Field Theory and the Electroweak Standard Model - Iecture 2

Anna Kulesza (University of Münster)

三- = wwu

The 2023 European School of High Energy Physics
 6.-19. September 2023, Grenaa, Denmark

[^0]
The task ahead

The gauge paradigm: QED

\therefore The free Dirac field Lagrangian

$$
\mathscr{L}_{\text {Dirac }}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

is invariant under global phase $\mathrm{U}(1)$ transformations

$$
\psi \rightarrow e^{i \alpha} \psi \quad \bar{\psi} \rightarrow e^{-i \alpha} \bar{\psi} \quad\left(\alpha=\text { constant phase } \quad \bar{\psi}=\psi^{\dagger} \gamma^{0}\right)
$$

* Under local phase ("gauge") $\mathrm{U}(1)$ transformations

$$
\psi \rightarrow e^{i \alpha(x)} \psi, \quad \bar{\psi} \rightarrow e^{-i \alpha(x)} \bar{\psi} \quad \quad \partial_{\mu} \psi(x) \rightarrow e^{i \alpha(x)} \partial_{\mu} \psi(x)+i e^{i \alpha(x)} \partial_{\mu} \alpha(x) \psi(x)
$$

\rightarrow introduce covariant derivative with the transformation rule $\quad D_{\mu} \psi(x) \rightarrow e^{i \alpha(x)} D_{\mu} \psi(x)$
so that

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant }
$$

fulfilled by $\quad D_{\mu} \equiv \partial_{\mu}+i g A_{\mu}(x) \quad$ with a new vector field $A_{\mu}(x)$ transforming as $A_{\mu} \rightarrow A_{\mu}-\frac{1}{g} \partial_{\mu} \alpha(x)$

The gauge paradigm: QED (2)

$\%$

$$
\begin{array}{r}
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant with } D_{\mu}=\partial_{\mu}+i g A_{\mu}(x) \\
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)-g \bar{\psi}(x) \gamma^{\mu} \psi(x) A_{\mu}(x)
\end{array}
$$

interaction piece of the fermion field with a gauge vector (photon) field with
g the electric charge of the electron

* Gauge-invariant QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field $A_{\mu}(x)$

$$
\mathscr{L}_{\mathrm{QED}}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x)-\frac{1}{4} F^{\mu \nu}(x) F_{\mu \nu}(x)
$$

where $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ is also invariant under the local phase transformation
\therefore Since $A_{\mu} A^{\mu}$ not gauge invariant, the term is not allowed \rightarrow massless photon

The gauge paradigm: QED (2)

$\%$

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x) \quad \text { is invariant with } D_{\mu}=\partial_{\mu}+i g A_{\mu}(x)
$$

$$
\mathscr{L}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)-g \bar{\psi}(x) \gamma^{\mu} \psi(x) A_{\mu}(x)
$$

interaction piece of the fermion field with a gauge vector (photon) field with g the electric charge of the electron
\%Gauge-invariant QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field $A_{\mu}(x)$

$$
\mathscr{L}_{\mathrm{QED}}=\bar{\psi}(x)\left(i \gamma^{\mu} D_{\mu}-m\right) \psi(x)-\frac{1}{4} F^{\mu \nu}
$$

where $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ is also invariant under the local ph
\because Since $A_{\mu} A^{\mu}$ not gauge invariant, the term is not allowed $\rightarrow \mathrm{ma}$

Gauge principle: invariance of theory under local symmetry
Promoting global symmetry to local leads to an interacting theory

Non-abelian gauge theories

\therefore Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N)

$$
\psi(x) \rightarrow U(\alpha(x)) \psi(x) \quad \text { with } \quad U(\alpha(x))=\exp \left[i g \alpha^{k}(x) T^{k}\right] \quad k=1, \ldots, N^{2}-1
$$

$\therefore T^{k}$ are the generators of the group $\mathrm{SU}(\mathrm{N})$ obeying the group algebra $\left[T^{i}, T^{j}\right]=i f^{i j k} T^{k}$
\therefore In analogy to QED $\quad \partial_{\mu} \psi(x) \rightarrow \exp \left[i g \alpha^{k}(x) T^{k}\right] \partial_{\mu} \psi(x)+i g\left(\partial_{\mu} \alpha^{k}(x)\right) T^{k} \exp \left[i g \alpha^{k}(x) T^{k}\right] \psi(x)$ and the Lagrangian $\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ is not invariant under the transformation
$\begin{array}{ll}\therefore \text { Way out: introduce } & \begin{array}{l}\text { vector gauge fields } \\ \\ \text { covariant derivative }\end{array} W^{\mu}=W^{\mu, 1} T^{1}+W^{\mu, 2} T^{2}+\ldots=\left(\partial^{\mu}+i g W^{\mu}\right) \psi\end{array}$
\because Requesting gauge invariance of $\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi$ means $D^{\mu} \psi \rightarrow U D^{\mu} \psi$ and $D^{\mu} \rightarrow U D^{\mu} U^{-1}$
\% It follows

$$
W^{\mu} \rightarrow U W^{\mu} U^{-1}-\frac{i}{g} U\left(\partial^{\mu} U^{-1}\right)
$$

Non-abelian gauge theories (2)

$\%$ Transformations: $\quad \psi(x) \rightarrow \exp \left[\operatorname{ig} \alpha^{k}(x) T^{k}\right] \psi(x)$

$$
D^{\mu} \rightarrow U D^{\mu} U^{-1}
$$

$$
W^{\mu} \rightarrow U W^{\mu} U^{-1}-\frac{i}{g} U\left(\partial^{\mu} U^{-1}\right)
$$

Generalisation of the QED field strength tensor $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=-\frac{i}{e}\left[D^{\mu}, D^{\nu}\right]$
to $\quad W^{\mu \nu} \equiv-\frac{i}{g}\left[D^{\mu}, D^{\nu}\right]$
Since $D^{\mu} \psi=\left(\partial^{\mu}+i g W^{\mu}\right) \psi \quad$ it follows $W^{\mu \nu}=\partial^{\mu} W^{\nu}-\partial^{\nu} W^{\mu}+i g\left[W^{\mu}, W^{\nu}\right]$
and from $W^{\mu}=W^{\mu, k} T^{k}$

$$
\Rightarrow W^{\mu \nu, k}=\partial^{\mu} W^{\nu, k}-\partial^{\nu} W^{\mu, k}-g f^{i j k} W^{\mu, i} W^{\nu, j}
$$

