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Motivation

• QFT in curved spacetime (cosmology, black holes...)

Gαβ(g) = 0, i ∂t |ψ⟩ = Ĥψ(g)|ψ⟩

• Including backreaction (pathologies in curved spacetime,
superposition is lost...)

Gαβ(g) = M−2
Pl ⟨ψ|T̂αβ(g)|ψ⟩

Page and Geilker (1981), Ford (1997)

• Can this be derived from WdW using Born-Oppenheimer
approximation? - No
Singh and Padmanabhan (1989), Kiefer and Singh (1991)



Assumptions and What to Expect

1. The quantum system starts in product state |φ1⟩ ⊗ |φ2⟩
2. One subsystem is in a semiclassical state.
3. The coupling between the subsystems is weak.

• Timescales: Scrambling time, Ehrenfest time
• Example: Non-linearly coupled oscillators
• Regimes: Quantum-Quantum (QQ), Classical-Quantum (CQ)
• Results: Dynamics, energy exchange, entanglement...



Framework

Quantum Hamiltonian: Ĥ = Ĥ1 ⊗ I2 + I1 ⊗ Ĥ2 + λ V̂1 ⊗ V̂2

QQ dynamics: |n, µ⟩ = |n⟩ ⊗ |µ⟩ → |ψ(t)⟩ =
∑

nµ zn,µ(t)|n, µ⟩,
then Schrodinger eq. is

i∂tZ = H1Z + ZH2 + λV1ZV T
2

E.O.M. for reduced density matrices:

i∂tρ1 = [H1, ρ1] + λ[V1,ZV T
2 Z †],

i∂tρ2 = [H2, ρ2] + λ[V2,ZTV T
1 Z ∗]

where ρ1 = Z Z †, ρ2 = ZTZ ∗



Product State Approximation

Measures of Entanglement: 1 − γ = Slin ≪ 1 − 1
d2 , SVN ≪ ln d

Nearly product state: If Z = u1uT
2 + λ δZ then

i∂tρ1 = [Heff
1 , ρ1] + O(λ2), Heff

1 = H1 + λ⟨φ2|V̂2|φ2⟩V̂1

i∂tρ2 = [Heff
2 , ρ2] + O(λ2), Heff

2 = H2 + λ⟨φ1|V̂1|φ1⟩V̂2

Evolution is non-linear in the state, unitary



CQ Approximation

Subsystem 1 behaves ‘classically’:

Heff = H1 + λV1⟨φ2|V̂2|φ2⟩

where V1(q1(t), p1(t)) = ⟨φ1(t)|V̂1|φ1(t)⟩[1 − ε(t)]

Ĥeff = Ĥ2 + λV1V̂2

CC and Classical-background approximation are special cases
Note: Energy is conserved in all cases except classical-background



Example: Coupled Non-linear oscillators

H = 1
2Ω1(q2

1 + p2
1) + 1

2Ω2(q2
2 + p2

2) + λΩ̄qν1 qν2

• Initial data consistent with the Bohr correspondence principle
(i.e. ∃ states such that expectation values follow classical
trajectories)

• Coherent states as initial data
• Results: Trajectories, energy exchange, QQ-CQ-CC

comparison, Entanglement
• Parameters: ν, λ, nmax, σ, ζ1, ζ2



Results: Position of oscillator 2



Results: Distribution of energy



Results: Phase space trajectories





Results: Comparisons between schemes

• For small
coupling, the errors in CC, CQ ∝ λ

• For most parameters,
the CQ errors < CC errors. Exceptions
occur when σ → 1 or when ζ2 > ζ1

•
CQ gets worse with increasing σ, while
the error in CC is fairly insensitive to it
• CQ improves when ζ2 < ζ1

• CC improves when ζ2, ζ1 become large



Wigner Distributions

classical-quantum quantum-quantum
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small coupling (λ = 0.001) upto τs

moderate coupling (λ = 0.01) over [0, 6 τlin]

moderate coupling (λ = 0.01) over [0, 2 τlin]

large coupling (λ = 1) over [0, 18 τlin]

https://youtube.com/watch?v=tPkiVaadQgg
https://youtube.com/watch?v=J5U1gyCBAVI
https://youtube.com/watch?v=g2xWyTnznZE
https://youtube.com/watch?v=lM8VA8udQhA


Discussion

• Approximations valid for a broad class of bipartite systems
and define a regime where CQ works

• Oscillator system exhibits parametric resonance at the fully
quantum level, a result in agreement with classical parametric
resonance with a suitable choice of initial data.

• In the CQ case, this calculation bears some resemblance to
the phenomenon of particle creation in dynamical spacetimes
where subsystem 1 plays the role of a classical geometry
driving creation of quanta in subsystem 2.

• Qualitatively distinct from Born-Oppenheimer (no large mass
parameter)

• Comparison with the Lindblad formalism
• Might be possible to apply in simple gravity-matter systems


