization occupy a narrow cone.
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Modified splitting inside the QGP

* In the nuclear medium, the particles in a jet
after hadronization occupy a wider cone.
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Modified splitting inside the QGP

* In the nuclear medium, the particles in a jet
after hadronization occupy a wider cone.

* This widening is given by

* multiple scatterings in the QGP induce
l Et,, of radiated quark/gluon (i.e. parton)
= T 04, radiation angle.

QGP partons
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» Scattering processes can pick-up (or deposit)
partons into the QGP (see dashed to solid lines).
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Modified splitting inside the QGP

Jet partons gained
from QGP

QGP partons

Jet partons
lost to QGP

The JETSCAPE framework combines high/low
virtuality stages for an improved description

of parton energy loss.

* In the nuclear medium, the particles in a jet
after hadronization occupy a wider cone.

* This widening is given by
* multiple scatterings in the QGP induce
l Et,, of radiated quark/gluon (i.e. parton)
= T Oy, radiation angle.

» Scattering processes can pick-up (or deposit)
partons into the QGP (see dashed to solid lines).

* Medium-induced radiation/absorption also change
parton content (chemistry) of the jet.

* At high virtuality, short-lived partons T stability via
rapid virtuality loss via radiation. Interactions with
the medium increase the number of emissions.

* At low virtuality, radiation can only come from
simulated emission induced by scattering
(Boltzmann-like transport approach)
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Scatterings inside the nuclear medium at low virtuality
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Scatterings inside the nuclear medium at low virtuality

* Collisional energy-loss (from 2 — 2 scattering):
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Radiation inside the nuclear medium at low virtuality
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Radiation inside the nuclear medium at low virtuality

* Radiative energy-loss of long-lived partons via stimulated

emission (induced by multiple coherent scatterings):
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Radiation inside the nuclear medium at low virtuality
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Radiation inside the nuclear medium at low virtuality

* Radiative energy-loss of long-lived partons via stimulated
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Radiation inside the nuclear medium at low virtuality
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* Charm quarks behave similarly to light flavors, modulo
finite mass effects on kinematics

* Together, scattering & radiation are used to solve the
Boltzmann Transport (BT) equation:

N p - 0f(x,p) = Cscatt + Graa

* Linear BT (LBT) solves the Boltzmann eq. inside JETSCAPE



Radiation inside the nuclear medium at high virtuality
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How much the splitting function P is modified in the medium
depends on the lifetime/formation time tf(Qz) of the split?
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Radiation inside the nuclear medium at high virtuality

-

/”
PR )]

[l

-
-
-

’(1 —y)E

e Radiative energy-loss of short-lived partons (modified by
single-scattering):
dN Qg
dydQ? ~ 2mQ?

As

2m(E?=p?)

P(.0*) = P(v.Q%)

W W (qi) We parametrize g

2\ — — ~ A — ~—°L
tf(Q)_y(l—y)Qz_qi~(qf) 9= y) and fit it to data!

29



Radiation inside the nuclear medium at high virtuality

-
-
-

-y ’(’1 —))E * Radiative energy-loss of short-lived partons (modified by
-7 single-scattering):
-7 dN Qg

[l

As

P(.0*) = P(v.Q%)

dydQ? ~ 2mQ? 2m(E2—p2)

W W (qi) We parametrize g

2\ — — ~ A — ~—°L
tf(Q)_y(l—y)Qz_qi~(qf) 9= y) and fit it to data!

.

P(y,Q%) =P(y) +
A L L I B

y(1—-y)Q?

Pg(—q ()’) =

1+ y?
1-y

Typical 3-parameter shape

E=50 GeV

0 10 20 30 40 50 0



An experimental observable

To study the nuclear medium’s effects on parton shower, one computes nuclear
modification factor

X
CilUAA X is the leading (highest energy) hadron in a jet
R¥, = ZT = (which can be of an identified species or not)
o
Nbin dpp:

If an A-A collisions was the same as p-p collisions, then we can rescale the p-p collision by
the Ny, binary collisions = R, — 1.

R,4 < 1 stems from two different sources:
* |nitial state effects: nuclear modifications to the parton distribution function.
* Final state effects: creation of the QGP through which partons loose energy and the jet is quenched.

The other extreme R}fA — 0, means that all jets in A-A collisions get absorbed by the
nuclear medium, i.e. there is no leading hadron.
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* To explain the experimental data (charged hadrons/D-mesons), a combination of high- and

low-virtuality energy-loss models is needed.
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Effects of scattering at high virtuality
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For short-lived partons, it is unclear how important scattering really is.

Using Q?-independent, i.e. formation-time independent §7;, and turning on/off the
scattering, we see that the latter has a dramatic effect on the nuclear modification factor

RAA.
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Effects of scattering at high virtuality
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* Keeping scattering on and including @(QZ) removes the high amount of quenching seen at

high pr.
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Effects of scattering at high virtuality
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* Keeping scattering on and including @(QZ) removes the high amount of quenching seen at
high pr.
= Scattering and coherence effects are needed to explain the data.
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First resu

E =100 GeV
Posterior

Ji Chen (JETSCAPE Collaboration)
Hard Probes 2023

¢ JET Collaboration
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ts and outlook

* A holistic Bayesian analysis is ongoing
to determine g phenomenologically:

* More collision energies and nuclear
species:
VSyy = 0.2 TeV Au-Au
Sy = 2.76,5.02 TeV Pb-Pb

* More centralities:

From central (0-5%) to
semi-peripheral (40-50%) collisions.

* Different observables:
RZ,, RM R (R = 0.2,0.3,0.4,0.8,1.0), ...

* §(Q,T) is upcoming. Stay tuned...
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Conclusions and Outlook

There are two complementary ongoing efforts studying nuclear matter at high-energies:
 Explore the nuclear viscous transport coefficients ({(T),n(T), ...)
* Explore how calibrated observables are modified owing to in-medium interactions (e.g., 4)

Bayesian analysis are starting to become commonly used to constrain the above-
mentioned properties of nuclear medium.

As Bayesian analysis become more holistic (i.e., simultaneous extraction of viscous and
jet-related transport coefficients) and computationally expensive = more robust
extraction (hot) nuclear medium properties is foreseen.

However, rigorously accounting for both theoretical systematic uncertainties (e.g. higher
order corrections need to be calculated) and experimental systematic uncertainties
(experiments need to publish the full covariance matrix of measurements) is a must.

An era of concentrated and great collaborative work is foreseen!
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