$\%$ Transformation of the field tensor: $\quad W^{\mu \nu} \rightarrow U W^{\mu \nu} U^{-1}$
The kinetic term $-\frac{1}{4} W_{\mu \nu}^{k} W^{\mu \nu, k}=-\frac{1}{2} \operatorname{Tr}\left[W_{\mu \nu} W^{\mu \nu}\right]$ is then gauge invariant and hence the Lagrangian

$$
\mathscr{L}_{Y M}=\bar{\psi}(i D-m) \psi-\frac{1}{2} \operatorname{Tr}\left[W_{\mu \nu} W^{\mu \nu}\right] \quad \text { is also gauge invariant }
$$

General features of non-abelian gauge theories

* $N^{2}-1$ generators of the $\mathrm{SU}(\mathrm{N})$ symmetry group $\rightarrow N^{2}-1$ gauge fields
* Similarly to QED, the interaction of gauge fields with fermion fields is given by the $-g \bar{\psi} \gamma^{\mu} T^{k} W_{\mu}^{k} \psi$ term in the Lagrangian
\% New types of interaction in comparison with an abelian theory: from- $\frac{1}{4} W_{\mu \nu}^{k} W^{\mu \nu, k}$ with $W^{\mu \nu, k}=\partial^{\mu} W^{\nu, k}-\partial^{\nu} W^{\mu, k}-g f^{i j k} W^{\mu, i} W^{\nu, j}$ follow terms that are cubic and quartic in gauge boson fields \rightarrow gauge bosons interact with each other
\% Gauge bosons are massless since the term $W_{\mu}^{k} W^{\mu, k}$ is not invariant under local gauge transformations
\because Gauge invariance fixes the strength of the gauge boson self-interactions and interactions with the fermion fields in terms of a single parameter g

QCD Lagrangian

\therefore The kinetic part for the gluon field

$$
\mathscr{L}_{G}=-\frac{1}{4} F_{\mu \nu}^{k} F^{\mu \nu, k} \quad F^{\mu \nu, k}=\partial^{\mu} A^{\nu, k}-\partial^{\nu} A^{\mu, k}-g_{s} f^{i j k} A^{\mu, i} A^{\nu, j}
$$

carries information about triple and quartic gluon self-interactions.
\% Altogether, summing over flavours

$$
\begin{aligned}
\mathscr{L}_{Q C D}=\sum_{f} & \bar{\psi}^{(f)}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) \psi^{(f)} \\
& -\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
& -g_{s} \bar{\psi}(f) \gamma^{\mu} T^{a} A_{\mu}^{a} \psi(f) \\
& -\frac{1}{2} g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu, b} A^{\nu, c} \\
& -\frac{1}{4} g_{s}^{2} f_{a b c} A^{\mu, b} A^{\nu, c} f_{a d e} A_{\mu}^{d} A_{\nu}^{e}
\end{aligned}
$$

Feynman rules

$$
\infty \infty
$$

QCD Lagrangian

\therefore The kinetic part for the gluon field

$$
\mathscr{L}_{G}=-\frac{1}{4} F_{\mu \nu}^{k} F^{\mu \nu, k} \quad F^{\mu \nu, k}=\partial^{\mu} A^{\nu, k}-\partial^{\nu} A^{\mu, k}-g_{s} f^{i j k} A^{\mu, i} A^{\nu, j}
$$

carries information about triple and quartic gluon self-interactions.
\% Altogether, summing over flavours
Feynman rules

$$
\mathscr{L}_{Q C D}=\left[\begin{array}{l}
\sum_{f} \bar{\psi}^{(f)}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) \psi^{(f)} \\
-\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
-g_{s} \bar{\psi}(f) \gamma^{\mu} T^{a} A_{\mu}^{a} \psi(f) \\
-\frac{1}{2} g_{s}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right) f_{a b c} A^{\mu, b} A^{\nu, c} \\
-\frac{1}{4} g_{s}^{2} f_{a b c} A^{\mu, b} A^{\nu, c} f_{a d e} A_{\mu}^{d} A_{\nu}^{e}
\end{array}\right.
$$

$$
-2
$$

ene

Electroweak (EW) theory

* Quantum field theory of electromagnetic and weak interactions
* based on principle of gauge symmetry

* with massive weak gauge bosons (weak interactions ~ short range) but massless photons, as well as massive fermions
* able to describe flavour-changing processes
$* \beta$-decay (where weak interactions discovered)
$n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e} \quad \rightarrow$ at the quark level $\quad d \rightarrow u+e^{-}+\bar{\nu}_{e}$
* with weak interactions chiral and maximally parity violating (Lee and Young'56, Wu'57): charged currents only involving left-handed particles (right-handed antiparticles)
(Nobel Prize 1957)
\% neutral current weak processes (discovered after the EW Standard Model was proposed -> prediction of the theory)

Chiral fermions

$\%$ Chirality operator γ_{5}

$$
\gamma_{5}=-\frac{i}{4} \epsilon_{\mu \nu \lambda \rho} \gamma^{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\rho}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \quad \gamma_{5}^{2}=1 \quad \gamma_{5}^{\dagger}=\gamma_{5} \quad\left\{\gamma_{5}, \gamma_{\mu}\right\}=0
$$

\because Chirality projectors

$$
\begin{gathered}
P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right) \quad P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) \\
P_{L / R}^{2}=P_{L / R} \quad P_{R} P_{L}=P_{L} P_{R}=0 \quad P_{L}+P_{R}=1
\end{gathered}
$$

\% Left- (right-) handed fermions

$$
\psi_{L}=P_{L} \psi \quad \psi_{R}=P_{R} \psi \quad \psi=\psi_{L}+\psi_{R} \quad \bar{\psi}_{L / R}=\bar{\psi} P_{R / L}
$$

