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Strategy

To evaluate the requirements of PID, one must provide examples of
relevant physics processes

To estimate the performance of a particular PID system, one may
consider improvement factors with respect to no-PID (efficiency?) vs
purity of PID for benchmark channels
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Strategy

To evaluate the requirements of PID, one must provide examples of
relevant physics processes

To estimate the performance of a particular PID system, one may
consider improvement factors with respect to no-PID (efficiency?) vs
purity of PID for benchmark channels

Consider all possible options
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Particle Identification technologies
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Strategy

To evaluate the requirements of PID, one must provide examples of
relevant physics processes

To estimate the performance of a particular PID system, one may
consider improvement factors (efficiency?) vs purity of PID for
benchmark channels

Consider all possible options

Concentrate attention on dE/dx and Cluster Counting in gaseous
detectors
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PID with dE/dx: the task
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In the relativistic rise

100

the integral of the drift signal is proportional to the total

number of electrons liberated and collected in the ionization process
which, in turn, is proportional to the energy lost by the charged particle

crossing the layer x of gas (-dE/dx).
Knowing the dependence of dE/dx from the velocity B of the crossing
particle, given p, one can identify the particle mass.

i : Also, the theory model description of the energy loss mechanism needs to be accurate at 1% level

LEHRAUS - 95%Ar+5%CH4, 1bar, 4 cm sample

2
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more accurate comparisons here:
J. Va'vra Farticle Identification Methods in High Energy Physics, SLAC-PUB-8356 Jan. 2000



PID with dE/dx: the straggling function

Definitions and iterative application of convolution integral

do(E,B)/dE collision cross section for an energy transfer E by a particle of velocity B
A=A(B) =1/(n.c) mean free path between collisions (n, = linear density of electrons)

N, =x/A mean number of collisions over a length x

Fw(E) =1/0 do(E,B)/dE = n.A do(E,B)/dE
probability to transfer energy E in a single collision

A
Fa(8) =fo Fy(E) Fi)(A-E) dE  probability to transfer energy A in k collisions
k-fold convolution of F;)(E)

P(k, N.) = NX*/k! exp(-N,) probability of k collisions with mean N, (Poisson)
o0

f(A,x) = z Pk, No) Fio(D) probability density function for energy loss A over x
k=0 (straggling function)

for a rigorous treatment see:
H. Bichsel A method to improve tracking and particle identification in TPCs and silicon detectors NIM A562 (2006) 154
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Fig. 1. The straggling function f(4) for particles with fy = 3.6 traversing
12cm of Ar gas is given by the solid line. It extends beyond
Emax~2mc?p%y? = 13MeV. The original Landau function [2,3] is given
by the dotted line. Parameters describing f(4) are the most probable
energy loss 4,(x; By), i.e. the position of the maximum of the straggling
function, at 1371eV, and the full-width-at-half-maximum (FWHM)
w(x; fy) = 1463eV. The mean energy loss is (4) = 3044eV.

parameters describing the
straggling function:
most probable energy loss A,(x,By)
and FWHM W(x,By)
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PID with dE/dx: maximum likelihood measurement

» There exist several different approaches to calculate the energy loss distribution
(the straggling function) besides the convolution method (iterative application of
convolution integral):

Laplace transform method*, Monte Carlo method**, empirical fit to data***
and a plethora of different models based on different parameterization of the L(A) - I_I f(Ai/A)-

collision cross section o with ad-hoc corrections
*L. Landau, J. Phys. USSR 8, 201 (1944), **Cobb et al., Nucl. Instr. Meth. 133, 315 (1976),

» With the assumption that the shape of the
straggling function doesn't depend on By,
one can construct a likelihood function:

***Blum, Riegler, Rolandi, Springer-Verlag 2008 - doi: 10.1007/978-3-540-76684-1 10 The A, (with its error 8(Ag)) which
> The energy loss distribution (straggling function) f (A) for a single sample is maximizes L(A) is normally distributed and
made of a broad peak due to low energy transfer (soft) collisions with the gas represents the measured value of the
molecules and a long tail due to large energy transfer (hard) coII|S|ons which most probable energy loss by the track

under scrutiny.

