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Noble liquid calorimeter
● Good experience with noble liquid calorimeters in 

a number of experiments (e.g. D0, H1, NA48/62, 
ATLAS)

● Advantages

– Very good energy resolution (sampling term of 
~10%)

– Linearity, uniformity and stability of the response
 Low systematics→

– Particle identification capabilities

– Radiation hardness

● Concept suitable for future experiments 
(e.g. FCC-hh, FCC-ee)

– R&D projects
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State of art
● ATLAS electromagnetic calorimeter

– Lead absorbers/LAr in the gap

– Accordion geometry of the kapton electrodes

● Performance

– Energy resolution as required

– Linearity (variations within 10-3)

– Stability (energy resonse stable at the level of 10-4)

Eur. Phys. J. C 74 (2014) 3071 

The detector design is not optimised 
for particle flow algorithm
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Towards new design
● Key points for the future experiments

– High granularity is a necessity for advanced reconstruction techniques (e.g. 4D imaging, 
particle flow)

 → High density feedthroughs
 → Design of the readout PCBs (cross talk under control)

– Systematics uncertainties have to be kept as low as possible

 → Precise calibration of the system

 → Considerations for the precision of the mechanics
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Towards new design
● Key points for the future experiments

– High granularity is a necessity for advanced reconstruction techniques (e.g. 4D imaging, 
particle flow)

 → High density feedthroughs
 → Design of the readout PCBs (cross-talk under control)

– Systematics uncertainties have to be kept as low as possible

 → Precise calibration of the system

 → Considerations for the precision of the mechanics

● Electron – positron colliders: measurements of photons/electrons down to 300 MeV

– Low electronic noise
 Design of the readout PCBs→

– Low material in front of the calorimeter
 Light weight cryostat→
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Baseline geometry
● Geometry optimised for experiment at FCC-ee

● 1536 Pb absorbers inclined by ~50.4º, |z|  2 m ≤
along the beam axis

● Sandwich structure

– Absorber (2 mm Pb)

– Active medium (1.2  – 2.4 mm of LAr)

– Read-out (1.2 mm PCB)

● 22 X0 (40 cm) of the active ECAL region

● Placed in the aluminium cryostat (5 cm in front, 
10 cm in back)

High granularity achieved by usage of straight multilayer readout 
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Granularity
● Target granularity: 10-15 times more compared to ATLAS LAr calorimeter

● 12 longitudinal compartments in radius

– 1st layer (pre-sampler) without absorber for energy corrections

– 2nd layer (strips) for π0 identification

● Cell sizes

– Δθ ~ 2.5 mrad in the strips (5.4 mm), 10 mrad in other compartments

– ΔΦ ~ 8.2 mrad in strips (17.7 mm), ~16.4 mrad in other compartments

– Cell size ~2 cm x 2 cm x 3.5 cm in the 3rd compartment
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More thoughts about geometry
● Modifications of the geometry to improve 

performance

– LKr as the active medium, Pb absorbers
● 5% sampling term

– LKr active medium with W absorber

– Absorbers with trapezoidal shape 
● Constant sampling fraction
● 5% sampling term, reduction of the constant term

 “→ ultimate” performant geometry

● Advanced reconstruction techniques (clustering, 
energy calibration using MVA) are also options for the 
performance optimisation
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R&D projects
● Multilayer readout (AIDAinnova, WP8.2.2)

● Light weight cryostat (CERN EP R&D)

● High density feedthroughs (CERN EP R&D)

● Mechanical studies

CERN-OPEN-2018-006

Goal: Module suitable for beam tests (~2028)

https://cds.cern.ch/record/2649646
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Design of readout PCB
● Baseline design for Printed Circular Boards 

(PCBs)

– Seven layers: HV, signal pad, shield, signal 
trace, shield, signal pad, HV

– Ground shields around the traces to mitigate 
the cross-talk

– Signal extraction to the front (three inner most 
layer) and to the back (the rest)

● PCB allows easily for high granularity

● Q: What about cross-talk? Will that be under 
control?

One theta
tower
Horizontal axis
scale 10:1



  12 / 27

Simulations of the PCB
● Goal: find the minimal shielding which leads to low cross-talk (below 1%)

● Finite Element Method calculations in ANSYS

– Peak-to-peak cross-talk below 1% seems to be easily achievable with a shaper under 
consideration
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Electronics noise
● Cell capacitance derived using FEM tools (ANSYS 

Maxwell)

– 25 – 200 pF depending on the longitudinal 
compartment (2 shields considered)

● From cell capacitances to electronics noise in MeV 
using the analytical description of the readout chain

– PCB transmission line (+ coaxial cable) + pre-amp + 
shaper

– 0.5 – 2 MeV noise per cell

● Average signal-over-noise ratio for a MIP between 
5 and 10 is reached
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PCB prototypes (IJCLab)
● PCB with even number of layers

● Detailed measurements of the electronic 
properties

– Good between measurements and simulations 
for S-parameters over a large frequency 
spectrum

– Total capacitance, inductance and coupling 
parameters per channel extracted
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PCB prototype (CERN)
● Prototype with 1:1 scale in the radial direction 

with 16 'theta towers' with different layouts 
(58 cm x 44 cm)

● Electrical tests with a scope and a software 
shaper

– Confirms the cross-talk goal easily reachable

● Good agreement with the simulations

– Could be improved especially for small signals 
and short shaping times

Sub-percent cross-talk reachable for 
all cells with a single ground shield 

and shaping time > 50 ns
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PCB lessons
● Cross-talk under control

● Two ground shields not necessary, one is enough to mitigate the cross-talk 
 PCB with even number of layers→

● Open questions

– Readout all cells at the back?
● Less material in front of the detector

– Realisation of the HV layer?

