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Prelude

 Standard Model of particle physics

current state-of-the-art understanding of the fundamental particles of Nature and their interactions   
 

✤ result of over 60+ years of research in experimental and theoretical particle physics

✤ extremely successful in description of experimental data 

✤ with enormous predictive power

✤ its success culminated in the discovery of the Higgs boson 11 years ago  

picture credit: Swedish Royal Academy of Sciences2



Pinnacle of human thought

(image credit: P. Hernandez) 3



SM for pedestrians

matter particles force
 carriers

✤ Consistent theoretical description of known fundamental particles and their interactions

image credit: Scientific Americanimage credit: Wikipedia Commons
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                                    relativistic Quantum Field Theory                                             
based on principle of local gauge symmetry with the symmetry group given by  
                                                                               
                                             SU(3)c×

Prelude ctnd.

More precisely: 

 Quantum Chromodynamics (QCD) 
 theory of strong interactions   

exact  symmetry

(famously fitting on a mug)

SU(2)L × U(1)Y

➜ see lectures by G. Heinrich
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                                    relativistic Quantum Field Theory                                             
based on principle of local gauge symmetry with the symmetry group given by  
                                                                               
                                            

Prelude ctnd.

More precisely: Electroweak Standard Model = 

Electroweak (EW) theory 
unified theory of weak and electromagnetic interactions 

broken to  of electromagnetismU(1)Q

(famously fitting on a mug)

these lectures
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                                    relativistic Quantum Field Theory                                             
based on principle of local gauge symmetry with the symmetry group given by  
                                                                               
                                             SU(3)c× SU(2)L × U(1)Y



Prelude, or motivation

✤ Standard Model (EW+ QCD) is a key to future 
discoveries in particle physics — any new 
phenomena will be seen as deviation from SM 
predictions

✤ The Higgs sector of the Standard Model is not yet 
established

✤ Time and again, new results appear which call for 
very deep understanding of the underlying 
Standard Model physics

LHCB-FIGURE-2022-003
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Literature

✤ There are plenty of resources on the subject,  including: 

✤ Textbooks,  for example:

✤ M.D. Schwartz, Quantum Field Theory and the Standard Model

✤ M. Maggiore, A Modern Introduction to Quantum Field Theory

✤ I. Aitchison, A. Hey, Gauge Theories in Particle Physics

✤ M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory

✤ S. Weinberg, The Quantum Theory of Fields, vol. 1 & 2

✤ …

✤ Write-ups and slides of excellent lectures given at previous editions of ESHEP! 
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Convention, notation

✤ Natural units: 

✤ Metric tensor in Minkowski space   

✤ 4-vectors                            contravariant                                                            covariant

                                                 

                                             

                            

✤ Scalar product           invariant under Lorentz transformation 

Examples:      

✤ For a free particle                                

ℏ = c = 1

gμν = diag(1, − 1, − 1, − 1)

xμ = (x0, x1, x2, x3) = (t, x) xμ = gμνxν

pμ = (p0, p1, p2, p3) = (E, p) pμ = gμνpν

∂μ = ( ∂
∂x0

,
∂

∂x1
,

∂
∂x2

,
∂

∂x3 ) = (∂0, ∇) ∂μ = (∂0, − ∇)

A ⋅ B = AμBμ = A0B0 − AB = AμBμ = gμνAμBν = gμνAμBν

x2 = xμxμ = t2 − x2, p2 = pμpμ = E2 − p2, □ = ∂μ∂μ =
∂2

∂t2
− ∇

p2 = m2 = E2 − p2
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Fields, classically

✤ Fields = functions of space-time   with definite transformation properties under 
Lorentz transformations

✤ In Lagrangian formalism, dynamics of the physical system involving a set of fields 

  determined by , yielding the action

✤ Equation of motions, or Euler-Lagrange equations  

        follow from the principle of stationary action  

ϕi(x)

ϕ(x) L = ∫ d3x ℒ(ϕ, ∂μϕ)

δS = 0

S[ϕ] = ∫ dt L = ∫ d4x ℒ(ϕ, ∂μϕ)

∂ℒ
∂ϕi

− ∂μ
∂ℒ

∂(∂μϕi)
= 0
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Field quantisation

✤ Canonical quantisation: operator formulation

✤ promote the field  and its conjugate momenta 

 to operators, impose quantisation 

conditions in the form of equal-time 
(anti)commutation relations  (Heisenberg picture)

✤ Analogy with quantisation in QM, where coordinates 
 and momenta  become operators  that obey 

        “first” and “second” quantisation

✤ creation and annihilation operators (again in analogy 
to QM)

✤ results in intrinsically perturbative QFT

ϕ(x)

Π(x) =
∂ℒ

∂(∂0ϕ(x))

qi pi ̂qi, ̂pi
[ ̂qi, ̂pj] = iδij →

✤ Path integral quantisation 

✤ Transition amplitude between field configurations 
 at time  and  at time   given by sum over 

all possible field configurations, i.e. the quantum field 
“explores” all possible configurations