The mass assignment may then be
calculated by comparing the expected
ionization with Ay and &(A,) using normal
error statistics.

cause the release of more than one electron and/or & rays

» Typical FWHM of the energy loss distribution is in the
range of 60-100% A, (very slowly dependent from By o
— except for very small sample lengths), which makes -
necessary to measure many samples (n) along the
ionizing track in order to get a good enough estimate

of the energy loss. . - .. From:W. Allison and J. Cobb
a0 % Rev. Nucl. Part. Sci. 1980. 30: 253-98

Most probable energy loss eV

s+
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PID with dE/dx: truncated mean measurement

<> A much simpler and more robust procedure for obtaining analogous results is the method of truncated mean.
< It consists in cutting out a fraction (1-n)-n of the largest A, samples and extending the arithmetic mean to the
remaining n-n values (m is the closest integer to n-n):

<A>,=1/mQ B AsSA, forj=1,..,n-1
j=1

< It can be shown that the range of values of n which minimizes the relative fluctuations of <A>, for Argon is
between 0.4 and 0.7 (0.8 for Helium). Moreover, the <A>, distribution behaves like a gaussian distribution.
< This is equivalent to the maximum likelihood method with: <A>. = A, and o(<A>;) = &(A,)
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PID with dE/dx: truncated mean measurement

<> A much simpler and more robust procedure for obtaining analogous results is the method of truncated mean.
< It consists in cutting out a fraction (1-n)-n of the largest A, samples and extending the arithmetic mean to the
remaining n-n values (m is the closest integer to n-n):

<A>,=1/mQ B AsSA, forj=1,..,n-1
j=1

< It can be shown that the range of values of n which minimizes the relative fluctuations of <A>, for Argon is
between 0.4 and 0.7 (0.8 for Helium). Moreover, the <A>, distribution behaves like a gaussian distribution.
< This is equivalent to the maximum likelihood method with: <A>. = A, and o(<A>;) = &(A,)

<> ALTERNATIVES to arithmetic mean?

0=6.06% 0=5.09% 0=2.61%

dE/dx of truncated mean dE/dx of double truncated mean dE/dx of median dE/dx of geometric mean dE/dx of harmonic mean dE/dx of transformed mean

n n n -1
T™ 70% 2TM 5-75% <A> = n/HAi <A>=- <A> =(EL)
- t
=l :E:/}/z;' i=1 \/2§:
- 13

(BESIII data) From: M. Hauschild Progress in dE/dx techniques used for particle identification NIM A379(1996) 436
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PID with dE/dx: particle separation power

Std. Dev.

<> The relevant quantity for discriminating between two different particle

of masses 1 and 2 of momentum p, rather than Ag and &(A,) for each of

them, is:

ALEPH TPC

T T

—— e~ separation
- 1=K separation

---— K=p separation -

GdE ldx

1 (dE | dx)

I
9 13 17
Momentum (GeV/c)
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|7\o,1(P) - Ao,z(p) |

D1y(p) =

[o(Ao,1) + 0 (A 2)1/2

(separation measured in numbers of sigma o(A;) = 6(Ao)/Ao)

two-sided
truncated mean:
discard lowest 8%

] and largest 40%

=4.5%

separation ()

OPAL Drift Chamber (4 bar)

6

sk

4 ° v

1 hit quality cuts and
truncated mean:
| discard largest 30%

s ;"M‘;""‘ﬁw... Ouaprar  _
St ., (dE / dx)
e 3.1% (dimuons)
ol i
25 5 75 10 125 1 . 228 1
2 momemumeaye, 3-8% (m.1.p.)

<>

<>

The number of ionization acts follows Poison distribution
(=10/cm/bar for He based, =30/cm/bar for Ar based gases)
The number of electrons generated in each ionization act
(cluster size) is subject to large fluctuations
The accuracy of the ionization measurement depends on
the mean free path between ionizing collisions A = 1/(n.o)
(i.e., on the collision cross section o and on the electron
number density n.), therefore, on
* the gas mixture;
* the sample length x and its density, or the gas
pressure p through their product xp;
* the number of samples n, or, equivalently, the total
length of the track L = nx.
Empirical parameterization of resolution
o(Ao) = 8(Ao)/Ao ([%] xp in [cm bar]):

o(Ao) = 41 ™04 (xp) 032 [%]

based on max. likel., -0.46 = -0.43 with trunc. mean
(Allison-Cobb Walenta)

for Argon
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PID with dE/dx: general comments

<>Methodology dating back to late ‘70s. Very little progress in performance since then.
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PID with dE/dx: general comments

<>Methodology dating back to late ‘70s. Very little progress in performance since then.

