Motivating Semiclassical Gravity:
 An Approximation for Bipartite Quantum Systems

Nomaan
work done with Viqar Husain, Irfan Javed and Sanjeev S. Seahra (arXiv:2306.01060)

Motivation

- QFT in curved spacetime (cosmology, black holes...)

$$
G_{\alpha \beta}(g)=0, \quad i \partial_{t}|\psi\rangle=\hat{H}_{\psi}(g)|\psi\rangle
$$

- Including backreaction (pathologies in curved spacetime, superposition is lost...)

$$
G_{\alpha \beta}(g)=M_{\mathrm{PI}}^{-2}\langle\psi| \hat{T}_{\alpha \beta}(g)|\psi\rangle
$$

Page and Geilker (1981), Ford (1997)

- Can this be derived from WdW using Born-Oppenheimer approximation? - No

Singh and Padmanabhan (1989), Kiefer and Singh (1991)

Assumptions and What to Expect

1. The quantum system starts in product state $\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$
2. One subsystem is in a semiclassical state.
3. The coupling between the subsystems is weak.

- Timescales: Scrambling time, Ehrenfest time
- Example: Non-linearly coupled oscillators
- Regimes: Quantum-Quantum (QQ), Classical-Quantum (CQ)
- Results: Dynamics, energy exchange, entanglement...

Framework

Quantum Hamiltonian: $\hat{H}=\hat{H}_{1} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{H}_{2}+\lambda \hat{V}_{1} \otimes \hat{V}_{2}$
QQ dynamics: $|n, \mu\rangle=|n\rangle \otimes|\mu\rangle \rightarrow|\psi(t)\rangle=\sum_{n \mu} z_{n, \mu}(t)|n, \mu\rangle$, then Schrodinger eq. is

$$
i \partial_{t} Z=H_{1} Z+Z H_{2}+\lambda V_{1} Z V_{2}^{\top}
$$

E.O.M. for reduced density matrices:

$$
\begin{aligned}
& i \partial_{t} \rho_{1}=\left[H_{1}, \rho_{1}\right]+\lambda\left[V_{1}, Z V_{2}^{\top} Z^{\dagger}\right], \\
& i \partial_{t} \rho_{2}=\left[H_{2}, \rho_{2}\right]+\lambda\left[V_{2}, Z^{\top} V_{1}^{\top} Z^{*}\right]
\end{aligned}
$$

where $\rho_{1}=Z Z^{\dagger}, \quad \rho_{2}=Z^{\top} Z^{*}$

Product State Approximation

Measures of Entanglement: $1-\gamma=S_{\text {lin }} \ll 1-\frac{1}{d^{2}}, \quad S_{\mathrm{VN}} \ll \ln d$ Nearly product state: If $Z=\mathbf{u}_{1} \mathbf{u}_{2}^{\top}+\lambda \delta Z$ then

$$
\begin{array}{ll}
i \partial_{t} \rho_{1}=\left[H_{1}^{\text {eff }}, \rho_{1}\right]+\mathcal{O}\left(\lambda^{2}\right), & H_{1}^{\text {eff }}=H_{1}+\lambda\left\langle\varphi_{2}\right| \hat{V}_{2}\left|\varphi_{2}\right\rangle \hat{V}_{1} \\
i \partial_{t} \rho_{2}=\left[H_{2}^{\text {eff }}, \rho_{2}\right]+\mathcal{O}\left(\lambda^{2}\right), & H_{2}^{\text {eff }}=H_{2}+\lambda\left\langle\varphi_{1}\right| \hat{V}_{1}\left|\varphi_{1}\right\rangle \hat{V}_{2}
\end{array}
$$

Evolution is non-linear in the state, unitary

CQ Approximation

Subsystem 1 behaves 'classically':

$$
\mathcal{H}^{\text {eff }}=\mathcal{H}_{1}+\lambda \mathcal{V}_{1}\left\langle\varphi_{2}\right| \hat{V}_{2}\left|\varphi_{2}\right\rangle
$$

where $\mathcal{V}_{1}\left(q_{1}(t), p_{1}(t)\right)=\left\langle\varphi_{1}(t)\right| \hat{V}_{1}\left|\varphi_{1}(t)\right\rangle[1-\varepsilon(t)]$

$$
\hat{H}^{\mathrm{eff}}=\hat{H}_{2}+\lambda \mathcal{V}_{1} \hat{V}_{2}
$$

CC and Classical-background approximation are special cases
Note: Energy is conserved in all cases except classical-background

