ECFA WG3: Topical workshop on calorimetry, PID and photodetectors

Introduction

CERN

May 3-4, 2023

Mary-Cruz Fouz, Giovanni Marchiori, <u>Felix Sefkow</u> DESY

Opening Remarks

ECFA Detector Roadmap

ECFA Higgs Factory WG3 Detectors

Status of Roadmap Implementation

ECFA Detector Roadinap Sumnary

Relating Technology R&D to Major Drivers from Facilities

Dates when R&D finished and real engineering & construction can start					FCC, ILC CLIC	
				stepping stones	Ļ	↓
Quantum	DRDT 5.1 DRDT 5.2 DRDT 5.3 DRDT 5.4	Promote the development of advanced qua Investigate and adapt state-of-the-art dev technologies to particle physics Establish the necessary frameworks and exploration of emerging technologies Develop and provide advanced enabling ca			 → → → 	
Calorimetry	DRDT 6.1 DRDT 6.2 DRDT 6.3	Develop radiation-hard calorimeters with energy and timing resolution Develop high-granular calorimeters with r for optimised use of particle flow method Develop calorimeters for extreme radiatio environments		> •		
Electronics	DRDT 7.1 DRDT 7.2 DRDT 7.3 DRDT 7.4 DRDT 7.5	Advance technologies to deal with greatly Develop technologies for increased intellig Develop technologies in support of 4D- an Develop novel technologies to cope with required longevity Evaluate and adapt to emerging electronic technologies	increased data density gence on the detector nd 5D-techniques extreme environments and cs and data processing		•	
Integration	DRDT 8.1 DRDT 8.2 DRDT 8.3 DRDT 8.4	Develop novel magnet systems Develop improved technologies and syste Adapt novel materials to achieve ultraligh precision mechanical structures. Develop Interfaces. Adapt and advance state-of-the-art syste including environmental, radiation and be	ems for cooling t, stable and high Machine Detector ems in monitoring am aspects		•	
Training	DCT 1 DCT 2	Establish and maintain a European coordinate instrumentation Develop a master's degree programme in ins	ed programme for training in strumentation			

Detector R&D Themes (DRDTs) and Detector Community Themes (DCTs). Here, except in the DCT case, the final dot position represents the target date for completion of the R&D required by the latest known future facility/experiment for which an R&D programme would still be needed in that area. The time from that dot to the end of the arrow represents the further time to be anticipated for experiment-specific prototyping, procurement, construction, installation and commissioning. Earlier dots represent the time-frame of intermediate "stepping stone"

projects where dates for the corresponding facilities/experiments are known. (Note that R&D for Liquid Detectors will be needed far into the future, however the DRDT lines for these end in the period 2030-35 because developments in that field are rapid and it is not possible today to reasonably estimate the dates for projects requiring longer-term R&D. Similarly, dotted lines for the DCT case indicate that beyond the initial programmes, the activities will need to be sustained going forward in support of the instrumentation R&D activities).

DRD: Detector R&D Collaborations

Anchored at CERN

Follow the successful model of R&D collaborations for the LHC

• funding in place since ~1986, R&D collaborations established in 1990

Take full account of existing, successful and well managed R&D coll.

• Integrate with CERN EP R&D, AIDAinnova, RDxy, CALICE,...

Community-driven approach, supported by ECFA Roadmap Task Forces

• invite proposals, moderate process, timeline 1-2 years

Reasonably dimensioned review process (ECFA and CERN)

- addressing needs of future experiments is important criterion
- worldwide perspective

Process approved by CERN Council

- following extensive consultations with funding agencies
- Document: <u>https://indico.cern.ch/event/1197445/contributions/5034860/attachments/</u>
 <u>2517863/4329123/spc-e-1190-c-e-3679-Implementation_Detector_Roadmap.pdf</u>

Review and Approval Process

Lightweight and commensurate with effort

Scientific and Resource Reporting and Review by a Detector Research and Development Committee (DRDC)

· yearly follow-up

Assisted by the ECFA Detector Panel (EDP):

 the scope, R&D goals, and milestones should be vetted against the vision encapsulated in the Roadmap.

Co-chairs: P. Allport. D. Contardo

Funding Agency involvement via a dedicated Resources Review Board

once every two years

resources awarded to and held by institutes

DESY. ECFA WG3 | Felix Sefkow | May 2023

Implementation Timeline

Ambituous Schedule

Goal: Transition to new scheme during 2023

• approval of LHC-oriented RD50 (silicon), RD51 (gas detector) collaborations expires Dec 2023

Major Steps:

- community input (via existing R&D bodies where possible) by Q1 2023
 - To get involved, register at <u>https://indico.cern.ch/event/957057/page/27294-implementation-of-the-ecfa-detector-rd-roadmap</u>
- Written proposals, based on ECFA Detector Roadmap, by mid 2023
 - do not repeat roadmap; concrete plans, deliverables, resource-loaded (not a wish list) for period 2024-2030
 - aim at 20 pages per each of 9 the DRDs
- Review (by DRDC, assisted by EDP) in fall 23, approval by end 2023
- R&D collaborations operational, "Grant Agreements" (MoU signatures) through 2024