\therefore For massless particles chirality is equivalent to helicity (projection of direction of spin on the direction of motion)

Right-handed

Gauge group structure

* At the time (beginning '60s), only weak charged currents and EM current known $\rightarrow 3$ particles as force carriers \rightarrow 3 generators of $\mathrm{SU}(2)$?
\% Problem: the generators corresponding to these currents do not form a closed algebra
\% Solution: close the $\mathrm{SU}(2)$ algebra with an additional generator, corresponding to a new gauge field, mediating neutral currents, and add an extra $\mathrm{U}(1)$ group (Glashow'61)

$$
S U(2) \times U(1)
$$

$\mathrm{SU}(2) \mathrm{xU}(1)$: fermion field transformations

\% Matter content (only 1st generation leptons for now):

| Left-handed fermions: | $\psi_{L}=\binom{\nu_{L}}{e_{L}}$ | $\bar{\psi}_{L}=\left(\bar{\nu}_{L}, \bar{e}_{L}\right)$ |
| :--- | :---: | :---: |\quad weak isospin doublet

$\%$ In the original Standard Model only ν_{L} (in accordance with observations) and neutrinos massless (though it is known now they are massive \rightarrow see lectures by G. Barenboim)
\% $\mathrm{SU}(2) \mathrm{xU}(1)$ transformations

$$
\begin{aligned}
& \psi_{L} \rightarrow \exp \left(i \theta^{k} T^{k}+i \beta Y\right) \psi_{L} \\
& \mathrm{SU}(2) \text { generator } \mathrm{U}(1) \text { generator }
\end{aligned}
$$

$$
e_{R} \rightarrow \exp (i \beta Y) e_{R}
$$

under $\mathrm{SU}(2) \quad e_{R} \rightarrow e_{R}$

$\mathrm{SU}(2) \mathrm{xU}(1)$: covariant derivatives

\% Covariant derivatives

$$
\begin{array}{cc}
D_{\mu} \psi_{L}=\left(\partial_{\mu}+i g T^{k} W_{\mu}^{k}+i \frac{g^{\prime}}{2} Y B_{\mu}\right) \psi_{L} & D_{\mu} e_{R}=\left(\partial_{\mu}+i \frac{g^{\prime}}{2} Y B_{\mu}\right) e_{R} \\
W_{\mu}^{k}: \text { three gauge vector bosons of } \mathrm{SU}(2) & B_{\mu}: \text { gauge vector boson of } \mathrm{U}(1) \\
g: \text { coupling constant of } \mathrm{SU}(2) & g^{\prime}: \text { coupling constant of } \mathrm{U}(1)
\end{array}
$$

\because Fermionic part of the $\mathrm{SU}(2) \mathrm{xU}(1)$ Lagrangian for the 1st generation leptons

$$
\mathscr{L}_{\mathrm{lep}, 1}=\bar{\psi}_{L} i \gamma^{\mu}\left(D_{\mu} \psi_{L}\right)+\bar{e}_{R} i \gamma^{\mu}\left(D_{\mu} e_{R}\right)
$$

\% Currents

$$
\mathrm{SU}(2): \quad J_{\mu}^{k}=\bar{\psi}_{L} \gamma_{\mu} T^{k} \psi_{L}
$$

$$
\mathrm{U}(1): \quad J_{\mu}=\bar{e}_{R} \gamma_{\mu} Y e_{R}+\bar{\psi}_{L} \gamma_{\mu} Y \psi_{L}
$$

$\mathrm{SU}(2) \mathrm{xU}(1)$: currents

\therefore Currents $\mathrm{SU}(2): \quad J_{\mu}^{k}=\bar{\psi}_{L} \gamma_{\mu} T^{k} \psi_{L} \quad \mathrm{U}(1): \quad J_{\mu}=\bar{e}_{R} \gamma_{\mu} Y e_{R}+\bar{\psi}_{L} \gamma_{\mu} Y \psi_{L}$

$$
\begin{gathered}
T^{k}=\frac{\sigma^{k}}{2}, \text { hence } \quad J_{\mu}^{1}=\frac{1}{2}\left(\bar{\nu}_{L} \gamma^{\mu} e_{L}+\bar{e}_{L} \gamma_{\mu} \nu_{L}\right) \quad J_{\mu}^{2}=\frac{i}{2}\left(-\bar{\nu}_{L} \gamma^{\mu} e_{L}+\bar{e}_{L} \gamma_{\mu} \nu_{L}\right) \\
J_{\mu}^{3}=\frac{1}{2}\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}-\bar{e}_{L} \gamma_{\mu} e_{L}\right)
\end{gathered}
$$

\% Observe $\quad J_{\mu}^{+} \equiv J_{\mu}^{1}+i J_{\mu}^{2}=\bar{\nu}_{L} \gamma_{\mu} e_{L} \quad J_{\mu}^{-} \equiv J_{\mu}^{1}-i J_{\mu}^{2}=\bar{e}_{L} \gamma_{\mu} \nu_{L} \quad$ physical charged currents

* Additionally

$$
J_{\mu}^{\mathrm{EM}}=-\bar{e} \gamma_{\mu} e=-\bar{e}_{L} \gamma_{\mu} e_{L}-\bar{e}_{R} \gamma_{\mu} e_{R}
$$

$\%$ Note $2\left(J_{\mu}^{\mathrm{EM}}-J_{\mu}^{3}\right)=-\bar{e}_{L} \gamma_{\mu} e_{L}-\bar{\nu}_{L} \gamma_{\mu} \nu_{L}-2 \bar{e}_{R} \gamma_{\mu} e_{R} \quad$ and identify it as a current corresponding to $\mathrm{U}(1)$ symmetry \rightarrow weak hypercharge current

$$
J_{\mu}^{Y} \equiv 2\left(J_{\mu}^{\mathrm{EM}}-J_{\mu}^{3}\right)
$$

$\mathrm{SU}(2) \mathrm{xU}(1)$: quantum numbers

- EW SM symmetry group

$$
\begin{aligned}
& \qquad S U(2)_{L} \times U(1)_{Y} \\
& \text { weak isospin weak hypercharge }
\end{aligned}
$$