✤ provides non-perturbative definition of the theory

✤ Actual computations often simpler that in the 
operator formalism

ϕi(x) ti ϕf(x) tf

∫
ϕj(x)

ϕi(x)
𝒟ϕ exp (i∫

tf

ti

d4x ℒ)
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The fields we need

spin 1/2 spin 1 spin 0

✤ Scalar fields : spin 0

✤ Spinor fields : spin 1/2

✤ Vector fields : spin 1 

ϕ(x)

ψα(x)

Aμ(x)

 In QFT, particles correspond to  
excitation modes of the fields

→
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✤ Consider free real scalar field with    neutral spinless particle with mass m

✤ Euler-Lagrange equation of motion (e.o.m)  is the Klein-Gordon equation 

✤ The most general solution of e.o.m. is a superposition of plane waves   :   

✤ Quantisation: , ,  

✤ analogy to creation and annihilation operators of the harmonic oscillator  in QM with one oscillator per each value of k,  here relates to 
particle with 

✤ Fock space of states:  sum of an infinite set of Hilbert spaces, each representing an n-particle state

✤ vacuum state defined by  , 

✤ generic n-particle state  obtained by acting on vacuum with creation operators 

ℒ =
1
2

∂μϕ ∂μϕ −
m2

2
ϕ2 ↔

( □ + m2)ϕ = 0

e±ikx

[ϕ(t, x), Π(t, y)] = iδ(3)(x − y) [ϕ(t, x), ϕ(t, y)] = 0 [Π(t, x), Π(t, y)] = 0

ϕ(x) = ∫
d3k

(2π)32Ek
[a(k)e−ikx + a†(k)eikx] ⇒ [a(p), a†(q)] = (2π)3δ(3)(p − q) [a(p), a(q)] = 0 [a†(p), a†(q)] = 0

Ek = (k2 + m2)1/2

a(p) |0⟩ = 0 ⟨0 |0⟩ = 1

|k1…kn⟩ = (2Ek1
)(1/2)…(2Ekn

)(1/2)a†(k1)…a†(kn) |0⟩

Scalar field
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ϕ(x) = ∫
d3k

(2π)32Ek
[a(k)e−ikx + a*(k)eikx]



✤ Consider free real scalar field with    neutral spinless particle with mass m

✤ Euler-Lagrange equation of motion (e.o.m)  is the Klein-Gordon equation 

✤ The most general solution of e.o.m. is a superposition of plane waves   :   

✤ Quantisation: , ,  

✤ analogy to creation and annihilation operators of the harmonic oscillator  in QM with one oscillator per each value of p,  here relates to 
particle with 

✤ Fock space of states:  sum of an infinite set of Hilbert spaces, each representing an n-particle state

✤ vacuum state defined by  , 

✤ generic n-particle state  obtained by acting on vacuum with creation operators 

ℒ =
1
2

∂μϕ ∂μϕ −
m2

2
ϕ2 ↔

( □ + m2)ϕ = 0

e±ikx

[ϕ(t, x), Π(t, y)] = iδ(3)(x − y) [ϕ(t, x), ϕ(t, y)] = 0 [Π(t, x), Π(t, y)] = 0

ϕ(x) = ∫
d3k

(2π)32Ek
[a(k)e−ikx + a†(k)eikx] ⇒ [a(p), a†(q)] = (2π)3δ(3)(p − q) [a(p), a(q)] = 0 [a†(p), a†(q)] = 0

Ek = (k2 + m2)1/2

a(p) |0⟩ = 0 ⟨0 |0⟩ = 1

|k1…kn⟩ = (2Ek1
)(1/2)…(2Ekn

)(1/2)a†(k1)…a†(kn) |0⟩

Scalar field

Hamiltonian

 H = ∫ d3x(Π ·ϕ − ℒ) ⇒ H = ∫
d3k

(2π)3
Eka†(k)a(k)

H a†(k) |0⟩ = Eka†(k) |0⟩
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✤    Since   and ,           
it follows

                                                             

    i.e. scalar field quanta obey Bose-Einstein statistics  bosons

|k1k2⟩ = (2Ek1
)(1/2)(2Ek2

)(1/2)a†(k1)a†(k2) |0⟩ [a†(k1), a†(k2)] = 0

|k2k1⟩ = |k1k2⟩

→



✤ Consider free real scalar field with    neutral spinless particle with mass m

✤ Euler-Lagrange equation of motion (e.o.m)  is the Klein-Gordon equation 

✤ The most general solution of e.o.m. is a superposition of plane waves   :   

✤ Quantisation: , ,  

✤ analogy to creation and annihilation operators of the harmonic oscillator  in QM with one oscillator per each value of p,  here relates to 
particle with 

✤ Fock space of states:  sum of an infinite set of Hilbert spaces, each representing an n-particle state