Detector ~ Accelerator

ALEPH LEP
ALICE LHC
ARGUS DORIS
BaBar PEP-II
BELLE KEK-B
BES BEPC
COF TEVATRON
CLEON CESR
CLEOM CESR
CRISIS  TEVATRON
DELPHI LEP
DOFDC  TEVATRON
H1 HERA
JADE PETRA
KEDR VEPP-4M
KLOE DAONE
MARK I SLe
NA4Y $PS
OBELIX LEAR
OPAL LEP
SLD SLC
STAR RHIC
TOPAZ TRISTAN
TPCRy PEP
ZEUS HERA
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Type

TPC
TPC
driftcells
driftcells
driftcells
Jetcells
jetcells
driftcells
diiftcells
Jetcells
TPC
Jetcells
jetcells
jetcells
jetcells
driftcells
driftcells
TRC
Jetcells
Jetells
jetcells
TPC
TPC
TPC
Jetcells

Size
(@xL)
36mxddm
50mx50m
17mx2m
16mx28m
19mx22m
23mx21m
26mx32m
19mx19m
16mx19m
Imxtmx3m
24mx27m
12mx03m
17mx22m
16mx24m
1Amxtim
4mx33m
Imx23m

Smx38mx131

16mxtdm
36mx4m
2mx2m
4mxd2m
24mx22m
2mx2m
17mx24m

B

15
05

0475
05
0435

06
05

1375
143

Gas Mixture

ATCH (919)
NelCO, (9010)
CfyMethylal

Heli-CiHyo (80120)
HelCaHs (50/50)
AHCO/CH (89101)

AICHCAH0 (49.6149.610.8)
AVIC:H 50/50)
HelC:# 60/40)
AICO, (80120)
AYCH,(80120)

AICHCO, (931413)
AC:Hs 50/50)
ACHJI-CH (8878.5128)
DI (100)
HeltCito (90110)
AYCOCH (891011)
AVICH,CO, (40155)
AC.H 50/50)
AVICH{i-CH (8821981)
COFA-Cit (7512114)
AYCH,(90110)
AYCH,(90110)
ACH,(80120)
ATICOCH; (90812)

Pressure  Number of  Sampling  Effective detector

(bar) ~ samples length (mm) length (bar * m)
1 338 4 135
1 159 751015 160
1 3% 18 065
1 40 12 048
1 47 16 075
1 54 5 027
1 2 12 0.38
1 51 1% 0N
1 47 % 066
1 192 15 288
1 192 4 017
1 R 8 026
1 56 10 056
4 48 10 192
1 Y] 10 042
1 58 % 162
1 n 833 060
1 90 L] 360
1 40 15 060
4 159 10 6.36
1 80 6 048
1 4 112 017

35 175 4 245
85 183 4 622
1 n 8 0.58

dE/dx resolution (%)

isolated tracks
45
45
41

dense tracks

(50)

(4

(10)

)

(62)

(]

(32

(49)

Truncation Reference

()
850
040
1040
040
040
040

0-50
070
075
080
070
570
570
040
575
1065
070
070

0-70
065
065

D. Buskulic etal, NIM A 360 (1995) 481

W. Yu, NIMA 706 (2013) 55, J. Alme etal, NIM A 622 (2010) 316
Y. Oku, PhD Thesls, Univ. of Lund (1985), LUNFDBI(NFFL-7024)/
B. Aubertetal, NIMA479 (2002) 1-116

E.Nakano, NIM A 494 (2002) 402-408

U2 Baietal, NIMA 344 (1994) 319

D. Stuart, private communications

Y.Kubota etal, NIMA 320 (1992) 66

D. Peterson etal, NIMA478 (2002) 142-146

WS, Toothacker etal, NIM A 273 (1986) 97

P. Abreu et al, CERN-PPE/95-194, submitied to NIM
§.Rajagopalan, PhD Thesis, Northwestern University (1992)

I. Abtetal., NIM A 386 (1997) 348-396

K. Ambrus, PhD Thess, Univ. of Heidelberg (1986)

SE.Baru etal, NIMA 323 (1992) 151

A.Andryakov et al,, NIM A409 (1998) 390-394 (prototype)
A.Bojarski etal, NIM A 283 (1989) 617