$\%$ Weak isospin and hypercharge quantum numbers are related by $Q=T^{3}+\frac{1}{2} Y$

	T	T^{3}	Q	Υ
ν_{L}	$1 / 2$	$1 / 2$	0	-1
e_{L}	$1 / 2$	$-1 / 2$	-1	-1
e_{R}	0	0	-1	-2

\because The definition of J_{μ}^{Y} in terms of $J_{\mu}^{\mathrm{EM}}-J_{\mu}^{3}$ and the resulting relation $Q=T^{3}+\frac{1}{2} Y$ are not unique; the factor of 2 can be rescaled with the assigned Y values rescaled accordingly

Charged current interactions

\%Covariant derivative with $T^{k}=\frac{\sigma^{k}}{2}$

$$
D_{\mu} \psi_{L}=\left(\partial_{\mu}+i g T^{k} W_{\mu}^{k}+i \frac{g^{\prime}}{2} Y B_{\mu}\right) \psi_{L}=\left[\partial_{\mu}+i \frac{g}{\sqrt{2}}\left(\begin{array}{cc}
0 & W_{\mu}^{-} \\
W_{\mu}^{+} & 0
\end{array}\right)+\frac{i}{2}\left(\begin{array}{cc}
g W_{\mu}^{3}+g^{\prime} Y B_{\mu} & 0 \\
0 & -g W_{\mu}^{3}+g^{\prime} Y B_{\mu}
\end{array}\right)\right] \psi_{L}
$$

where $W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \pm i W_{\mu}^{2}\right)$
$\therefore \mathscr{L}_{\text {lep }, 1}=\bar{\psi}_{L} i \gamma^{\mu}\left(D_{\mu} \psi_{L}\right)+\bar{e}_{R} i \gamma^{\mu}\left(D_{\mu} e_{R}\right)$

$$
D_{\mu} e_{R}=\left(\partial_{\mu}+i \frac{g^{\prime}}{2} Y B_{\mu}\right) e_{R}
$$

will then contain the charged current part

$$
\begin{aligned}
\mathscr{L}_{\text {lep,CC }} & =-\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{\nu}_{L} \gamma^{\mu} e_{L}-\frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{e}_{L} \gamma^{\mu} \nu_{L}=-\frac{g}{\sqrt{2}} W_{\mu}^{-} J^{+, \mu}-\frac{g}{\sqrt{2}} W_{\mu}^{+} J^{-, \mu} \\
\mathscr{L}_{\text {lep,NC }} & =-\frac{g}{2} W_{\mu}^{3}\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}-\bar{e}_{L} \gamma^{\mu} e_{L}\right)-\frac{g^{\prime}}{2} B_{\mu}\left[Y_{L}\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}+\bar{e}_{L} \gamma^{\mu} e_{L}\right)+Y_{R} \bar{e}_{R} \gamma^{\mu} e_{R}\right] \\
& =-g W_{\mu}^{3} J^{3, \mu}-\frac{g^{\prime}}{2} B_{\mu} J^{Y, \mu}
\end{aligned}
$$

Unlike the photon, W_{μ}^{3} and B_{μ} both couple to neutrinos

Neutral current interactions

\because One can rotate the fields W_{μ}^{3} and B_{μ} using the weak mixing angle

$$
W_{\mu}^{3}=\sin \theta_{W} A_{\mu}+\cos \theta_{W} Z_{\mu} \quad B_{\mu}=\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu}
$$

\% After rotation

$$
\begin{aligned}
\mathscr{L}_{\text {lep }, \mathrm{NC}} & =\left(-g \sin \theta_{W} J^{3, \mu}-\frac{g^{\prime}}{2} \cos \theta_{W} J^{Y, \mu}\right) A_{\mu}+\left(-g \cos \theta_{W} J^{3, \mu}+\frac{g^{\prime}}{2} \sin \theta_{W} J^{Y, \mu}\right) Z_{\mu} \\
& =\left(-\frac{g}{2} \sin \theta_{W}+\frac{g^{\prime}}{2} \cos \theta_{W}\right) \bar{\nu}_{L} \gamma^{\mu} \nu_{L} A_{\mu}+\left(\frac{g}{2} \sin \theta_{W}+\frac{g^{\prime}}{2} \cos \theta_{W}\right) \bar{e}_{L} \gamma^{\mu} e_{L} A_{\mu}+\ldots
\end{aligned}
$$

hence $\frac{g}{2} \sin \theta_{W}-\frac{g^{\prime}}{2} \cos \theta_{W}=0$ and $\frac{g}{2} \sin \theta_{W}+\frac{g^{\prime}}{2} \cos \theta_{W}=e$

$$
\tan \theta_{W}=\frac{g^{\prime}}{g} \quad g \sin \theta_{W}=e
$$

\because With these relations and $J_{\mu}^{3}+\frac{1}{2} J_{\mu}^{Y}=J_{\mu}^{E M}$

$$
\mathscr{L}_{\text {lep, NC }}=-e J^{\mathrm{EM}, \mu} A_{\mu}-\frac{g}{\cos \theta_{W}}\left(J^{3, \mu}-\sin ^{2} \theta_{W} J^{\mathrm{EM}, \mu}\right) Z_{\mu}=\mathrm{QED} \text { inter. }-\frac{g}{2 \cos \theta_{W}}\left[\bar{\tau} \gamma^{\mu}\left(\frac{1}{2}-\frac{1}{2} \gamma_{5}\right) \nu-\bar{e} \gamma^{\mu}\left(-\frac{1}{2}+2 \sin ^{2} \theta_{W}+\frac{1}{2} \gamma_{5}\right) e\right] Z_{\mu}
$$

Lepton interactions, Feynman rules

* Charged current

* Neutral current

Gauge fields interactions

* Lagrangian of the gauge bosons

$$
\mathscr{L}_{\text {gauge }}=-\frac{1}{4} W_{\mu \nu}^{k} W^{\mu \nu, k}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

with the field strength tensors $F^{\mu \nu}=\partial^{\mu} B^{\nu}-\partial^{\nu} B^{\mu}$ and $W_{\mu \nu}^{i}=\partial_{\mu} W_{\nu}^{i}-\partial_{\nu} W_{\mu}^{i}-g \epsilon^{i j k} W_{\mu}^{j} W_{\nu}^{k}$

