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Abstract

• The spacetime M in general relativity (GR) is curved. Parallel transportations of vectors in M depend on 
path. This leads to the fact that vectors distributed on different points in M can not be added up to get a sum 
vector unambiguously. Geometry does not allow talking about matter energy momentum distributed on 
(passing through) a finite or infinite spacelike (timelike) hypersurface, does not allow talking about the net 
increase of matter energy momentum in a finite or infinite 4-demensional spacetime region. Even for a simple 
physical system consisting of only two uncharged mass points, geometry does not allow talking about its 
energy momentum. Therefore, it is pressing to explore the meaning of conservation of energy momentum in 
GR from a geometric perspective.

• We also show, in a curved spacetime M, when limited to an infinitesimal spacetime region, vectors 
distributed at different points can still be added up to get a sum vector unambiguously, if neglecting higher 
order infinitesimals. For an (r,s)-tensor Q, denoting by 𝐽 its flux density (r+1,s)-tensor field, the conservation 
law of Q in curved spacetime M is “the covariant divergence of 𝐽 vanishes everywhere”. It reads, “the net 
increase of tensor Q in any infinitesimal 4-dimensional neighborhood is zero”. 

• In particular, “the covariant divergence of 𝑇 (flux density of matter energy momentum) vanishes 
everywhere”   is the conservation law of matter energy momentum in GR. This is against to mainstream 
scholar’s viewpoint.



§1. Motivation

How was the gravitational energy-momentum introduced into general relativity?
• The law of conservation of energy-momentum is the cornerstone of modern physics. Far beyond the scope of 

physics, it is the bedrock law of nature. So, when Einstein tried to establish his new theory of gravity, the 
general relativity (GR), his top priority was to ensure the energy-momentum conservation. However, from the 
fundamental equations of motion of GR, Einstein field equations

(1)
𝑅 𝑥 − 𝑅 𝑥 𝑔 𝑥 = 𝑇 𝑥 , ∀𝛼, 𝛽 = 0,1,2,3

(3)
𝜕

𝜕𝑥
− 𝑔 𝑥 𝑇 𝑥 + − 𝑔 𝑥 Γ 𝑥 𝑇 𝑥 = 0

that is, the covariant divergence of matter energy-momentum flux density tensor field vanishes

everywhere in spacetime M. Multiplying it by − 𝑔(𝑥) , he obtained 

by using contracted Bianchi identity, he obtained

∇ 𝑇 𝑥 | = 0,  ∀𝛽 = 0,1,2,3;   𝑝 ∈M (2)



and integrating eqn. (3) over 4-dimensional spacetime domain Ω ⊂ 𝑀 , he got by using Gaussian theorem

𝑑 𝑥 − 𝑔 𝑥 𝑇 𝑥 =

𝑑𝑠 𝑥 − 𝑔 𝑥  𝑇 𝑥 +  𝑑 𝑥 − 𝑔 𝑥 Γ 𝑥 𝑇 𝑥  

= 0 ,         ∀ 𝜇 =  0, 1, 2, 3 (4)

When the boundary of Ω is composed of a past spacelike hyper-surface Σ, a future spacelike
hyper-surface Σ and a timelike hyper-surface Γ which links the boundaries of Σ and Σ , eqn.
(4) can be written as





− − 𝑑𝑠 𝑥 − 𝑔 𝑥  𝑇 𝑥 =

− ∫ 𝑑 𝑥 − 𝑔 𝑥 Γ 𝑥 𝑇 𝑥 ,   ∀𝜇 =  0, 1, 2, 3
(5) 

Einstein read this as the 𝜇-component of matter energy-momentum distributed on Σ minus the 𝜇-component of
matter energy-momentum distributed on Σ and the 𝜇-component of matter energy-momentum flowing in
through Γ equals the integral at left hand side, which is not zero in general. Therefore, he decided that the
vanishing of the covariant divergence of matter energy-momentum flux density is a law of non-conservation of
matter energy-momentum. In order to save the law of energy-momentum conservation, Einstein rewrite the
second term of eqn.(3) as [1]

(6)

where 𝑡 𝑥 is a function of metric field and it's first order derivatives. (Note that, eqn. (6) does not uniquely
determine 𝑡 𝑥 ) Substituting eqn. (6) into eqn. (5), he got



(7)

 

Now he read the above equations as “ the 𝜇-component of matter energy-momentum
plus the 𝜇-component of gravitational energy-momentum distributed
on Σ’ minus the 𝜇-component of matter energy-momentum plus the gravitational
energy-momentum distributed on Σ and the 𝜇-component of matter energy-momentum
plus the gravitational energy-momentum flowing in through Γ ” is zero,
or, the 𝜇-component of “the net increase of matter energy-momentum in Ω plus the net increase of
gravitational energy-momentum in Ω” is zero. And 𝑡 (𝑥)was read as the flux

density of gravitational energy-momentum, Γ (𝑥)𝑇 (𝑥)

was read as the 𝜇-component of the amount of matter energy-momentum which changes into 
gravitational energy-momentum in per unit 4-dimensional spacetime volume.  