✤ vacuum state defined by  , 

✤ generic n-particle state  obtained by acting on vacuum with creation operators 

ℒ =
1
2

∂μϕ ∂μϕ −
m2

2
ϕ2 ↔

( □ + m2)ϕ = 0

e±ikx

[ϕ(t, x), Π(t, y)] = iδ(3)(x − y) [ϕ(t, x), ϕ(t, y)] = 0 [Π(t, x), Π(t, y)] = 0

ϕ(x) = ∫
d3k

(2π)32Ek
[a(k)e−ikx + a†(k)eikx] ⇒ [a(p), a†(q)] = (2π)3δ(3)(p − q) [a(p), a(q)] = 0 [a†(p), a†(q)] = 0

Ek = (k2 + m2)1/2

a(p) |0⟩ = 0 ⟨0 |0⟩ = 1

|k1…kn⟩ = (2Ek1
)(1/2)…(2Ekn

)(1/2)a†(k1)…a†(kn) |0⟩

Scalar field

      is a one-particle state with definite momentum. In order to have 
localised particles one needs to build wave packets

                                                             

    with   square-integrable (peaked around some  such that  
is localised

|k⟩

|χ⟩ = ∫
d3k

(2π)3 2Ek
fχ(k)a†(k) |0⟩

fχ(k) k0 ⟨0 |ϕ(x) |χ⟩
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Complex scalar field:          

 

 creates particles ,  creates antiparticles

ℒ = ∂μϕ† ∂μϕ − m2ϕ†ϕ

ϕ(x) = ∫
d3k

(2π)32Ek
[a(k)e−ikx + b†(k)eikx]

H = ∫
d3k

(2π)3
Ek[a†(k)a(k) + b†(k)b(k)]

Q = ∫
d3k

(2π)3
[a†(k)a(k) − b†(k)b(k)]

Q a†(k) |0⟩ = (+1) a†(k) |0⟩ Q b†(k) |0⟩ = (−1) b†(k) |0⟩
a† b†



Spinor fields: Dirac

✤ SM fermions described by 4-component spinor fields

✤ Their e.o.m. is given by the Dirac equation                                                                                                                                       
which can be derived from the Dirac Lagrangian                                                                                                                               
with  and 4x4 Dirac matrices , obeying the algebra 

✤
Explicit form of the Dirac matrices not unique, an example  is the Dirac representation    (with Pauli 

matrices )

✤ Canonical quantisation relies on imposing anticommutation relations:

 

✤ The general solution of the Dirac equation is a superposition of plane waves  and  with 4-component spinors            
 and  fulfilling        

                        

(iγμ∂μ − m) ψ(x) = 0
ℒ = ψ̄ (iγμ∂μ − m) ψ

ψ̄ = ψ†γ0 γμ (μ = 0,1,2,3) {γμ, γν} = γμγν + γνγμ = 2gμν

γ0 = (1 0
0 1) γi = ( 0 σi

−σi 0)
σi

u(p) e−ipx v(p) eipx

u(p) v(p) (pμγμ − m) u(p) = 0 (pμγμ + m) v(p) = 0

ψ(x) = ∫
d3k

(2π)3 2Ek
∑

s=1,2
(as(k)u(s)(k)e−ikx + b†

s (k)v̄(s)(k)eikx)

{ψα(x, t), Πβ(y, t)} = iδα,β δ(3)(x − y) {ψα(x, t), ψβ(y, t)} = 0 {Πα(x, t), Πβ(y, t)} = 0

ψ(x) =

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)
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Spinor fields: Dirac ctnd.

✤ Classically,  corresponds to positive energy solutions ,                                                                                                  

whereas  corresponds to negative energy solutions 

✤ For each energy solution, two-fold degeneracy, i.e.               have two solutions each

✤
They can be identified as helicity eigenstates,  

✤ After  quantisation, interpretation of operators:

✤  creates fermions,    annihilates fermions

✤  creates antifermions,    annihilates antifermions

                        

u(p) Ep = + p2 + m2

v(p) Ep = − p2 + m2

(pμγμ − m) u(p) = 0 (pμγμ + m) v(p) = 0

1
2

Σ p
|p |

u(1,2) = ± 1
2

u(1,2) 1
2

Σ p
|p |

v(1,2) = ∓
1
2

v(1,2)

a†
s (k) as(k)

b†
s (k) bs(k)

ψ(x) = ∫
d3k

(2π)3 2Ek
∑

s=1,2
(as(k)u(s)(k)e−ikx + b†

s (k)v̄(s)(k)eikx)
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Spinor fields: Dirac ctnd.

✤ Classically,  corresponds to positive energy solutions ,                                                                                                  

whereas  corresponds to negative energy solutions 

✤ For each energy solution, two-fold degeneracy, i.e.               have two solutions each

✤
They can be identified as helicity eigenstates,  

✤ After  quantisation, interpretation of operators:

✤  creates fermions,    annihilates fermions

✤  creates antifermions,    annihilates antifermions

                        

u(p) Ep = + p2 + m2

v(p) Ep = − p2 + m2

(pμγμ − m) u(p) = 0 (pμγμ + m) v(p) = 0

1
2

Σ p
|p |

u(1,2) = ± 1
2

u(1,2) 1
2

Σ p
|p |

v(1,2) = ∓
1
2

v(1,2)

a†
s (k) as(k)

b†
s (k) bs(k)