Non-abelian structure of $S U(2) \rightarrow W^{i}$ interactions
\% Express the Lagrangian in terms of physical fields

$$
W_{\mu}^{3}=\sin \theta_{W} A_{\mu}+\cos \theta_{W} Z_{\mu} \quad B_{\mu}=\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu}
$$

\therefore cubic gauge boson self couplings: $A W^{+} W^{-}, Z W^{+} W^{-}$
\% quartic couplings: $A A W^{+} W^{-}, A Z W^{+} W^{-}, Z Z W^{+} W^{-}, W^{+} W^{-} W^{+} W^{-}$

Gauge boson self-interactions, Feynman rules

$$
\begin{aligned}
& i g^{2}\left(2 g_{\mu \rho} g_{\nu \sigma}-g_{\mu \nu} g_{\rho \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
& i g^{2} \cos ^{2} \theta_{W}\left(2 g_{\mu \nu} g_{\rho \sigma}-g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
& i g^{2} \sin ^{2} \theta_{W}\left(2 g_{\mu \nu} g_{\rho \sigma}-g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \\
& i g^{2} \cos \theta_{W} \sin \theta_{W}\left(2 g_{\mu \nu} g_{\rho \sigma}-g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right)
\end{aligned}
$$

Towards EW SM

\therefore So far, we have built an $\mathrm{SU}(2) \times \mathrm{U}(1)$ theory, BUT with massless gauge bosons and massless fermions - both $W_{\mu}^{i} W^{i, \mu}$ and $\bar{\psi} \psi=\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}$ terms are not gauge invariant, so cannot be present in the Lagrangian
: Solution (Brout, Englert'64, Higgs'64, Guralnik, Hagen, Kibble'64): spontaneous symmetry breaking -> Higgs, or Brout-Englert-Higgs (BEH), mechanism (Nobel Prize 2013)
\% application (Weinberg'67, Salam'68) to the $\mathrm{SU}(2) \mathrm{xU}(1)$ model (Glashow'61) renders EW SM (Nobel Prize 1979)
\therefore Generally speaking, the equations (Lagrangian) obey a symmetry while the solutions (ground state of the system) don't -> "symmetry broken by vacuum"

Abelian Higgs model

* A simpler model with $\mathrm{U}(1)$ local gauge symmetry with one complex scalar field

$$
\begin{array}{rrr}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-V(\phi) & D_{\mu} \phi=\partial_{\mu}+i g A_{\mu} \\
V(\phi)=-\mu^{2} \phi^{*} \phi+\lambda\left(\phi^{*} \phi\right)^{2} & \lambda>0
\end{array}
$$

$$
\lambda>0 \text { (potential bounded from below) }
$$

invariant under $\phi(x) \rightarrow e^{i \alpha(x)} \phi(x)$

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\frac{1}{g} \partial_{\mu} \alpha(x)
$$

Potential $V(\phi)$ as a function of the field $\phi(x)=\frac{1}{\sqrt{2}}\left(\phi_{1}(x)+i \phi_{2}(x)\right)$:

Abelian Higgs model

* A simpler model with $\mathrm{U}(1)$ local gauge symmetry with one complex scalar field

$$
\begin{array}{rrr}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-V(\phi) & D_{\mu} \phi=\partial_{\mu}+i g A_{\mu} \\
V(\phi)=-\mu^{2} \phi^{*} \phi+\lambda\left(\phi^{*} \phi\right)^{2} & \lambda>0
\end{array}
$$

$\lambda>0$ (potential bounded from below)
invariant under $\phi(x) \rightarrow e^{i \alpha(x)} \phi(x)$

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\frac{1}{g} \partial_{\mu} \alpha(x)
$$

Potential $V(\phi)$ as a function of the field $\phi(x)=\frac{1}{\sqrt{2}}\left(\phi_{1}(x)+i \phi_{2}(x)\right)$:

$$
\mu^{2}<0
$$

exact symmetry unique minimum

$$
\phi^{*} \phi=0 \Rightarrow|\phi|=0
$$

broken, or "hidden" symmetry circle of degenerate minima

$$
\phi^{*} \phi=\frac{\mu^{2}}{2 \lambda} \Rightarrow|\phi|=\sqrt{\frac{\mu^{2}}{2 \lambda}}
$$

symmetry is broken by the system

$$
\mu^{2}>0
$$

Abelian Higgs model

* A simpler model with $\mathrm{U}(1)$ local gauge symmetry with one complex scalar field

$$
\begin{array}{rrr}
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-V(\phi) & D_{\mu} \phi=\partial_{\mu}+i g A_{\mu} \\
V(\phi)=-\mu^{2} \phi^{*} \phi+\lambda\left(\phi^{*} \phi\right)^{2} & \lambda>0
\end{array}
$$

$\lambda>0$ (potential bounded from below)
invariant under $\phi(x) \rightarrow e^{i \alpha(x)} \phi(x)$

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\frac{1}{g} \partial_{\mu} \alpha(x)
$$

Potential $V(\phi)$ as a function of the field $\phi(x)=\frac{1}{\sqrt{2}}\left(\phi_{1}(x)+i \phi_{2}(x)\right)$

$$
\mu^{2}<0
$$

exact symmetry
unique minimum
vacuum expectation value $\langle\phi\rangle=0$

broken, or "hidden" symmetry circle of degenerate minima

$$
|\langle\phi\rangle|=\sqrt{\frac{\mu^{2}}{2 \lambda}} \equiv \frac{v}{\sqrt{2}}
$$

Abelian Higgs model (2)