Einstein was happy to have saved the law of energy-momentum by introducing 
gravitational energy-momentum.



Here we point out, the spacetime M in GR is curved, there is no flat coordinate
system in M, and in a curved coordinate system, the sum (or integration) of
components with the same index of vectors distributed at different points is not the
corresponding component of their sum vector in general. And even more, we will 
show later, the sum vector of vectors distributed at different points in curved 

spacetime does not exist. The expression is indeed the 
−component of matter energy-momentum on infinitesimal hyper-surface element ΔΣ. 

However, when Einstein read as the −component of 
matter energy-momentum on Σ, he was making an elementary mistake. And it causes
century long confusion in GR, due to his supremacy in physics.



H. Bauer immediately pointed out that Einstein’s gravitational energy-momentum’s 
current density is not a tensor and is not localizable [2].  He showed, when  
 , 0 , Minkowski metric is a solution to Einstein’s 

field equation. There are inertial coordinate systems in Minkowski space. In an 
inertial coordinate system { }, . Switching to spherical 
coordinate system by a pure spatial coordinate transformation, than

,     and    

.



Einstein’s is not symmetric. In the 1930’s, Landau and Lifshitz proposed a 
symmetric satisfying the following equations [3]

(8)

which is equivalent to 

= 0, 1, 2, 3 .  

Or = 0, 1, 2, 3 .           (9)

However, does not have the correct transformation property 
under general coordinate transformations for a hyper-surface element. It is a 

wrong expression, and the correct one is .



After that, several current densities of gravitational energy-momentum were 
proposed [4,5]. But they are all “pseudo-tensors”

( ) (10)

and not localizable. Efforts searching for covariant gravitational energy-momentum 
have never ceased, but have all failed. Some scholars proposed that non-localizability 
of gravitational energy-momentum is required by the equivalence principle. This 
viewpoint is generally accepted by relativists. But here I will show it is wrong. 



In section 20.4 of their influential book “gravitation” [6], C. Misner, K.S. Thorne, 
and J.A. Wheeler wrote, “…One can always find in any given locality a frame of 
reference in which all local ‘gravitational fields’ (all Christoffel symbols; all ) 
disappear. No Γ' s means no 'gravitational field' and no local gravitational field 
means no ‘local gravitational energy-momentum.’…Nobody can deny or wants to 
deny that gravitational forces make a contribution to the mass-energy of a 
gravitationally interacting system. …At issue is not the existence of

gravitational energy, but the localizability of gravitational energy. It is not 
localizable. The equivalence principle forbids.”



From the argument quoted above, it’s clear that these authors believe 
“disappearing of gravitational energy-momentum” and “disappearing of  ” are the 
same thing. Let me show by using a counter example, their viewpoint breaks the 
conservation law of energy-momentum.

When ,  Minkowski metric is 
a solution to Einstein’s field equation. The corresponding spacetime is Minkowski 
space which is flat. There exist inertial coordinate systems. In an inertial coordinate 
system , matter energy-momentum and gravitational energy-momentum 
vanish everywhere in the whole spacetime. If switching to a new coordinate system 

, such that outside 4-dimensional domain 

both coordinate systems coincide; and inside , the latter is curved.





In the coordinate system , matter energy-momentum still vanishes in whole 
spacetime M, and according to the authors of [6], the gravitational energy-momentum would 
appear in . Where does the gravitational energy-momentum in 
come from? And where is it gone? Evidently, this breaks the law of energy-momentum 
conservation. 



Some sound facts from geometry

In this section, we will present some sound facts from geometry which are crucial for 
understanding physics in curved spacetime and are often neglected.

(1) Let us have a look at the following simple example.