ψ(x) = ∫
d3k

(2π)3 2Ek
∑

s=1,2
(as(k)u(s)(k)e−ikx + b†

s (k)v̄(s)(k)eikx)

✤   and ,  
         Pauli exclusion principle  Fermi-Dirac statistics

|k, s; k, s⟩ ∝ a†
s (k)a†

s (k) |0⟩ ∝ {a†
s (k), a†

s (k)} |0⟩ {a†(k1), a†(k2)} = 0
⇒ |k, s; k, s⟩ = 0 →
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Vector fields
✤ Charged field, massive case: 

✤ From Lagrangian    (with ) follows the field equation (Proca equation) 

✤ Solutions given by plane waves of the form  with 3 independent polarisation vectors   

✤
Quantised vector field  

✤ Neutral field, massless case (for m=0 Proca eq. turns in Maxwell eq. ):

 

ℒ = −
1
4

W†
μνWμν −

m2

2
W†

μWμ Wμν = ∂μWν − ∂νWμ

[( □ + m2) gμν − ∂μ∂ν] Wν = 0

ϵμ(k, λ) e±ikx, λ = 1,2,3 ϵμ(k, λ)

ϵ(k, λ) ⋅ k = 0, ϵ(k, λ) ⋅ ϵ(k, λ′ ) = − δλ,λ′ 

3

∑
λ=1

ϵ*μ (k, λ)ϵν(k, λ) = gμν +
kμkν

m2

Wμ(x) =
3

∑
λ=1

∫
d3k

(2π)3 Ek
[ϵμ(k, λ) aλ(k)e−ikx + ϵ*μ (k, λ) b†

λ (k)eikx]
∂μFμν = 0

Aμ(x) =
3

∑
λ=0

∫
d3k

(2π)3 Ek
[ϵμ(k, λ) aλ(k)e−ikx + ϵ*μ (k, λ) a†

λ (k)eikx]
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Vector fields
✤ Charged field, massive case: 

✤ From Lagrangian    (with ) follows the field equation (Proca equation) 

✤ Solutions given by plane waves of the form  with 3 independent polarisation vectors   

✤
Quantised vector field  

✤ Neutral field, massless case (for m=0 Proca eq. turns in Maxwell eq. ):

 

ℒ = −
1
4

W†
μνWμν −

m2

2
W†

μWμ Wμν = ∂μWν − ∂νWμ

[( □ + m2) gμν − ∂μ∂ν] Wν = 0

ϵμ(k, λ) e±ikx, λ = 1,2,3 ϵμ(k, λ)

ϵ(k, λ) ⋅ k = 0, ϵ(k, λ) ⋅ ϵ(k, λ′ ) = − δλ,λ′ 

3

∑
λ=1

ϵ*μ (k, λ)ϵν(k, λ) = gμν +
kμkν

m2

Wμ(x) =
3

∑
λ=1

∫
d3k

(2π)3 Ek
[ϵμ(k, λ) aλ(k)e−ikx + ϵ*μ (k, λ) b†

λ (k)eikx]
∂μFμν = 0

Aμ(x) =
3

∑
λ=0

∫
d3k

(2π)3 Ek
[ϵμ(k, λ) aλ(k)e−ikx + ϵ*μ (k, λ) a†

λ (k)eikx]
Canonical quantisation non-trivial

 only two physical polarisations 
in the massless case, yet 4 degrees 
of freedom

→
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Recap: free fields

✤ Scalar fields                         

✤ Fermion fields                    

✤ Antifermion fields            

✤ Vector fields                       

|k⟩ = 2Eka†(k) |0⟩

⟨0 |ϕ(x) |k⟩ = e−ikx ⟨k |ϕ(x) |0⟩ = eikx

|k, s⟩ = 2Eka†
s (k) |0⟩

⟨0 |ψ(x) |k, s⟩ = u(s)(k) e−ikx ⟨k, s | ψ̄(x) |0⟩ = ū(s)(k) eikx

|k, s⟩ = 2Ekb†
s (k) |0⟩

⟨0 | ψ̄(x) |k, s⟩ = v̄(s)(k) e−ikx ⟨k, s |ψ(x) |0⟩ = v(s)(k) eikx

|k, λ⟩ = 2Eka†
λ (k) |0⟩

⟨0 |Aμ(x) |k, λ⟩ = ϵμ(k, λ) e−ikx ⟨k, λ |Aμ(x) |0⟩ = ϵ*μ (k, λ) eikx
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Recap: free fields