\because Field redefinition: expansion around (chosen, without loss of generality) minimum $\phi_{0}=\frac{v}{\sqrt{2}}$
$\phi(x)=\frac{1}{\sqrt{2}}(v+\rho(x)) e^{i \xi(x) / v}=\frac{1}{\sqrt{2}}(v+\rho(x)+i \xi(x)+\ldots)$
$\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*}\left(D^{\mu} \phi\right)-V(\phi) \quad V(\phi)=-\mu^{2} \phi^{*} \phi+\lambda\left(\phi^{*} \phi\right)^{2}$
\therefore Potential becomes $V(\phi)=\frac{-\mu^{4}}{4 \lambda}+\mu^{2} \rho^{2}+\mathcal{O}\left(\rho^{3}\right)$
\because mass term for the scalar ρ with $m_{\rho}^{2}=2 \mu^{2}=2 \lambda v^{2}$, no mass term for the scalar ξ

\because Interpretation: ρ corresponds to radial excitations \rightarrow curvature of potential \rightarrow massive particle ξ corresponds to tangential excitations \rightarrow flat direction \rightarrow no mass term for the would-be Goldstone boson mode (massless Goldstone bosons appear as a result of spontaneous breaking of continuous global symmetries)

....or alternatively...

(picture/idea credit: A. Pich)

symmetric food configuration: both carrots are identical but one needs to be chosen first...

... thankfully other carrots can be reached with no effort...

Abelian Higgs model (3)

$\%$ Field redefinition: expansion $\phi(x)=\frac{1}{\sqrt{2}}(v+\rho(x)) e^{i \xi(x) / v}=\frac{1}{\sqrt{2}}(v+\rho(x)+i \xi(x)+\ldots)$
. Kinetic term $\left(D_{\mu} \phi\right)^{}\left(D^{\mu} \phi\right)=\frac{1}{2}\left(\partial_{\mu} \rho\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2}+\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}+g v A_{\mu} \partial^{\mu} \xi+$ interaction terms

* suggests massive gauge boson A with $m_{A}^{2}=g^{2} v^{2}$!
\% quadratic mixing term $g v A_{\mu} \partial^{\mu} \xi$: quadratic terms not diagonalized, cannot read off particle spectrum
* Degrees of freedom:
\% 4 for unbroken symmetry (2 scalars +2 polarisation of a massless photon) so apparent mismatch after symmetry breaking (3 polarisations of a massive photon +2 scalars)
$\%$ one field must be unphysical such that it is not counted as an independent d.o.f. -> would-be Goldstone boson mixes with photon, giving rise to photon's longitudinal polarisation

Abelian Higgs model (4)

\% In fact, the field ξ can be transformed away using the following gauge transformation, called unitary gauge

$$
\phi(x) \rightarrow \phi^{\prime}(x)=e^{(-i \xi(x) / v)} \phi(x)=\frac{1}{\sqrt{2}}(v+\rho(x))
$$

$$
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)-\frac{1}{g \nu} \partial_{\mu} \xi(x)
$$

* In this gauge (dropping primes)

$$
\mathscr{L}=-\frac{1}{4} F \mu \nu F^{\mu \nu}+\frac{1}{2}\left(\partial_{\mu} \rho\right)^{2}+\frac{1}{2} g^{2} v^{2} A_{\mu} A^{\mu}-\mu^{2} \rho^{2}+\frac{1}{2} g^{2} A \mu A^{\mu} \rho^{2}+g^{2} v A_{\mu} A^{\mu} \rho-\lambda v \mu \rho^{3}-\frac{\lambda}{4} \rho^{4}+\frac{1}{4} \mu^{2} v^{2}
$$

* ρ is a massive scalar field with $m_{\rho}^{2}=2 \mu^{2}=2 \lambda v^{2} \rightarrow$ BEH field
* Photon acquired mass $m_{A}^{2}=g^{2} v^{2}$. No mixing term, no other terms containing ξ.

* In a spontaneously broken gauge theory gauge bosons acquire mass and the would-be Goldstone bosons' degrees of freedom are used for transition from massless to massive gauge bosons $->$ they are "eaten" by gauge bosons

BEH mechanism for $\mathrm{SU}(2) \mathrm{xU}(1)$

\% Introduce an SU(2) doublet of complex scalar fields

$$
\begin{gathered}
\Phi=\binom{\phi^{+}}{\phi^{0}}=\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+\phi_{4}}
\end{gathered} \begin{gathered}
\text { transforming as } \quad \Phi \rightarrow \exp \left(i \theta^{k} T^{k}+i \beta Y\right) \Phi \\
\mathscr{L}_{\Phi}=\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi-V(\Phi)
\end{gathered}
$$

construct

$$
D_{\mu} \Phi=\left(\partial_{\mu}+i g T^{k} W_{\mu}^{k}+\frac{i}{2} g^{\prime} B_{\mu}\right) \Phi \quad V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \quad(\lambda>0)
$$

$$
\mathscr{L}_{\Phi}=\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

BEH mechanism for $\mathrm{SU}(2) \mathrm{xU}(1)$

\therefore Introduce an $\mathrm{SU}(2)$ doublet of complex scalar fields

$$
\begin{gathered}
\Phi=\binom{\phi^{+}}{\phi^{0}}=\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+\phi_{4}} \quad \begin{array}{c}
\text { transforming as } \quad \Phi \rightarrow \exp \left(i \theta^{k} T^{k}+i \beta Y\right) \Phi \\
\mathscr{L}_{\Phi}=\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi-V(\Phi)
\end{array} .
\end{gathered}
$$

construct

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \quad(\lambda>0)
$$

$$
\mathscr{L}_{\Phi}=\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi+\mu^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

*Spontaneous symmetry breaking when $\mu^{2}>0$, then minima of the potential at $\Phi^{\dagger} \Phi=\frac{\mu^{2}}{2 \lambda}=\frac{v^{2}}{2}$
. Selecting a particular vacuum state breaks the symmetry. Choose $\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}$.