Example: Coupled Non-linear oscillators

$$
\mathcal{H}=\frac{1}{2} \Omega_{1}\left(q_{1}^{2}+p_{1}^{2}\right)+\frac{1}{2} \Omega_{2}\left(q_{2}^{2}+p_{2}^{2}\right)+\lambda \bar{\Omega} q_{1}^{\nu} q_{2}^{\nu}
$$

- Initial data consistent with the Bohr correspondence principle (i.e. \exists states such that expectation values follow classical trajectories)
- Coherent states as initial data
- Results: Trajectories, energy exchange, QQ-CQ-CC comparison, Entanglement
- Parameters: $\nu, \lambda, n_{\text {max }}, \sigma, \zeta_{1}, \zeta_{2}$

Results: Position of oscillator 2

Results: Distribution of energy

CC $\left(n_{\max }-25, v-2, \sigma-0, \lambda-0.001, \zeta_{1}-12, \zeta_{2},-2\right)$

$C Q\left(n_{\max }-25, v=2, \sigma-0, \lambda-0.001, \zeta_{1}-12, \zeta_{2}-2\right)$

\square oscallator $1 \square$ oscillator $2 \square$ interaction
$Q Q\left(n_{\max }-25, v-2,0-0, \lambda-0.001, \zeta_{1}-12, \zeta_{2}-2\right)$

$O C\left(n_{\max }-25, v-2, \sigma-0, \lambda-0.01, \zeta_{1}-12, \zeta_{2}-2\right)$

$\mathrm{CQ}\left(n_{\max }-25, v=2, \sigma=0, \lambda-0.01, \zeta_{1}-12, \zeta_{2}-2\right)$

\square oseillator $1 \square$ oscillator $2 \square$ interiction
$\mathrm{QQ}\left(n_{\operatorname{man}}-25, v-2, \sigma-0, \lambda-0.01, \zeta_{1}-12, \zeta_{2}-2\right)$

$\mathrm{CC}\left(n_{\max }-25, \mathrm{v}-2, \sigma=0, \lambda-0.1, \zeta_{1}-12, \zeta_{2}-2\right)$

Results: Phase space trajectories

Results: Comparisons between schemes

- For small
coupling, the errors in $\mathrm{CC}, \mathrm{CQ} \propto \lambda$
- For most parameters, the $C Q$ errors $<C C$ errors. Exceptions occur when $\sigma \rightarrow 1$ or when $\zeta_{2}>\zeta_{1}$

CQ gets worse with increasing σ, while the error in CC is fairly insensitive to it

- CQ improves when $\zeta_{2}<\zeta_{1}$
- CC improves when ζ_{2}, ζ_{1} become large

Wigner Distributions

- small coupling $(\lambda=0.001)$ upto τ_{s}
$>$ moderate coupling $(\lambda=0.01)$ over $\left[0,6 \tau_{\text {lin }}\right]$
$>$ moderate coupling $(\lambda=0.01)$ over $\left[0,2 \tau_{\text {lin }}\right]$
\rightarrow large coupling $(\lambda=1)$ over $\left[0,18 \tau_{\text {lin }}\right]$

Discussion

- Approximations valid for a broad class of bipartite systems and define a regime where CQ works
- Oscillator system exhibits parametric resonance at the fully quantum level, a result in agreement with classical parametric resonance with a suitable choice of initial data.
- In the CQ case, this calculation bears some resemblance to the phenomenon of particle creation in dynamical spacetimes where subsystem 1 plays the role of a classical geometry driving creation of quanta in subsystem 2.
- Qualitatively distinct from Born-Oppenheimer (no large mass parameter)
- Comparison with the Lindblad formalism
- Might be possible to apply in simple gravity-matter systems