✤ Scalar fields                         

✤ Fermion fields                    

✤ Antifermion fields            

✤ Vector fields                       

|k⟩ = a†(k) |0⟩

⟨0 |ϕ(x) |k⟩ = e−ikx ⟨k |ϕ(x) |0⟩ = eikx

|k, s⟩ = a†
s (k) |0⟩

⟨0 |ψ(x) |k, s⟩ = u(s)(k) e−ikx ⟨k, s | ψ̄(x) |0⟩ = ū(s)(k) eikx

|k, s⟩ = b†
s (k) |0⟩

⟨0 | ψ̄(x) |k, s⟩ = v̄(s)(k) e−ikx ⟨k, s |ψ(x) |0⟩ = v(s)(k) eikx

|k, λ⟩ = a†
λ (k) |0⟩

⟨0 |Aμ(x) |k, λ⟩ = ϵμ(k, λ) e−ikx ⟨k, λ |Aμ(x) |0⟩ = ϵ*μ (k, λ) eikx

1     incoming
1      outgoing 

    incoming
    outgoing 

u(k)
ū(k)

    incoming
    outgoing 

v̄(k)
v(k)

    incoming
   outgoing 

ϵμ(k, λ)
ϵ*μ (k, λ)
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Propagators

✤ So far: free particles. Eventually: interactions

✤ For simplicity, consider scalar fields. Interaction of the field with a source  will modify the Klein-Gordon eq. 

which can be obtained from the Lagrangian 

✤ An inhomogeneous equation of this sort can be solved provided the Green’s function is known, i.e. the solution to the field 
equation with a delta function source, here 

✤ Fourier transformation             leads to        

✤
The solution         is known as the Feynman propagator

ϕ(x) J(x)

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 + Jϕ

δ(4)(x − y) = ∫
d4k

(2π)4
e−ik⋅(x−y), G(x − y) = ∫

d4k
(2π)4

e−ik⋅(x−y)G(k) (k2 − m2) G(k) = 1

GF(x − y) = ∫
d4k

(2π)4

1
k2 − m2 + iϵ

e−ik⋅(x−y)

(∂μ∂μ + m2) ϕ(x) = J(x)

(∂μ∂μ + m2)G(x − y) = − δ(4)(x − y)
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Propagators ctnd.

✤ Using the field expansion expression and the properties of the  operators, the amplitude for particle propagation from y to x is 

  

✤ Integrating over  in the Feynman propagator yields 

The appearance of the theta functions results from the  term in the denominator, providing prescription how to treat the poles  at 

✤ Time-ordering operator T arranges operators in chronological order, from right to left:        

✤       Propagation of a particle from y to x if 

✤      Propagation of a particle from x to y if , or propagation of an antiparticle for complex fields;           

a†, a

k0

+iϵ k2 = m2

iGF(x − y) = ⟨0 |T(ϕ(x)ϕ(y)) |0⟩

x0 > y0

y0 > x0 iGF(x − y) = ⟨0 |T(ϕ(x)ϕ†(y)) |0⟩

GF(x − y) = ∫
d4k

(2π)4

1
k2 − m2 + iϵ

e−ik⋅(x−y)

iGF(x − y) = ∫
d3k

(2π)3k0 [e−ik⋅(x−y)Θ(x0 − y0) + eik⋅(x−y)Θ(y0 − x0)]k0=Ek
= ⟨0 |ϕ(x)ϕ(y) |0⟩Θ(x0 − y0) + ⟨0 |ϕ(y)ϕ(x) |0⟩Θ(y0 − x0)

⟨0 |ϕ(x)ϕ(y) |0⟩ = ∫
d3k

(2π)3

1
2Ek

e−ik⋅(x−y)
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Feynman propagators

✤ Scalar  field     

 

✤ Fermion  field  

✤ Massive vector field 

✤ Massless vector field (Feynman gauge)

⟨0 |T(ϕ(x)ϕ†(y)) |0⟩ = ∫
d4k

(2π)4

i
k2 − m2 + iϵ

e−ik⋅(x−y)

⟨0 |T(ψ(x)ψ̄(y) |0⟩ = ∫
d4k

(2π)4

i(kμγμ + m)
k2 − m2 + iϵ

e−ik⋅(x−y)

⟨0 |T(Wμ(x)W̄ν(y) |0⟩ = ∫
d4k

(2π)4

i (−gμν + kμkν /m2)
k2 − m2 + iϵ

e−ik⋅(x−y)

⟨0 |T(Aμ(x)Āν(y) |0⟩ = ∫
d4k

(2π)4

−igμν

k2 + iϵ
e−ik⋅(x−y)

In position-space In momentum-space

i
k2 − m2 + iϵ

i (kμγμ + m)
k2 − m2 + iϵ

i (−gμν + kμkν /m2)
k2 − m2 + iϵ

−igμν

k2 + iϵ

25



Gauge fixing

✤ EM wave has two degrees of freedom: two polarisation vectors for transverse polarisation  ,  (  )    but Lorentz 
covariant formulation of Maxwell eqs. uses on the 4-vector potential  

✤ The Maxwell Lagrangian is invariant under the gauge transformation  with  an arbitrary regular function. The gauge 
transformation can be used to remove  unphysical polarisations 

✤ The equation for the propagator of the  massless vector field   does not have a solution

✤ Canonical quantisation non-trivial (redundant d.o.f or non-covariant formulation)

✤ In covariant quantisation one adds a gauge-fixing term  to the Maxwell Lagrangian (and imposes a  Lorenz-condition-like 
restriction on the Fock space) 

                                                                                   : arbitrary finite parameter (  Feynman gauge,  Landau gauge)

                                                                                         = 

✤ The procedure breaks gauge invariance, but physical results are independent of the gauge. 