Suppose 𝑎 = (−1,0), 𝑏 = (1,0) are two points on Euclidean plane ℝ , and there are two vectors 𝐴 at 𝑎, and 
𝐵 at 𝑏. In the corresponding Descartes coordinate system, 𝐴= 0𝚤̂ + 1𝚥,̂  𝐵 = 0𝚤̂ + 1𝚥,̂ and 𝐴+ 𝐵  = 0𝚤̂ + 2𝚥 ̂. 

           Switching to polar coordinates, we have𝐴 =  0�̂� −1𝜃 ,  𝐵 = 0�̂� +1 𝜃
however the sum vector 𝐴+ 𝐵  ≠ 0�̂̂� + 0𝜃 , ∀p ∈ ℝ \ 𝑜 .
        This shows, even in a flat space, when adopting a curved coordinate system, the sum (or integration) 
of components with the same index of vectors at different points is not the corresponding component of 

the sum vector in general. And that is why I said, “when Einstein read  ∫ 𝑑 𝑠 (𝑥) −|𝑔(𝑥)| 𝑇 (x)  as 
the 𝜇 −component of matter energy-momentum on Σ, he was making an elementary mistake”.

(2) In the literature of GR, “the mass of a black hole” might be one of the most frequently appearing 
terms. But a black hole is a huge celestial body in an extremely curved spacetime region. Mass is not a 
scalar, but the 0-component of energy-momentum 4-vector. Geometry does not allow adding up vectors 
distributed at different points of a curved spacetime to get a sum vector. Even the energy-momentum of 
the simple physical system composed of two uncharged mass points does not make sense, let alone “the 
energy-momentum of a black hole”. (See [16,17], or the following)





Denote by 𝑀 the spacetime manifold in GR. “𝑀 is curved” means “parallel translation of a vector depends on path”. 
Suppose 𝑝, 𝑞 ∈ 𝑀 ( 𝑝 ≠ 𝑞), (ℎ𝑒𝑛𝑐𝑒 𝑇 ≠ 𝑇 ),  & 𝑈 ∈ 𝑇 , 𝑉 ∈ 𝑇 . No one can add up vectors belonging to different 
vector spaces. In order to add 𝑈, 𝑉 up, one has to parallelly transport them to same point, say 𝑟 ∈ 𝑀. The transported 
vectors 𝑈  and 𝑉 now belong to the same tangent space 𝑇  , so one can add them up to get a sum 
vector  𝑈  + 𝑉  = : 𝑊 ∈  𝑇  . 
But the spacetime 𝑀 is curved, parallel translation of a vector depends on path. To avoid the ambiguity, 
one might suggest parallelly transporting 𝑈, 𝑉 to 𝑟 along geodesics.
But, even so, when one chooses a different point 𝑠 ∈ 𝑀 (𝑠 ≠ 𝑟), and parallelly
transport 𝑈 and 𝑉 along geodesics to 𝑠, one gets a sum vector there,   𝑈  + 𝑉  = : 𝑊 ∈  𝑇  . However, 
when parallelly transporting 𝑊  along the geodesic to 𝑠, the
resulting vector is not 𝑊 in general, because geodesics from p (q) to r, plus
geodesics from r to s is not the geodesics from p (q) to s in general. We see, one
cannot define the sum of vectors at different points in a curved spacetime.



(3) One might ask, “In a flat spacetime, vectors at different points literally  belong to 
different tangent spaces too, why can you add them up?”

In fact, when spacetime 𝑀 is flat, let Φ =:∪ ∈ 𝑇 , and define a binary relation ~ in Φ, such that, for any 𝑝, 𝑞 ∈

