UNIVERSITY OF SUSSEX

Optical and dual readout calorimeters Conceptual designs and related R&D challenges

lacopo Vivarelli University of Sussex

Thanks to M. Lucchini, G. Gaudio, Y. Liu, H. Wilkens

Outline

- Generic overview of optical calorimeters.
- Examples of optical calorimeters:
 - HGC ECAL
 - Dual Readout
 - TileCal
- Summary

Introduction

Main Observations

What do we need from Calorimetry?

• The main performance criteria for a Higgs Factory calorimeter system:

OF SUSSEX

High-granularity PF-oriented calorimeters

- Particle-flow oriented calorimeters: optimised to yield the best granularity and cluster separation.
- Quality of energy measurement not the first priority.

Typical topologies of simulated 250GeV jets in ILD ol v05

I. Vivarelli - Dual Readout Calorimetry - Seminar - Cambridge - 2 June 2020

A different paradigm

- •Optical calorimeters: estimate energy deposit **from amount of light** (scintillation, Cherenkov....) emitted because of the particle shower.
- Target a high quality of the energy deposit measurement (resolution, linearity, PID)
- Many variants used historically.
- •...and many on the table for future experiments

How many different options?

Scintillator based sampling calorimeters	Homogeneous EM crystal calorimeters	Homogeneous (EM+HAD) calorimeters	Large mass cryogenic calorimeters
Dual Readout Fiber Calorimeter for Higgs Factories			
 R&D on Spagnetti (EM) Calorimeter technologies for LHCb Upgrade II, Higgs factories, FCC-hh Fast-timing, ultracompact, radiation hard, EM calorimetry (<i>RADiCAL</i>) for FCC-hh High sampling fraction EM calorimeter with crystal grains (<i>GRAiNITA</i>) for FCC-ee 	Maximum Information Crystal Calorimeter for Higgs Factories High Granularity Crystal Calorimeter for Higgs Factories Fast, segmented Crystal calorimeter for Muon Collider (CRILIN)	Triple-readout sandwich calorimeter for DM and BSM low energy physics (<i>ADRIANO3</i>) Dual-readout Sandwich Calorimeter for future colliders	Large mass cryogenic calorimeters for neutrinoless double beta decay
Scintillating Tile HCAL for FCC-hh, FCC-ee			

Courtesy of M. Lucchini, P. Roloff

- Different technologies, different optimisations in mind.
 - And different targets, which implies different challenges.

Advantages and drawbacks

• Typically **trading off on position** precision in favour of **quality of energy measurement**.

• Typically leading to an easier optical **signal extraction**:

- Less need for **cooling within the calorimeter volume** (with associated tecnical headaches)
- Counterexample: High Granularity Crystal ECAL
- Number of channels (typically) smaller
 - Counterexample: IDEA fiber calorimeter

Potential drawbacks:

- The paradigm of **5D calorimeter** does not necessarily apply:
 - ... although there are attempts to ditch limitations (HGC ECAL).
 - Position of energy deposit is determined with lower precision (example: IDEA dual readout calorimeter has no radial segmentation).

• Response time of scintillators can limit precise timing information.

Sensors

• Common challenges (and choices) for optical sensors.

- SiPMs are a good candidate for many of the projects proposed
- Easy to use, low bias voltage, stable, easy to monitor gain, dark count rate **not really an issue**.
- Optimised sensors desiderata:
 - More sensitivity to short wavelengths for Cherenkov light.
 - Packaged CMOS SiPM units for high granularity readout (Digital SiPM)
 - (Not for e⁺e⁻) radiation hardness.

Optical calorimeters and PF

• Optical calorimeters are not an alternative to PF.

- ... although (with few exceptions) they are not **optimised** for PF.
- Very good measurement of the neutral part of the jet (mainly photons).
- Performance overall often competitive with those of the high-granularity counterparts.

Outline

- Generic overview of optical calorimeters.
- Examples of optical calorimeters:
 - HGC ECAL
 - Dual Readout
 - TileCal
- Summary

High-granularity Crystal ECAL

Taken from B. Qi's talk at Calor 2022

Particle separation as a function of the threshold and particle distance (assuming 1x1x2 cm³ granularity)

250

Distance / mm

200

Particle flow performance

HG Crystal ECAL used as EM section in the <u>CEPC</u> <u>baseline detector</u>.
Re-optimised version of ArborPFA used
Excellent resolution for di-photon resonances. Competitive resolution for di-jet resonances.