ϵ(k, λ)k = 0 λ = 1,2
Aμ

Aμ → Aμ − ∂μθ θ

(−k2gμν + kμkν)Gνρ = gμ
ρ

ℒGF

ℒGF = −
1
2ζ

(∂μAa
μ)2 ζ ζ = 1 ζ = 0

−iδab

p2 + iϵ (gμν − (1 − ζ)pμpν /p2)
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Interactions

✤ Use perturbation theory ( interaction as a small perturbation to the free theory) to calculate physical quantities such as cross 
sections etc.

✤ Interaction localised in a region of spacetime  treat particles as free at far away in the past and in the future (free asymptotic states) 

                                     

✤ Transition amplitude for a scattering process defines the unitary S-matrix operator

         with    and 

✤
                probabilities over all  transitions sum up to 1  

→

→

|ψ(t = − ∞)⟩ = |p1, …, pn; in⟩ |ψ(t = ∞)⟩ = |p′ 1, …, p′ m; out⟩

⟨p′ 1, …, p′ m; out |p1, …, pn; in⟩ = ⟨ψ(t = ∞) |ψ(t = − ∞)⟩ = ⟨ f |S | i⟩ = Sfi |ψ(t = − ∞)⟩ = | i⟩ |ψ(t = ∞)⟩ = S | i⟩

S†S = 1 ⇒ ∑
k

S*kf Ski = δfi ⇒ ∑
k

|Ski |
2 = 1 i → k

ℒ = ℒ0 + ℒint

free part interaction part

probability conservation
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S-matrix and Feynman rules
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✤
Dyson expansion of the S operator                                                                          

with  the interaction part of the Hamiltonian density in the interaction picture

   calculation of   involves time-ordered products of field operators 

 consider  e.g. 

✤ Wick’s theorem enables decomposing generic  into products of propagators  e.g.   

✤ In reality, need to be more careful as e.g.  vacuum of the theory also affected by interactions 

✤  Lehmann-Symanzik-Zimmerman formula relates  with 

✤ The resulting expressions for the transition amplitudes can be given a graphical representation as building blocks of 
the diagrams depicting the process  Feynman rules

S =
∞

∑
n=0

(−i)n

n! ∫ d4x1…∫ d4xnT (ℋint(x1)…ℋint(xn))
ℋint

⇒ ⟨p′ 1, …, p′ m |S |p1, …, pn⟩

→ ⟨0 |a(p′ 1)…a(p′ m) |T(ϕ(x1)…ϕ(xl)) |a†(p1)…a†(pn) |0⟩

⟨0 |T(ϕ(x1)…ϕ(xn) |0⟩ ⟨0 |T(ϕ(xi)ϕ(xj)) |0⟩

⟨0 |T(ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) |0⟩ = GF(x1 − x2)GF(x3 − x4) + GF(x1 − x3)GF(x2 − x4) + GF(x1 − x4)GF(x2 − x3)

→ ⟨p′ 1, …, p′ m |S |p1, …, pn⟩ ⟨0 |T(ϕ(x1)…ϕ(xm)ϕ(y1)ϕ…(yn) |0⟩

→
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✤
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with  the interaction part of the Hamiltonian density in the interaction picture

   calculation of   involves time-ordered products of field operators 
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✤ Wick’s theorem enables decomposing generic  into products of propagators  e.g.   
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∞

∑
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(−i)n

n! ∫ d4x1…∫ d4xnT (ℋint(x1)…ℋint(xn))
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⇒ ⟨p′ 1, …, p′ m |S |p1, …, pn⟩
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⟨0 |T(ϕ(x1)…ϕ(xn) |0⟩ ⟨0 |T(ϕ(xi)ϕ(xj)) |0⟩
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→

+ +
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Feynman rules,  theoryϕ4

−iλ

ℒ =
1
2

∂μϕ∂μϕ −
1
2

m2ϕ2 −
λ
4!

ϕ4
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Guiding principles

picture credit: T.D. Gutierrez

✤ Symmetry principle

✤ gauge invariance but also Lorentz and CPT invariance 

✤ Unitarity (conservation of probability)

✤ Renormalisability (finite predictions)

✤ Correspondance to already existing, well-tested theories: 
QED, Fermi theory,..

✤ Minimality: no unnecessary fields or interactions other 
than those needed to explain observation
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Construction tools: groups

✤ Mathematical language of symmetry is group theory

✤ A group G is a set of elements gi with a multiplication law   
 
                                
 
with a unity, an inverse and associativeness.