B. Lasiuk, NIM A 409 (1998) 402-406

. Balestra etal. NIM A 323 (1992) 523

M. Hauschild, NIM A 379 (1996) 436

M.Hildreth, private communications

M. Anderson etal, NIMA 499 (2003), 659

M. Iwasaki etal, NIM A 365 (1995) 143

G. Cowan, PhD Thesis, Lawrence Berkeley Lab. (1988), LBL-24715
W. Zeuner, private communications

* =inverse gaussian mean 1/sqr(dE/dx)i] used

/mean (%)

101 O,

dE/dx resolut

[
=]

[y

W A U1 A NIRCS

multi hadronic tracks

® single isolated tracks
— Fit to 2021 data (25 detectors)

Fit by Lehraus 1983 (14 detectors)

" Updated

Lehraus plot

5.4x L-0.37

-
=
B
©

1

10

effective detector length L. (m * bar)

From: Michael Hauschild - RD51 Workshop on Gaseous Detector Contributions to PID — 17 February 2021
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PID with dE/dx: general comments

<>Methodology dating back to late ‘70s. Very little progress in performance since then.

dE/dx resolution at ete"
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- Argon (1 bar) /

8 7 ‘ . over >40 years
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4 Y S  Different technologies
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PID with dE/dx: general comments

<>Methodology dating back to late ‘70s. Very little progress in performance since then.

<>Using the Allison-Cobb parameterization, a dE/dx resolution between 4.0% and 4.5% is
granted for a gaseous detector at FCC-ee (is it sufficient?)

<>An increase in pressure at 2 bar improves the resolution by 20% without jeopardizing
too much the momentum resolution (tanks to the very low He density, if it can be used).

<A further 25% improvement may come at the expensive cost (in terms of money and
stability) of a finer (x2) drift cell granularity.

<>New techniques (ML?) might mark the difference with respect to maximum likelihood
and/or truncated mean methods (but do not expect miracles).

<>Only a completely different approach, like cluster counting, will provide a significant
step forward.

5/4/23 18



Cluster counting/timing (CC/T)

The number of primary ions Ny created along the trajectory of a charged particle is distributed
according to , as opposed to the total number of ions, proportional to the total
energy deposited by ionization, which follows a long-tailed distribution.

Advantages of dN_/dx over dE/dx

N, number of primary ionizations

* independent from cluster size fluctuations

* insensitive to highly ionizing 6-rays

* independent from gas gain fluctuations

* independent from electronics gain (calibration)

* a2mtrackinaHe— mix gives Ny > 2400 (for a m.i.p.):

Oanai/ax /(ANg/dx) = Ny 2/2 < 2.0%
(at 100% counting efficiency)
* afactor > 2 better than dE/dx
* resolution scales with L=2> (not L2037 as in dE/dx)

5/4/23

Advantages of Helium over Argon

* lower primary ionization density (1/5)
- larger spatial separation

* lower drift velocity (1/2)
- larger time separation

* lower average cluster size

* lower singe electron diffusion

Recipe in time domain Recipe in space domain
Front end bandwidth (= 1 GHz) High readout granularity
Sampling > 2 GSa/s, > 12 bit High spatial resolution
S/N ratio > 8 Very low transverse diffusion

19



Cluster counting: not a new idea!

Wilson chambers (30's) Helum at 0.6 am. Streamer
E. J. Williams and F. R. Terroux - Proc. R. Soc. A 1930 126 . .

E s rr R Soeee ,
Observations.—Every ion produced in the cloud chamber acts as a nucleus ‘} Chambers (60 S)

for the condensation of water and can be recorded on a photograph. A primary Neon at 0.8 atm. V. A. Davidenko, B. A. Dolgoshein,

V. K. Semenov and S. V. Somov,
Nucl InstrumMeth. 67 (1969) 325

ion may be accompanied by a number of secondary electrons so that the track
of a B-particle consists of clusters of ions, each cluster signifying the pro-

duction of one primary ion. The measurement of the primary ionisation

therefore consists of counting the numbers of clusters or groups produced by

a @-particle in a given distance. The size of the clusters depends on the
diffusion of the secondary ions and this depends on the nature and density of .
the gas in the chamber. In the present experiments the gases in the chamber 5 cm ionizing track