BEH mechanism for $\mathrm{SU}(2) \mathrm{xU}(1)$

$$
\Phi=\binom{\phi^{+}}{\phi^{0}} \quad \Rightarrow \text { with } Q=T^{3}+\frac{1}{2} Y, \quad Y\left(\phi^{+}\right)=Y\left(\phi^{0}\right)=1
$$

and

$$
Q=\frac{1}{2} \sigma^{3}+\frac{1}{2} I=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

$\%$ Under $U(1)_{\text {EM }}$

$$
\langle\Phi\rangle \rightarrow e^{(i \alpha Q)}\langle\Phi\rangle \simeq\langle\Phi\rangle+i \alpha Q\langle\Phi\rangle
$$

\therefore For $\langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{v} \quad Q\langle\Phi\rangle=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \frac{1}{\sqrt{2}}\binom{0}{v}=\binom{0}{0} \quad$ and $\quad\langle\Phi\rangle \rightarrow\langle\Phi\rangle$
\% Invariance of the vacuum under $\mathrm{U}(1)$ of electromagnetism $\Rightarrow U(1)_{\mathrm{EM}}$ symmetry preserved

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{\mathrm{EM}}
$$

BEH mechanism for $\mathrm{SU}(2) \mathrm{xU}(1)$

\because Parametrize Φ around chosen minimum $\Phi=\frac{1}{\sqrt{2}} \exp \left(\frac{i}{2} \theta^{k} T^{k}\right)\binom{0}{v+H}$
\% In the unitary gauge $\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H}$

$$
D_{\mu} \Phi=\left(\partial_{\mu}+i g T^{k} W_{\mu}^{k}+\frac{i}{2} g^{\prime} B_{\mu}\right) \Phi=\frac{1}{\sqrt{2}}\left[\partial_{\mu}+i \frac{g}{\sqrt{2}}\left(\begin{array}{cc}
W_{\mu}^{3} / \sqrt{2} & W_{\mu}^{-} \\
W_{\mu}^{+} & -W_{\mu}^{3} / \sqrt{2}
\end{array}\right)+\frac{i}{2} g^{\prime} B_{\mu}\right]\binom{0}{v+H}
$$

$\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{g^{2} v^{2}}{4} W^{+, \mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)\left(g W_{\mu}^{3}-g^{\prime} B^{\mu}\right)+$ interaction terms
\because Remember mixing $W_{\mu}^{3}=\sin \theta_{W} A_{\mu}+\cos \theta_{W} Z_{\mu} \quad B_{\mu}=\cos \theta_{W} A_{\mu}-\sin \theta_{W} Z_{\mu} \quad \tan \theta_{W}=$
$\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{g^{2} v^{2}}{4} W^{+, \mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g^{2}+g^{2}\right) Z_{\mu} Z^{\mu}+$ interaction terms

BEH mechanism for $\mathrm{SU}(2) \mathrm{xU}(1)$

$$
\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\frac{g^{2} v^{2}}{4} W^{+, \mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g^{2}+g^{2}\right) Z_{\mu} Z^{\mu}+\text { interaction terms }
$$

$\because \mathrm{W}$ and Z bosons acquire mass! $\left(g^{\prime}=g \tan \theta_{W}\right)$

$$
M_{W}=\frac{g v}{2} \quad M_{Z}=\frac{v}{2} \sqrt{g^{2}+g^{\prime 2}}=\frac{g v}{2 \cos \theta_{W}}=\frac{M_{W}}{\cos \theta_{W}} \quad M_{A}=0
$$

* Ratio of M_{W} to M_{Z} is the prediction of the EWSM

* Degrees of freedom

Before SSB

$$
\begin{aligned}
& 4 \times 2+2 \times 2=12=3 \times 3+2+1 \\
& W^{+}, W^{-}, Z \\
& \text { A H } \\
& W^{1,2,3}, B \quad \phi^{+}, \phi^{0}
\end{aligned}
$$

Gauge boson - Higgs interactions

$\because\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi$ also provides trilinear and quadric couplings of the Higgs boson to gauge bosons

$$
\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)=\frac{1}{2} \partial_{\mu} H \partial^{\mu} H+\left[\frac{g^{2} v^{2}}{4} W^{+, \mu} W_{\mu}^{-}+\frac{v^{2}}{8}\left(g^{2}+g^{2}\right) Z_{\mu} Z^{\mu}\right]\left(1+\frac{H}{v}\right)^{2}
$$

* Feynman rules

Higgs self-interactions

$$
\begin{aligned}
& V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2} \quad \Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H} \\
\Rightarrow V(\Phi)=\mu^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}+\text { constant } &
\end{aligned}
$$

* Mass term for the Higgs boson

$$
M_{H}=\sqrt{2} \mu=\sqrt{2 \lambda} v
$$

$\% v$ and M_{H} measured by experiment
($v=246 \mathrm{GeV}, M_{H}=125 \mathrm{GeV}$) \Rightarrow Higgs
self-coupling λ fixed ($\lambda=0.129$)
\% Feynman rules

Fermion masses

$\%$ One more nut to crack: explicit mass terms for fermions break gauge invariance $\bar{\psi} \psi=\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}$
: Introduce gauge-invariant Yukawa terms (now only for the electron)

$$
\mathscr{L}_{\text {Yukawa,e }}=y_{e}\left[\bar{\psi}_{L} \Phi e_{R}+\bar{e}_{R} \Phi^{\dagger} \psi_{L}\right]
$$

\therefore After SSB, in the unitary gauge $\Phi=\frac{1}{\sqrt{2}}\binom{0}{v+H}$ $\mathscr{L}_{\text {Yukawa, } \mathrm{e}}=-y_{e} \frac{v+H}{\sqrt{2}}\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)=-\frac{y_{e}}{\sqrt{2}}(v+H) \bar{e} e=-\frac{y_{e} v}{\sqrt{2}} \bar{e} e-\frac{y_{e}}{\sqrt{2}} \bar{e} e H$
\therefore Mass term for the electron with $m_{e}=\frac{y_{e}}{\sqrt{2}} v$
\%. Yukawa coupling proportional to the electron mass $y_{e}=\sqrt{2} \frac{m_{e}}{v}=\frac{g}{\sqrt{2}} \frac{m_{e}}{M_{W}}$

Weak interactions of quarks

\% So far, only 1 generation of leptons considered
: Extension to three lepton generations in the original EWSM (with massless neutrinos) is a trivial threefold copy of the Lagrangian for the 1st generation leptons