𝑀, and 𝑈 ∈ 𝑇 , 𝑉 ∈ 𝑇 , we say 𝑈~𝑉, if and only if parallelly transporting 𝑈 from 𝑝 to 𝑞 will result in 𝑉. Because 
𝑀 is flat, parallel translation of vectors does not depend on path, therefore ~ is not ambiguous. It is
easy to see that ~ is an equivalence relation and each equivalence class contains one and only one representative 
in every tangent space of 𝑀. Denote the equivalence class containing 𝑈 by 𝑈 and the quotient set by 𝛷 . Because 
parallel transportation keeps linear relation unchanged, we can define addition and
multiplication with real numbers in Φ such that, for any 𝑈, 𝑉 ∈ Φ, and 𝛼 ∈ ℝ, choose a point 𝑝 ∈ 𝑀, and denote 
by 𝑈’ the only vector in 𝑇  ∩ 𝑈 , denote by V‘ the only vector in 𝑇  ∩ 𝑉 , then, let 𝑈 + 𝑉 = 𝑈′ +  𝑉′, and 𝛼𝑈 = 
𝛼𝑈′. It’s easy to check, these definitions are independent of the choices of 𝑝. With these induced
operations, 𝛷 is a real vector space. Because parallel translation in generalized Riemannian spaces also keeps 
scalar product, we can define scalar product in 𝛷 such that, for any 𝑈, 𝑉 ∈ Φ, choose a point 𝑝 ∈ 𝑀, and denote 
by U’ the only vector in 𝑇  ∩ 𝑈 , denote by V‘ the only vector in 𝑇  ∩ 𝑉 , then, let 𝑈 𝑉= 𝑈′ ∙ 𝑉′. This
definition is independent of the choice of 𝑝. And now 𝛷 is a real scalar product space. For any 𝑝 ∈ 𝑀, the map 
𝑈(∈ 𝑇 ) ↦ 𝑈 ( ∈ 𝛷 ) is an isometric isomorphism of 𝑇 onto 𝛷 . This 𝛷 is the so-called scalar product space of 
free vectors. In the case of a flat spacetime 𝑀, when people talk about the sum vector 𝑈 + 𝑉 of two
tangent vectors 𝑈( ∈ 𝑇  ) and V(∈ 𝑇 ), they actually mean 𝑈 + 𝑉 in the scalar product space of free vectors Φ. 
It is clear, when spacetime 𝑀 is curved, we can not talk about free vectors.



(4) In a curved spacetime 𝑀, even the change of energy-momentum 4-vector of an uncharged mass point is not 
self-evident. Unfortunately, nobody has given it a definition in the literature of GR, as long as I know. (See 
[16,17] or the following)

Suppose the particle's world line is 𝛾: Δ→ 𝑀, where Δ =: [𝜏 , 𝜏  ] , 𝜏 (𝜏 ) is the proper time when the particle 
is created (annihilated), or Δ =: [𝜏 , +∞), Δ = : (−∞, 𝜏  ], Δ =: (−∞, +∞), if its lifespan is infinite. The particle’s 
energy-momentum
4-vectors at proper times 𝜏 ∈ Δ, 𝑝(𝜏) is the tangent vector to the world
line at point 𝛾(𝜏) times its rest mass, 𝑝(𝜏) ∈𝑇𝛾(𝜏). When 𝜏  , 𝜏 ∈ Δ (𝜏  ≠ 𝜏 ) , 𝑝(𝜏  ), 𝑝(𝜏 ) belong to different 

tangent spaces. We cannot subtract one from the other. For 𝜏 , 𝜏 ∈ Δ, denote by 𝑝 (𝜏) the vector obtained by 
parallelly transporting 𝑝(𝜏0) ∈𝑇 ( ) along the world line from 𝛾(𝜏 ) to 𝛾(𝜏), 𝑝 (𝜏) ∈ 𝑇𝛾(𝜏) .

The change of a particle's energy-momentum 4-vector from proper time 𝜏  to 𝜏 (𝜏  , 𝜏  ∈ Δ) is 
a vector field defined only on its world line,

 , : Δ→ Δ ( ) (11)

such that

 ( ) =: ( )  ( ),   Δ            (12)



It is easy to check,

+ = , , , Δ (13)

That is, the change of a particle's energy-momentum 4-vector from to plus
the change from to , equals the change from to . This is exactly what we 
expect, but it is not trivial. For, should we define the change of a particle's energy-
momentum 4-vector from proper time to as

( ) =: ( ) − ( ) ( ) , Δ (14)

where ( ) is the vector obtained by parallelly transporting ( ) along the 
geodesic from ( ) to ( ), the above self-consistency (13) would fail. Therefore,
if we wish to talk about the change of a particle's energy-momentum 4-vector
in curved spacetime, (11)+(12) is the only reasonable definition. It is worth
noting, this definition does not depend on coordinates.



(6)   In (2) of this section, we showed that one can not define the sum of vectors at 
different points in a curved spacetime M. However, when restricted to a sufficiently small 
region ΔΩ , we can define the sum of vectors at different points in ΔΩ when neglecting 
higher order infinitesimals.

In fact, spacetime a generalized Riemannian manifold. Suppose 
and { , } is a compatible coordinate chart of M, such that , and ( ) = ,

(x) , where ’s are components of Minkowskian metric tensor. Then we call 
{ , } a local inertial coordinate chart of p. If ΔΩ X, and ΔΩ is a sufficient small 
neighborhood of p, then all Christoffel symbols in ΔΩ are infinitesimals. The 
equations of parallel translation of vector in ΔΩ is

( ) = , = 0,1,2,3,    
( ) ≈ 0, = 0,1,2,3,

when neglecting higher order infinitesimal.