– Optimisation of the segmentation of the electrode
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Cryostat
● Carbon fiber materials for low material 

cryostat

– Sandwich of Carbon Fibre Reinforced Polymer 
(CFRP) shell and Al honeycomb

 → Very low X0  (10% compared to Al solid) 

● Ongoing R&D at CERN

– CFRP / metal interfaces, sealing methods

Sealing with 
Belleville washers

NASA cryotank
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High density feedthroughs

● Innovative connector-less feedthroughs

– High density flange

– Higher area dedicated to signal extraction

– 20 000 wires per feedthrough

– Leak and pressure (3.5 bar) tests at 300 and 77 K

● Identified a solution surviving several thermal 
cycles (G10 structure with slits + indium seal + 
Epo-Tek glued Kapton strip cables)

● To be done: design and test a full flange (not 
covered)

● Factor of 10-15 more channels wrt ATLAS (ECAL barrel with ~2 M channels)
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Mechanical studies
● Small systematics bring strict limits on the 

precision of the mechanical structure of the 
calorimeter

● Studies started recently

– Idea: Identify our requirements with the usage of the 
knowledge from ATLAS

– First preliminary results with FEM

● Differences wrt ATLAS to be considered

– FCC-ee barrel calorimeter about 40% heavier

– From accordion absorbers to straight sheets

– Absorbers for FCC-ee: 1.8 mm Pb, 0.05 mm glue and 
0.05 mm stainless steel on both sides

– Electrodes for FCC-ee: 1.2 mm PCB
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Absorbers and spacers
● Absorber design

– Feasibility studies

– What is the needed tolerance?

● Trapezoidal shape of absorbers (alternative geometry)

– Is that technically possible?

– What is the needed precision?

● Support structure being investigated

● Spacers: honeycomb used in ATLAS

– Good experience

● Idea: use 3D-print pillars to be placed regularly
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Towards a prototype module
● Test module

– Prototype as a sector of 15º (64 absorbers)

● Workplan

– Preparation of the design in 2024/2025

– Assemble and test at warm temperatures in 2027

– Cold tests and beam tests in 2028
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Software
● Full simulation available in Key4HEP

– Detector description (DD4HEP)

– Reconstruction
● Corrections: sampling fraction, dead 

material correction
● Emulation of electronics noise
● Cells  clusters→

● Software ready to be used for physics studies

– Performance studies: 95% γ efficiency for 
10% π0 in large energy range

● Developement of SW is ongoing

– Missing parts are e.g. digitization, particle flow 
reconstruction
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Full detector concept
● Noble liquid calorimeter as a part of the 

full detector concept for FCC-ee

– Vertex detector: (D)MAPS, ALICE 3 like

– Tracker: drift chamber (2.5 m)

– Silicon wrapper and time of flight 
detector

– ECAL: noble liquid in ECAL barrel 
& endcaps

– Superconfucting solenoid placed afer 
ECAL in the barrel

– HCAL: TileCal type in barrel & endcaps

– Muon tagger (e.g. drift chamber, RPC, 
MicroMegas)

● Open to other possibilities

Integration of the full detector concept in 
the Key4Hep simulations is ongoing
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What is next
● Design of the front-end electronics

– Synergies with existing chips, front-end boards to be developed

● Back-end electronics and DAQ to be defined

● Finalize the design of the electrodes (barrel, endcaps)

– Optimize the granularity based on physics simulations

– Shields, HV layer

● Continue in the mechanical studies

– Cryostat

– Absorbers, spacers and the support

● Software development

– Digitization of the signal

– Advanced reconstruction techniques
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Conclusions
● Noble liquid calorimeter project is evolving over the past years

– Small, but active community

● Baseline concepts defined

● Tests with small scale prototypes (feedthroughs, cryostat, PCBs) ongoing

● Goal of beam tests in ~2028

● Project is a part of DRD Calorimetry

● New ideas are welcome

We are looking forward to welcome new members to our team
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BACKUP
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Cold electronics
● The read-out electronics situated fully or partially 

inside the cryostat

– Preamplifier, ADC, multiplexer?, optical 
conversion?

● 5 to 10 times smaller noise compared to the warm 
electronics

● Caveats

– No possibility of repairs
– Heat dissipation in the liquified 

noble gas
– Power consumption

● First test at IJCLab with HGCROC (CMS HGCAL ASIC) 
in liquid nitrogen

ProtoDUNE
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