OF SUSSEX

DetectedPhoton_Sum DetectedPhoton_ChA

DetectedPhoton ChB

150

200 Pos / mm

Uniformity on BGO measured in lab

50

50

100

0% non-uniformity

5% non-uniformity

10% non-uniformity

70

Particle Energy [GeV]

60

80

Light yield

- EM resolution target: 3% stochastic term
- A light-yield of at least ~100 p.e./MIP needed (while keeping thresholds small). Important critetium for crystal choice.
- Reasonable uniform response along crystal needed not to hamper resolution.

Mean Detected Photon

130

120

110

100

90

80

Full geometry in the making

- CEPC crystal ECAL barrel geometry design
 - Finer segmentation of towers for better homogeneity
 - Decrease outer radius for lower cost of the outer detectors
 - 28 towers per ring, 17 rings along beam direction
 - ~25 radiation length: 28 layers
- Main challenges:
 - Mechanical structure (robust and light).
 - Cooling for fully integrated Front End + SiPM.
 - Dynamic range needed for SiPM (1-10⁵ pe) while maintaining single pe capabilities.

4 layers per "step" with the same transverse size

OF SUSSEX

Taken from <u>B. Qi talk at CALICE meeting</u>

Outline

- Generic overview of optical calorimeters.
- Examples of optical calorimeters:
 - HGC ECAL
 - Dual Readout
 - TileCal
- Summary

- part different from that to non-em part. h/e < 1.
- $< f_{em} >$ energy dependent \Rightarrow **Non-linear calorimeter** response to hadrons.
- < fem> fluctuations largely determine energy **resolution** \Rightarrow sampling the hadronic shower with two calorimeters with different e/h boosts energy resolution.
- For a review about dual readout calorimetry, please see S. Lee, M. Livan, R. Wigmans, Rev. Mod. Phys. 90, 025002.

$$E_{C} = E\left(f_{em} + \left(\frac{h}{e}\right)_{C}(1 - f_{em})\right)$$
$$E = \frac{\left(E_{S} - \chi E_{C}\right)}{1 - \chi}$$
$$E_{S} = E\left(f_{em} + \left(\frac{h}{e}\right)_{S}(1 - f_{em})\right)$$

Dual readout - how?

- One needs two readouts with substantially different h/e.
- Normally done using Cherenkov and scintillation light.
- How to you separate them?

Physical separation

- Basic calorimeter unit: **one brass capillary tube** of 2 mm external diameter **hosting a fiber** (1 mm diameter).
- EM-size prototype (10x10x100 cm³) put on beam (twice) in 2021.
 - 9 modules, each 16 x 20 capillary tubes.
- •Readout:
 - M0 read with SiPM (one per fiber).
 - M1-8 read by 2 PMT each (one for Cherenkov, one for Scintillating fibers).

Front-End board

Hamamatsu SiPM: S14160-1315 PS Cell size: 15 μm **OF SUSSEX**

Results (bucatini calorimeter)

- After calibration with electrons, linearity within 1% over a wide range of enegies.
- Excellent lateral shower shape development measurements.

CERN SPS 20 GeV e^+ - GEANT4 (log scale)

Shower barycenter

OF SUSSEX

Challenges

- Many channels if one wants full granularity
 - Development of a **scalable readout**; digital SiPM?
 - Channel grouping \Rightarrow loss of multiphoton spectrum \Rightarrow need for a calibration system.
- Lack of longitufinal segmentation
 - Exploit full waveform from SiPM? But this is going to cost, see backup.
- Low light yield from Cherenkov
 - Fiber/SiPM optimisation

Full simulation performance in a nutshell

Single pion response

Separation in time/frequency

Taken from JINST 15 P11005 (2020)

• Dual readout with **homogeneous crystals**

- As example: separating different light components with SiPM sensitive to different regions of the spectrum.
- Interesting option for a EM section to be coupled to a (dual readout) hadronic section.