The last equation tells us that parallel transporting a vector in ΔΩ means keeping
its components in local inertial coordinate system { } unchanged, when
neglecting higher order infinitesimals. Hence parallel transportation of vector in ΔΩ
does not depend on path when neglecting higher order infinitesimal. Remembering
that parallel translation of vector is a coordinate free concept, we conclude that
parallel translation of vector in ΔΩ does not depend on path when neglecting
higher order infinitesimals, no matter whatever coordinate system you are using.
Therefore, when restricted to sufficiently small region ΔΩ , we can define the
sum of vectors at different points in ΔΩ when neglecting higher order infinitesimal

Therefore, when restricted to sufficiently small region ΔΩ , we can define the
sum of vectors at different points in ΔΩ, when neglecting higher order infinitesimals.
The above result for vectors is also good for (r, s)-tensors.



The concept of flux density tensor field J of an (r, s)-tensor Q relates to
addition of (r, s)-tensors at different points. Does it make sense in a curved
spacetime? The answer is “yes”, because it only relates to addition of (r, s)-tensors
at different points in an infinitesimal neighborhood. In particular, the flux density
tensor field T of matter energy-momentum P in curved spacetime is meaningful
and measurable. ( ) −| ( )| (y) ΔΣ is the -component of matter energy-

momentum on small spacelike hyper-surface ΔΣ, ( ) −| ( )| (y) Δ is the 
-component of matter energy-momentum passing through small timelike hyper-

surface Δ .

We are now in a position to explore the meaning of conservation 
and non-conservation in curved spacetime.



§3. Meaning of conservation, non-conservation in curved spacetime

• What is the meaning of ?
• Suppose { , } is a local inertial coordinate chart of p, ΔΩ X, and 

ΔΩ is a sufficiently small neighborhood of p. From , we 
have

• +  

• = 0 , = 0, 1, 2, 3

• Neglecting higher order infinitesimal, we have
=0, that is

• d =0, = 0, 1, 2, 3



       What is the meaning of ?
Suppose { , } is a local inertial coordinate chart of p,   ΔΩ  X, and ΔΩ is 
a sufficiently small neighborhood of p. From , we have

                  +                    

= 0 ,   = 0, 1, 2, 3

Neglecting higher order infinitesimal, we have  =0, that is

∆
 d =0,   = 0, 1, 2, 3

We see, means, “for a sufficiently small neighborhood, in a local inertial 
coordinate system, when neglecting higher order infinitesimals, the -component of matter 
energy-momentum on ΔΣ′, minus the -component of matter energy-momentum on ΔΣ′ and 
the -component of matter energy-momentum passing through ΔΓ equals zero, or, the -
component of the net increase of matter energy-momentum in a sufficiently small 
neighborhood is zero”.  



Or equivalently,       

“for a sufficiently small neighborhood, when neglecting higher order 
infinitesimals, the matter energy-momentum on ΔΣ′, minus the matter 
energy-momentum on ΔΣ′ and the matter energy-momentum passing 
through ΔΓ equals zero, or, the net increase of matter energy-
momentum in a sufficiently small neighborhood is zero”.

This is a coordinate free conclusion. It is also good for any (r,s)-
tensor Q.



The conservation law for an (r,s)-tensor Q is

…
… (x)=0, 0 3            (19)

It reads “the increase of (r, s)-tensor Q in any infinitesimal 4-
dimensional spacetime neighborhood is zero.” When and only 
when , this is equivalent to continuum integral equation

(20)



§6. Conclusion

is the conservation law of matter energy-momentum in GR, and it should be read
as the increase of matter energy-momentum in any infinitesimal 4-neighborhood is
zero. Introducing gravitational energy-momentum does not save but breaks the law
of energy-momentum. Matter and matter  exchange energy-momentum with each other, 
they don’t exchange energy-momentum with things which are not matter, including 
gravitational field. Spacetime metric field does not exchange energy-momentum
with matter particles and matter fields. We say it does not carry
energy-momentum. In physics, force or interaction always means exchange of
energy-momentum. The so-called gravitational field (actually the metric field of
spacetime) is not a force field, and gravity is not a natural force. Spacetime metric
field is not a special matter field, it is only the geometric aspect of the 4-
dimensional moving matter continuum.