Low efficiency
G-M (40's)

F L Hereford, Phys. Rev. 72, 982 (1947)

The method employed in the determination
of the primary ionization in hydrogen utilizes
the dependence of the efficiency of a Geiger 5
counter upon the primary ionization. This de-
pendence is as follows:

Spark chambers
. (70's)

V. S. Asokov, 6. I. Merzon et a/.
Sov. Phys. JETP 46(1), July 1977

FIG. 1. Construction of the low pressure spark chamber: 1—
glass case, 2—chamber cover, 3—vacuum cement, 4—wire
electrodes, 5—teflon rings, 6—radioactive source (Srfy), 7~ -
high-voltage lead.

Eff.=1—eV7, 3)

) Scm
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Cluster counting: not a naw ida=l

Time Expansion Chamber (late 70's)

A. H. Walenta, A.H. IEEE Trans.Nucl.Sci. 26 (1979) 73-80

(time domain)

gas: pure Isobutane at

3
b d <
o
DS —

;I

~ primary clusters .. Et

—_—

conversion—s

discriminator particle

LA

Fig. 10. Individual clusters obtained from a LPMSC irradiated
with B particles from a ®Sr source, in the direction parallel to
the drift field (longitudinal drift mode). The individual clusters

N+ dE/dX

are well separated. (a) Drift field £/p = 0.6 V,/cm Torr, 0.5 ps integrator

and 50 mV/div. (b) E/p=03 V/em Torr, 1 ps and 50
mV/div. Pure isobutane, 20 Torr. Conversion gap length:
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final avalanche

avalanche chambers (late 80's)
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A. Breskin and R. Chechik, Nucl. Instrum.Meth. A252 (1986) 488-49

(space domain)
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Determine, in the signal, the ordered
sequence of the electron arrival times:

't i=ln,
Based on the dependence of the average
time separation between consecutive
clusters and on the time spread due to
diffusion, as a function of the drift time,
define the probability function, that
the jth electron belongs to the ith cluster:

PGj.i) j=ln,, i=ln,

amplitude [V]

T

from this derive the
most probable time
ordered sequence of
the original ionization
clusters:

)

i=1,n,

and the total number of
clusters

time distance of electrons

ings to the same cluster

T T

\

e

1
Entries 407050
Mean 3.098
RMS 2562

b —
j = 15 nel
(same cluster)

Il | Il M PN NPT

10

1
20

1
30 40 50 60 70 80 90 100
Ate- same cis (ns)

time distance between different cls
2

Entries 1343456

i o
3| tis — t;

F\ i=1,ng

E

F

AN

30 40 50 60 0 80 90 100
Atclusters (ns)

PID with dN_/dx in the time domain: the task

Moreover,
for any given first cluster (FC) drift time t,,
the cluster timing technique exploits the
drift time distribution of all successive
clusters to statistically (MPS) or using ML
techniques, determine, hit by hit, the most
probable impact parameter, thus reducing
the bias and improving the average spatial
resolution with respect to that obtainable
with the FC method alone:

over a 1 cm drift cell, spatial resolution may
improve by = 20%
down to < 80 pm.

Fringe benefits of the cluster timing

technique are:

* event time stamping (at the level of = 1
ns);

* improvements on charge division;

* Improvements on left-right time
difference.
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PID with dN_/dx in the time domain: simulations

200 x 1 cm samples in 90/10 He/iC,H,,

full simulation

Particle separation from truncated mean dE/dx
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F. Cuna, N. De Filippis, F. Grancagnolo, G. Tassielli, Simulation of particle identification
with the cluster counting technique, arXiv:2105.07064v1 [physics.ins-det] 14 May 2021
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Geant4 uses the cluster
density and the cluster
size distributions derived
from Heed, however, they
disagree, most likely, due
to a different choice of the
E..: parameter (the
maximum energy of an
electron still associated to
a track in the simulation)
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PID with dN_/dx in the time domain: measurements

IDEA test prototypes (square drift tubes)

* Beam test at CERN-H8 during 2021 and 2022 with Fermi plateau muons (next beam test at CERN-T10 on muons relativistic rise, next month
* Simulations trained on data
* Peak finding algorithms trained on simulations

Data Simulation

Derivative method
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PID with dN_/dx in the space domain: the task

Most promising configuration for separating ionizazion clusters in space is a TPC instrumented with micro pattern devices
(multi-GEMs with pad readout or TimePix and MicroMegas with TimePix)

ILD TPC prototype which granularity is needed?