✤ Example: U(N) consisting of of NxN unitary matrices 

✤ Special group: elements are matrices with determinant = 1

✤ Example: unitary special groups SU(N)                

gj ⋅ gk ∈ G

UU† = U†U = 1

✤ Abelian groups: elements obey 

✤ Example: unitary group U(1)  consisting of a set of 
phase factors 

✤ Non-abelian groups: 

✤  Example: U(N), SU(N), …

✤ Direct product  of two groups G and H,  
 

  has a multiplication law for elements   
                 
                               

gj ⋅ gk = gk ⋅ gj

eiα

gj ⋅ gk ≠ gk ⋅ gj

G × H
[gi, hj] = 0

(gi, hj)
(gk, hl) ⋅ (gm, hn) = (gk ⋅ gm, hl ⋅ hn)

32



Construction tools: Lie groups

✤ Representation of a group is a special realisation of the multiplication law. Set of matrices  such that  
if             then    

✤ A general gauge symmetry group G is a compact Lie group 
 
                                                                                                                          
 
                         = Hermitian generators  of the group           Lie algebra:     
             
                                  structure constants:     for abelian groups,  for non-abelian groups

✤ Example: SU(2)                     
 

                                      (Pauli matrices/2)

✤ SU(N) has  linearly independent generators which are traceless hermitian matrices 

{R(gi)}
gi ⋅ gj = gk R(gi)R(gj) = R(gk)

g(α1, …, αk, …) ∈ G g(α) = exp(iαkTk)

αk = αk(x) ∈ ℝ Tk [Ti, Tj] = if ijkTk

Tr[TiTj] ≡ δij /2 f ijk = 0 f ijk ≠ 0

g(α1, α2, α3) = exp[iαkTk] k = 1,2,3

f ijk = ϵijk T1 =
1
2 (0 1

1 0) T2 =
1
2 (0 −i

i 0 ) T3 =
1
2 (1 0

0 −1)
N2 − 1
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Construction tools: group representations

✤ Fundamental representation with dimension N

✤ unitary NxN matrices

✤ N2-1 generators    

✤ fermion transformations in the SM 
 
          

Tk

✤  Adjoint representation with dimension N2-1

✤ unitary (N2-1)x (N2-1) matrices

✤
N2-1 generators     

✤ gauge boson transformations in the SM 
 
          

(Tk
adj)ij

= − ifkij

✤ SU(2): 3 generators, ,                fundamental rep:       (Pauli matrices/2)    
                                                                    adjoint rep: 

✤ SU(3): 8 generators                                   fundamental rep:       (Gell-Mann matrices/2)     
                                                                     adjoint rep:  

f ijk = ϵijk Tk = σk /2

(Tk
adj)ij

= − ifkij = − iϵkij

Tk = λk /2

(Tk
adj)ij

= − ifkij

Examples
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The gauge paradigm: QED

✤ The free Dirac field Lagrangian 
                                                            
is invariant under global phase U(1) transformations 
 
                                                                              (  constant phase                )

✤ Under local phase (“gauge”) U(1) transformations  
 
                              ,                                     
 
→ introduce covariant derivative with the transformation rule       
 
so that                        is invariant  
 

fulfilled by                 with a new vector field  transforming as                                                  

ℒDirac = ψ̄(iγμ∂μ − m)ψ

ψ → eiαψ ψ̄ → e−iαψ̄ α = ψ̄ = ψ†γ0

ψ → eiα(x)ψ ψ̄ → e−iα(x)ψ̄ ∂μψ(x) → eiα(x)∂μψ(x) + ieiα(x)∂μα(x) ψ(x)

Dμψ(x) → eiα(x)Dμψ(x)

ℒ = ψ̄(x)(iγμDμ − m)ψ(x)

Dμ ≡ ∂μ + igAμ(x) Aμ(x) Aμ → Aμ −
1
g

∂μα(x)
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The gauge paradigm: QED (2)

✤               is invariant with  
        
                                           
                                                                                                                  
                                                                      interaction piece of the fermion field with a gauge vector (photon) field with 
g the electric charge of the electron

✤ Full QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field  
 

                                             

   
where   is also invariant under the local phase transformation

✤ Since  not gauge invariant, the term is not allowed → massless photon  

ℒ = ψ̄(x)(iγμDμ − m)ψ(x) Dμ = ∂μ + igAμ(x)

ℒ = ψ̄(x)(iγμ∂μ − m)ψ(x) − gψ̄(x)γμψ(x)Aμ(x)

Aμ(x)

ℒQED = ψ̄(x)(iγμDμ − m)ψ(x) −
1
4

Fμν(x)Fμν(x)

Fμν = ∂μAν − ∂νAμ

AμAμ
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The gauge paradigm: QED (2)

✤               is invariant with  
        
                                           
                                                                                                                  
                                                                      interaction piece of the fermion field with a gauge vector (photon) field with 
g the electric charge of the electron

✤ Full QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field  
 

                                             

   
where   is also invariant under the local phase transformation

✤ Since  not gauge invariant, the term is not allowed → massless photon  

ℒ = ψ̄(x)(iγμDμ − m)ψ(x) Dμ = ∂μ + igAμ(x)

ℒ = ψ̄(x)(iγμ∂μ − m)ψ(x) − gψ̄(x)γμψ(x)Aμ(x)

Aμ(x)

ℒQED = ψ̄(x)(iγμDμ − m)ψ(x) −
1
4

Fμν(x)Fμν(x)