SCEPCal Dual readout HCAL E2 Scintillating fibers Ø = 1.05 mmт1 Cherenkov fiber Ø = 1.05 mm Brass capillary ID = 1.10 mm, OD = 2.00 mm Solenoid 0.7X。 1X, 6X, 16X. 0.16λ $\sim 1\lambda$ S (ph/GeV) C (ph/GeV) Eff (S) Eff (C) Estimated detected 2000 1% 140 0.25% (wavelengt h < 550 nm) Estimated detected (wavelengt < 20 < 0.01%160 0.3% h > 550 nm)

Performance

- High energy resolution for the EM section, adds natural longitudinal segmentation.
- •Hadron calorimeter unchanged with respect to fiber-only configuration.

Taken from <u>Arxiv:2202.01474</u>

Single pion response

1.1 □ 1.05 □ 1.05

Outline

- Generic overview of optical calorimeters.
- Examples of optical calorimeters:
 - HGC ECAL
 - Dual Readout
 - TileCal
- Summary

A very flexible and reliable option

- Strongly inspired by ATLAS central hadronic calorimeter.
- Designed for FCC-hh, but now being optimised for e⁺e⁻.

Specs:
5mm steel absorber plates,
alternating with 3mm Scint. and 4mm Pb tiles
128 modules in Φ, 2 tile/module
10 layers
Δη=0.025 (grouping 3-4 tiles), ΔΦ=0.025

- 4 times the tile density of ATLAS, 1 tile 1 channel.
- SiPM readout at outer radius (~10¹¹ neq)
- Ongoing R&D on scintillator material and SiPMs (8kGy requirement).

Mechanical structure feasible. Started testing Sci tile+WLS fibre+SiPM

See also DRD6 talk from H. Wilkens

Part of a full detector design

CDR

- Full Silicon vertex detector + tracker;
- Very high granularity, CALICE-like calorimetry;
- Muon system
- Large coil outside calorimeter system;
- Possible optimization for
 - Improved momentum and energy resolutions
 - PID capabilities

- Si vertex detector;
- Ultra light drift chamber w. powerfull PID;
- Monolitic dual readout calorimeter;
- Muon system;
- Compact, light coil inside calorimeter;
- Possibly augmented by crystal ECAL in front of coil;

Noble Liquid ECAL based

- High granularity Noble Liquid ECAL as core;
 - PB+LAr (or denser W+LCr)
- Drift chamber (or Si) tracking;
- CALICE-like HCAL;
- Muon system;
- Coil inside same cryostat as LAr, possibly outside ECAL.

M. Aleksa et. al.

Expected performance (hh)

• Hadron and jet response (for hh, being studied for ee)

OF SUSSEX

Summary

- Many options of **optical calorimeters** being developed for **future e⁺e⁻ colliders**.
 - Single DRD6 track with **the most proposal submissions**.
- Many different paradigms being explored in parallel (homogeneus crystals, high granularity, dual readout, etc.)
- Each option comes with **its own challenges**. Some challenges are common:
 - Sensor sensitivity to short wavelengths, light yield struggle for Cherenkov, readout granularity and scalability.
- The field is healthy big hopes for ECFA DRD process
 - A good framework to optimise large-scale strategic R&D, suppressing duplication.
 - And very **positive and constructive discussions** so far.
- A lot of work ahead (and behind) us. Everyone is really opened to collaborating, and happy to welcome new colleagues!

Dual readout calorimeter at work

Particle identification

- Compare **electron and pion** shower shapes (20 GeV)
- Consider also **Time of arrival** of signal to SiPM (fiber propagation and SiPM + electronics time response parametrised in full sim)
- Combined performance: $\epsilon = 99.5\%$, fake ~1%

Tau decay identification

Some advanced applications on object reconstruction and identification are proceeding in parallel to the analytical approach. Some examples: tau lepton decays identification.