3-GEM - 220um pads 500 =
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electrons at GEM entrance L . *ﬁ_‘hd o v @
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2T from Hauschild 2006 ] arXiv:1801.07178v1 [physics.ins-det] 19 Jan 2018
! 0 02 04 06 08 1 12 14 0 0 02 04 06 08 1 12 14

X (cm) x (cm)

5/4/23 25



PID with dN_/dx in the space domain: performance
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CONCLUSIONS

* A clear set of requirements for PID must be established by defining some
benchmark physics channels and by stating their relative performance goals.

* As far as gaseous detectors are concerned, PID is intrinsically related to tracking
and constitutes a valid cheap option, without the need of introducing additional
subdetectors.

* The solid traditions of the charge integration (dE/dx) technique guarantees a
resolution below 5%. Small improvements are possible to a very limited extent,
given the intrinsic fluctuations of the process. But is 5% sufficient?

* Cluster counting represents the step forward: a 2.5% resolution is at reach when
applied in the time domain (from IDEA beam tests) and 3.3% has already been
demonstrated (from ILD TPC studies) in the space domain.

* More progress to come!

5/4/23



5/4/23

Spares

28



P SKK-
LHCb RICH

(preliminary data at
900 GeV p—p collisions)
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Entr

all combinations of pairs of tracks without PID

tracks identified as kaons with RICH
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From: Christian Lippmann - Particle identification - arXiv:1101.3276v4 [hep-ex] 12 Jun 2011
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Pld with dE/dx: the straggling function

comparison with data
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Figure 9 Experimental energy-loss distributions of Harris et al (1973) for 7 and e at 3 GeV/c
in 1.5 cm of argon/7%, CH, at normal density. The dashed and dotted curves are calculations
using the model of Landau (1944) with corrections of Maccabee & Papworth (1969) and
Blunck & Leisegang (1950) respectively. The solid curves arc the predictions of the PAI model.

W. Allison and J. Cobb
Relativistic charged particles identification by energy loss
Ann. Rev. Nucl. Part. Sci. 1980. 30: 253-98
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Fig. 4. The energy loss distributions for 2.1 GeV/c protons
(near ionization minimum) in 5cm of a mixture of Ar (95%)
and CH4 (5%). The histogram is obtained in the experiment
by Kopot et al.!3). The smooth curves are calculated for 5 cm
of Ar at NTP without correction for detector resolution. The
dash—dotted, dashed and solid curves are Landau,
Blunck-Leisegang distributions and present work results re-
spectively. Experimental and calculated data are normalised to
the same 4p,.
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Fig. 5. The energy loss distribution for 3 GeV/c electrons (Fer-
mi plateau region) in 1.5cm of a mixture of Ar (93%) and
CH 4(7%). The histogram is taken from a paper by Harris et
al.%). The smooth curves are calculated for 1.5cm of Ar at
NTP without correction for detector resolution. The dash—dot-
ted, dashed and solid curves are Landau, Blunck-Leisegang
predictions and present work results respectively.

NIM 145 (1977) 555

V. Ermilova, L. Kotenko, G. Merzon
Fluctuations and the most probable values of relativistic
charged particle energy loss in thin gas layers
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<> Number of electrons generated per cluster subject to large fluctuations
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<> Parameterization of resolution o(A,)
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W. Allison and J. Cobb
Relativistic charged particles identification by energy loss
Ann. Rev. Nucl. Part. Sci. 1980. 30: 253-98
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keeping x fixed and increasing n or L
improves the resolution

keeping n fixed and varying L and x
improves the resolution (slide)
what is the optimal sample length
for a fixed total length L?

the finer the better (n"0-14)

ALEPH
{ | I [
6~  Resolution (% r.m.s.) m
5 padfTT
+ j,,t’/
+ -
4 T TCalb .
“Alison
3 -
1 | | ]
0.5 1 2 5 (cm)
(280) (140) (70) (28) (n)

32



<> Average number of electrons per cluster increases with sample length
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Pid with dE/dx: gas choice
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