* Extending to 1st generation quarks
\% Matter content

$$
\psi_{q}=\binom{u_{L}}{d_{L}} \quad u_{R}, d_{R}
$$

	T	T^{3}	Q	Y
u_{L}	$1 / 2$	$1 / 2$	$2 / 3$	$1 / 3$
d_{L}	$1 / 2$	$-1 / 2$	$-1 / 3$	$1 / 3$
u_{R}	0	0	$2 / 3$	$4 / 3$
d_{R}	0	0	$-1 / 3$	$-2 / 3$

* Quark masses : need an additional Yukawa term to generate up quark mass
$\mathscr{L}_{\text {Yukawa,d }}=-y_{d} \bar{\psi}_{q} \Phi d_{R}+h . c . \quad$ (analogous to electron)

$$
\begin{aligned}
& \mathscr{L}_{\text {Yukawa,u }}=-y_{d} \bar{\psi}_{q}^{\dagger} \Phi^{c} u_{R}+h \cdot c . \quad \text { with } \Phi^{c} \equiv i \sigma^{2} \Phi^{*} \\
& \mathscr{L}_{\text {Yukawa,u }}=-y_{d} \frac{v+H}{\sqrt{2}}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)
\end{aligned}
$$

Weak interactions of fermions

$\%$ In general, the structure of the Yukawa terms (after SSB) for all generations of quarks $(i, j=1,2,3)$ is

$$
\mathscr{L}_{\text {Yukawa }}=-y_{u}^{i j} \frac{v+H}{\sqrt{2}} \bar{u}_{L}^{i} u_{R}^{j}-y_{d}^{i j} \frac{v+H}{\sqrt{2}} \bar{d}_{L}^{i} d_{R}^{j}+\text { h.c. }=-\sum_{f} \bar{f}_{L} M_{f} f_{R}\left(1+\frac{H}{v}\right)+\text { h.c. }
$$

where $M_{f}^{i j}=y_{f}^{i j} \frac{v}{2}$ is a non-diagonal mass matrix for quarks
: Introduce unitary transformations U_{L}^{f} and U_{R}^{f} rotating the vectors

$$
f_{L}=\left(\begin{array}{l}
f_{L}^{1} \\
f_{L}^{2} \\
f_{L}^{3}
\end{array}\right) \text { and } f_{R}=\left(\begin{array}{l}
f_{R}^{1} \\
f_{R}^{2} \\
f_{R}^{3}
\end{array}\right) \text { in the gauge basis to vectors in the mass basis } f_{L}^{\prime}=\left(\begin{array}{l}
f_{L}^{\prime} 1 \\
f_{L}^{\prime 2} \\
f_{L}^{\prime 3}
\end{array}\right)=U_{L}^{f} f_{L} \quad f_{R}^{\prime}=\left(\begin{array}{l}
f_{R}^{\prime} 1 \\
f_{R}^{\prime 2} \\
f_{R}^{\prime 3}
\end{array}\right)=U_{R}^{f} f_{R}
$$

such that the matrix $M_{f, D}=U_{L}^{f} M_{f}\left(U_{R}^{f}\right)^{\dagger}$ is diagonal
$\Rightarrow \mathscr{L}_{\text {Yukawa }}=-\sum_{f} \bar{f}_{L}\left(U_{L}^{f}\right)^{\dagger} M_{f, D} U_{R}^{f} f_{R}\left(1+\frac{H}{v}\right)+$ h.c. $=-\sum_{f} m_{f}^{k}\left(\bar{f}_{L}^{\prime k} f_{R}^{\prime k}+\bar{f}_{R}^{\prime k} f_{L}^{\prime k}\right)\left(1+\frac{H}{v}\right)+\mathrm{h} . \mathrm{c}$.

Quark sector

\therefore Write the charged quark current in terms of mass eigenstates $u_{L}{ }^{k}$ and $d_{L}{ }^{k}$

$$
\mathscr{L}_{\mathrm{q}, \mathrm{CC}}=-\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{u}_{L}^{j} \gamma^{\mu} d_{L}^{j}-\frac{g}{\sqrt{2}} W_{\mu}^{+} \bar{d}_{L}^{j} \gamma^{\mu} u_{L}^{j}=-\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{u}_{L}^{\prime k}\left(U_{L}^{u}\right)^{k j} \gamma^{\mu}\left(U_{L}^{d \dagger}\right)^{j l} d_{L}^{\prime} l+\mathrm{h} . \mathrm{c} .=-\frac{g}{\sqrt{2}} V_{k l} W_{\mu}^{-} \bar{u}_{L}^{\prime k} \gamma^{\mu} d_{L}^{\prime} l+\mathrm{h} . \mathrm{c} .
$$

where $V_{k l}=\left(U_{L}^{u} U_{L}^{d \dagger}\right)_{k l} \quad$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix
\Rightarrow physical charged currents mix flavours, known as flavour-changing charged currents (FCCC)

* Neutral currents are diagonal in the mass basis \Rightarrow no flavour-changing neutral currents (FCNC) in the SM at tree level
\% CKM matrix provides a source of CP violation in the SM \rightarrow see lectures by A . Lenz

Electroweak (EW) theory

\% What do we want?

* Quantum field theory of electromagnetic and weak interactions
* based on principle of gauge symmetry
$\mathrm{SU}(2) \mathrm{xU}(1)$
\% with massive weak gauge bosons (weak interactions ~ short range) but massless photons, as well as massive fermions
* able to describe flavour-changing processes, e.g. β-decay (where weak interactions discovered) $n \rightarrow p^{+}+e^{-}+\bar{\nu}_{e} \quad \quad->$ at the quark level $\quad d \rightarrow u+e^{-}+\bar{\nu}_{e}$

: with weak interactions chiral and maximally parity violating (Lee and Young'56, Wu'57): charged currents only involving left-handed particles (right-handed antiparticles)
* neutral current weak processes (discovered after the EW Standard Model was proposed -> prediction of the theory)

[^0]: 2023 CERN European School of High Energy Physics, 6.-19. September 2023, Grenaa, Denmark