Fμν = ∂μAν − ∂νAμ

AμAμ

Gauge principle: invariance of theory 
under local symmetry

Promoting global symmetry to local 
leads to an interacting theory

37



Non-abelian gauge theories

✤ Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N) 
 
                               with                                               

✤   are the generators of the group SU(N) obeying the group algebra    

✤ In analogy to QED             
and the Lagrangian   is not invariant under the transformation

✤ Way out: introduce             vector gauge fields       
                                               covariant derivative      

✤ Requesting gauge invariance of          means       and  

✤
  It follows                                                 

ψ(x) → U(α(x))ψ(x) U(α(x)) = exp [igαk(x)Tk] k = 1,…, N2 − 1

Tk [Ti, Tj] = if ijkTk

∂μψ(x) → exp [igαk(x)Tk] ∂μψ(x) + ig(∂μαk(x))Tk exp [igαk(x)Tk] ψ(x)
ψ̄(iγμ∂μ − m)ψ

Wμ = Wμ, 1T1 + Wμ, 2T2 + … = Wμ, kTk

Dμψ ≡ (∂μ + igWμ)ψ

ψ̄(iγμDμ − m)ψ Dμψ → UDμψ Dμ → UDμU−1

Wμ → UWμU−1 −
i
g

U(∂μU−1)
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Non-abelian gauge theories

✤ Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N) 
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i
g

U(∂μU−1)
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Non-abelian gauge theories (2)

✤
Transformations:                                                           

✤
Generalisation of the QED field strength tensor       to       

 
  Since      it follows      
 
 and from                        

✤ Transformation of the field tensor:     

✤ The kinetic term    is then gauge invariant and hence the Lagrangian 

   

                                                                                   is also gauge invariant     

ψ(x) → exp [igαk(x)Tk] ψ(x) Dμ → UDμU−1 Wμ → UWμU−1 −
i
g

U(∂μU−1)

Fμν = ∂μAν − ∂νAμ = −
i
e

[Dμ, Dν] Wμν ≡ −
i
g

[Dμ, Dν]

Dμψ = (∂μ + igWμ)ψ Wμν = ∂μWν − ∂νWμ + ig [Wμ, Wν]
Wμ = Wμ, kTk ⇒ Wμν, k = ∂μWν, k − ∂νWμ, k − gf ijkWμ, iWν, j

Wμν → UWμνU−1

−
1
4

Wk
μνWμν, k = −

1
2

Tr [WμνWμν]

ℒYM = ψ̄(iD/ − m)ψ −
1
2

Tr [WμνWμν]
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General features of non-abelian gauge theories

✤  generators of the SU(N) symmetry group →  gauge fields

✤ Similarly to QED, the interaction of gauge fields with fermion fields is given by the  term in the 
Lagrangian

✤ New types of interaction in comparison with an abelian theory: from  with 

  follow terms that are cubic and  quartic in gauge boson fields → gauge 
bosons interact with each other

✤ Gauge bosons are massless since the term  is not invariant under local gauge transformations

✤ Gauge invariance fixes the strength of the gauge boson self-interactions and interactions with the fermion fields in 
terms of a single parameter g

N2 − 1 N2 − 1

−g ψ̄γμTkWk
μψ

−
1
4

Wk
μνWμν, k

Wμν, k = ∂μWν, k − ∂νWμ, k − gf ijkWμ, iWν, j

Wk
μWμ, k
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QCD Lagrangian

✤ The kinetic part for the gluon field  

                                                                    

carries information about triple and quartic gluon self-interactions.

✤ Altogether,  summing over flavours                                           Feynman rules 
 

            

ℒG = −
1
4

Fk
μνFμν, k Fμν, k = ∂μAν, k − ∂νAμ, k − gs f ijkAμ, iAν, j

ℒQCD = ∑
f

ψ̄( f ) (iγμ∂μ − mf ) ψ( f )

−(∂μAν − ∂νAμ)2

−gs ψ̄( f )γμTaAa
μψ( f )

−
1
2

gs (∂μAa
ν − ∂νAa

μ) fabcAμ, bAν, c

−
1
4

g2
s fabc Aμ, bAν, c fade Ad

μ Ae
ν
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v

QCD Lagrangian

✤ The kinetic part for the gluon field  

                                                                    

carries information about triple and quartic gluon self-interactions.

✤ Altogether,  summing over flavours                                           Feynman rules 
 

            

ℒG = −
1
4

Fk
μνFμν, k Fμν, k = ∂μAν, k − ∂νAμ, k − gs f ijkAμ, iAν, j

ℒQCD = ∑
f

ψ̄( f ) (iγμ∂μ − mf ) ψ( f )

−(∂μAν − ∂νAμ)2

−gs ψ̄( f )γμTaAa
μψ( f )

−
1
2

gs (∂μAa
ν − ∂νAa

μ) fabcAμ, bAν, c

−
1
4

g2
s fabc Aμ, bAν, c fade Ad

μ Ae
ν

QED-like

non-abelian
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✓ after the coffee 
break!✓
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