Data preprocessing needed to reduce data size and fit GPU memory

- •Signals from fibers in each 1.2x1.2 cm² module are integrated to obtain a 111x111 matrix
- •5 information used for each matrix element: signal integral, signal height, peak position,
- time of crossing threshold and time-over-threshold
- •Independently done for scintillation and Cherenkov fibers
- •Each event is a 111x111x10 tensor

0	pi0 pi- nu_tau				
1	e- anti_nu_e nu_tau				
2	mu- anti_nu_mu nu_tau				
3	pi- nu_tau				
4	pi- pi- pi+ nu_tau				
5	pi0 pi0 pi- nu_tau				

OF SUSSEX

Ene

115

NIM A 866 (2017) 76

 $\pm 1\%$

а

1.0

0.9

0.8

• Dual readout signal largely recovers linearity while vastly improving resolution.

Single hadron response - linearity

Shower shape

- Single particle shower shape
 - Using full implemented granularity

I. Vivarelli - WG3 ECFA workshop - 3-4 May 2023

- •Using 5M $e^+e^- \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$ events and clustering opposite calorimeter hemispheres as photons.
- Dedicated calibration corrections for impact point on tower

- •Using tower granularity (estimated use of full granularity further improves mass resolution by 20%)
- Combined mass resolution
 2 GeV

Jet response

- Studied in di-jet events so far (reconstructed with ee_genkt algorithm in two exclusive jets)
- Separately reconstructing S, C and truth-level jets.
- Event cleaning: **central jets only** considered; reject events with **muons or neutrinos or poor containment**.
- Two options considered (with and without $1X_0$ of additional "tracker" material):

Jet response

Dual readout achieves linearity with a resolution of **30%/**√**E with constant term ~ 0.5%**

Resonances studied with $e^+e^- \rightarrow ZH \rightarrow jj\tilde{\chi}_0^1\tilde{\chi}_0^1$ $e^+e^- \rightarrow WW \rightarrow jj\mu\nu$ $e^+e^- \rightarrow ZH \rightarrow \nu\nu bb$

Configuration	W		Z		h	
	Δm	σ	Δm	σ	Δm	σ
Calo no material	-0.108	3.02	-0.009	3.14	-0.01	3.72
Calo+Ch no material	0.07	2.86	0.18	3.05	0.10	3.48
Calo 1X0	-0.08	3.14	-0.13	3.73	-0.18	3.95
$Calo+Ch \ 1X0$	0.08	3.01	0.21	3.26	-0.13	3.72

Particle flow

- A simple PF algorithm implemented for crystal + fibres calorimeter.
 - Track-to-calo match based on difference between expected response and track momentum.
 - Further refinement and enhancement possible, but implementation good enough to see potential.
 - More complex, machine-learning options for PF being explored as part of AIDAinnova for the fibre calorimeter.

Longitudinal segmentation via timing

- •Assume to read out **full signal from SiPM** sampled at 10 GHz.
 - Full SiPM response integrated in simulation/ digitization output.
- FFT of signal yields individual fiber hits and highprecision (< 100 ps) timing.
- Unlocks **full longitudinal information** about energy deposit.
- Combined with dual readout information allows in-shower cluster identification.

• See S. Kho's talk at Calor 2022.

Physical separation

- G4 simulation of IDEA calorimeter:
 - For the calorimeter: Cu absorber, 1 mm fibers, 1.5 mm pitch.
- 130 M fibers channels:
 - Excellent angular resolution, lateral shower shape sensitivity (if full granularity is retained).
 - No longitudinal segmentation out of the box.
- Full simulation including drift chamber and solenoidal magnetic field available
 - Already based on edm4hep. Integration with DD4hep ongoing.
 - •See <u>https://github.com/HEP-FCC/</u> IDEADetectorSIM.

TB calibration procedure

• SiPM equalisation obtained with **multiphoton spectrum** plus **intercalibration of high and low gain**.

UNIVERSITY OF SUSSEX

Crystal + fibre calorimeter - results

- Performance studies done on events with jets for a few different configurations:
 - No dual-readout (DRO) no Particle Flow Algorithm (PFA) applied.
 - With DRO but no PFA.
 - With DRO and PFA.
- DRO recovers linearity of the calorimeter response and improves resolution. PFA further boosts resolution.
 - 4.5% at 50 GeV within reach.

General geometry design of crystal ECAL

2023/03/30

CALICE Collaboration Meeting at University of Göttingen