How to get involved:

- register at <u>https://indico.cern.ch/event/957057/page/27294-implementation-of-the-ecfa-detector-rd-roadmap</u>
- DESY. ECFA WG3 | Felix Sefkow | May 2023

Implementation Process in Full Swing

Meetings

DRD6 Calorimeters made a start

- Jan 12 at CERN: https://indico.cern.ch/event/1212696/
- 120 participants, 60 in person, lively and constructive discussions
- 2nd community meeting April 20: WP structure reports today

More meetings held

- DRD1 Gas detectors March 1-3 at CERN https://indico.cern.ch/event/1245751/
- DRD7 Electronics March 14-15 at CERN https://indico.cern.ch/event/1214423/
- DRD3 Solid State detectors March 22-23 at CERN https://indico.cern.ch/e/1214410

DRD4 Photodetectors and PID has also started

- following a change in leadership: C. Joram (CERN) for N. Harness, P. Krizan (JSI)
- and preparatory discussions (no existing collaborations yet)
- 1st community meeting16-17 at CERN https://indico.cern.ch/event/1263731/
 - trends today, and review of requirements

Others:

- DRD2 Liquid Detectors and DRD5 Quantum Technologies also in progress
- DRD8 Integration: discussions on on one-to-one basis, coordinators F.Hartmann (KIT), W.Riegler (CERN)
- DESY. ECFA WG3 | Felix Sefkow | May 2023

From 2nd DRD6 Community Meeting

14

12

8

2

International Participation, strong Higgs Factory focus

The Proposal Team

Track 1: Sandwich calorimeters with fully embedded Electronics - Main and forward calorimeters

Track conveners: Adrian Irles (IFIC), Frank Simon (KIT), Jim Brau (U. of Oregon), Wataru Ootani (U. of Tokyo)

Track 2: Liquified Noble Gas Calorimeters

Track Conveners: Martin Aleksa (CERN), Nicolas Morange (IJCLab), Marc-André Pleier (BNL)

Track 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters

Track Conveners:

Etiennette Auffray (CERN), Gabriella Gaudio (INFN-Pavia), Macro Lucchini (U. and INFN Milano-Bicocca), Philipp Roloff (CERN), Sarah Eno (U. of Maryland), Hwidong Yoo (Yonsei Univ.)

Track 4: Transversal Activities

Christophe de La Taille (Lab. Omega)

Institutes per Countries

Workshop Programme

Main Idea

Review physics drivers

• main physics motivations, performance goals

Concepts and challenges

design considerations, optimisation, need for R&D

DRD plans

• emerging proposals, common topics

Neighbouring DRDs

• silicon, gas, electronics, mechanics

Discussion

- motivation for R&D, feedback to Higgs factory studies
- common development and optimisation

still possible to join: contact Giovanni

Back-up

How Much Time Do We Need?

"Random" Examples - and NOT from the start of the R&D

Nuclear Instruments and Methods in Physics Research A309 (1991) 438–449 North-Holland

Performance of a liquid argon electromagnetic calorimeter with an "accordion" geometry

RD3 Collaboration

NUCLEAF

INSTRUMENTS

& METHODS

IN PHYSICS RESEARCH Section A

Categories of R&D

And Sources of Funding

1. Strategic R&D via DRD Collaborations

vision

(long-term strategic R&D lines) (address the high-priority items defined in the Roadmap via the DRDTs)

2. Experiment-specific R&D

(with very well defined detector specifications) focus (funded outside of DRD programme, via experiments, usually not yet covered within the projected budgets for the final deliverables) agility

3. "Blue-sky" R&D

(competitive, short-term responsive grants, nationally organised)

Transitions Blue-sky \rightarrow Strategic \rightarrow Specific expected Cross-fertilisation desired

ECFA Higgs Factory Study WG3 Detectors: Plans

For this year

The Roadmap implementation process with its ambitious timescale challenges the detector R&D community

- Meetings, proposals, coordination heavy load
- Resources for actual work are still at a very low level, and progress moderate (apart from exceptions)

Main priority of ECFA WG3 is to support this process

- provide input on detector requirements and needed R&D
- provide a forum for feedback on R&D plans
- help R&D groups to convincingly make their case for a strategic R&D program
- make sure that Higgs factories well represented among other targets of DRDs
- Plan a series of workshops: bring together DRDs and studies / concepts
- Tracking and Vertexing for Higgs factories (TF1, TF3) May 30 June 1 at CERN
- Calorimetry (and PD/PID?) for Higgs factories ((TF4,) TF6): May 3-5 at CERN
- Electronics and integration (TF7, TF8)
- Systematics, Alignment and Calibration
- DESY. ECFA WG3 | Felix Sefkow | May 2023

Will also be discussed in individual projects (ILC, FCC), but keep global view and ensure coherence here