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The task ahead ….



The gauge paradigm: QED

✤ The free Dirac field Lagrangian 
                                                            
is invariant under global phase U(1) transformations 
 
                                                                              (  constant phase                )

✤ Under local phase (“gauge”) U(1) transformations  
 
                              ,                                     
 
→ introduce covariant derivative with the transformation rule       
 
so that                        is invariant  
 

fulfilled by                 with a new vector field  transforming as                                                  

ℒDirac = ψ̄(iγμ∂μ − m)ψ

ψ → eiαψ ψ̄ → e−iαψ̄ α = ψ̄ = ψ†γ0

ψ → eiα(x)ψ ψ̄ → e−iα(x)ψ̄ ∂μψ(x) → eiα(x)∂μψ(x) + ieiα(x)∂μα(x) ψ(x)

Dμψ(x) → eiα(x)Dμψ(x)

ℒ = ψ̄(x)(iγμDμ − m)ψ(x)

Dμ ≡ ∂μ + igAμ(x) Aμ(x) Aμ → Aμ −
1
g

∂μα(x)
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The gauge paradigm: QED (2)

✤               is invariant with  
        
                                           
                                                                                                                  
                                                                      interaction piece of the fermion field with a gauge vector (photon) field with 
g the electric charge of the electron

✤ Gauge-invariant  QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field  
 

                                             

   
where   is also invariant under the local phase transformation

✤ Since  not gauge invariant, the term is not allowed → massless photon  

ℒ = ψ̄(x)(iγμDμ − m)ψ(x) Dμ = ∂μ + igAμ(x)

ℒ = ψ̄(x)(iγμ∂μ − m)ψ(x) − gψ̄(x)γμψ(x)Aμ(x)

Aμ(x)

ℒQED = ψ̄(x)(iγμDμ − m)ψ(x) −
1
4

Fμν(x)Fμν(x)

Fμν = ∂μAν − ∂νAμ

AμAμ
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The gauge paradigm: QED (2)

✤               is invariant with  
        
                                           
                                                                                                                  
                                                                      interaction piece of the fermion field with a gauge vector (photon) field with 
g the electric charge of the electron

✤ Gauge-invariant  QED Lagrangian obtained by adding the Maxwell Lagrangian for a vector field  
 

                                             

   
where   is also invariant under the local phase transformation

✤ Since  not gauge invariant, the term is not allowed → massless photon  

ℒ = ψ̄(x)(iγμDμ − m)ψ(x) Dμ = ∂μ + igAμ(x)

ℒ = ψ̄(x)(iγμ∂μ − m)ψ(x) − gψ̄(x)γμψ(x)Aμ(x)

Aμ(x)

ℒQED = ψ̄(x)(iγμDμ − m)ψ(x) −
1
4

Fμν(x)Fμν(x)

Fμν = ∂μAν − ∂νAμ

AμAμ

Gauge principle: invariance of theory 
under local symmetry

Promoting global symmetry to local 
leads to an interacting theory
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Non-abelian gauge theories

✤ Consider now a general case when the local symmetry transformation of fields form a non-abelian group SU(N) 
 
                               with                                               

✤   are the generators of the group SU(N) obeying the group algebra    

✤ In analogy to QED             
and the Lagrangian   is not invariant under the transformation

✤ Way out: introduce             vector gauge fields       
                                               covariant derivative      

✤ Requesting gauge invariance of          means       and  

✤
  It follows                                                 

ψ(x) → U(α(x))ψ(x) U(α(x)) = exp [igαk(x)Tk] k = 1,…, N2 − 1

Tk [Ti, Tj] = if ijkTk

∂μψ(x) → exp [igαk(x)Tk] ∂μψ(x) + ig(∂μαk(x))Tk exp [igαk(x)Tk] ψ(x)
ψ̄(iγμ∂μ − m)ψ

Wμ = Wμ, 1T1 + Wμ, 2T2 + … = Wμ, kTk

Dμψ ≡ (∂μ + igWμ)ψ

ψ̄(iγμDμ − m)ψ Dμψ → UDμψ Dμ → UDμU−1

Wμ → UWμU−1 −
i
g

U(∂μU−1)
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Non-abelian gauge theories (2)

✤
Transformations:                                                           

✤
Generalisation of the QED field strength tensor       to       

 
  Since      it follows      
 
 and from                        

✤ Transformation of the field tensor:     

✤ The kinetic term    is then gauge invariant and hence the Lagrangian 

   

                                                                                   is also gauge invariant     

ψ(x) → exp [igαk(x)Tk] ψ(x) Dμ → UDμU−1 Wμ → UWμU−1 −
i
g

U(∂μU−1)

Fμν = ∂μAν − ∂νAμ = −
i
e

[Dμ, Dν] Wμν ≡ −
i
g

[Dμ, Dν]

Dμψ = (∂μ + igWμ)ψ Wμν = ∂μWν − ∂νWμ + ig [Wμ, Wν]
Wμ = Wμ, kTk ⇒ Wμν, k = ∂μWν, k − ∂νWμ, k − gf ijkWμ, iWν, j

Wμν → UWμνU−1

−
1
4

Wk
μνWμν, k = −

1
2

Tr [WμνWμν]

ℒYM = ψ̄(iD/ − m)ψ −
1
2

Tr [WμνWμν]
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General features of non-abelian gauge theories

✤  generators of the SU(N) symmetry group →  gauge fields

✤ Similarly to QED, the interaction of gauge fields with fermion fields is given by the  term in the 
Lagrangian

✤ New types of interaction in comparison with an abelian theory: from  with 

  follow terms that are cubic and  quartic in gauge boson fields → gauge 
bosons interact with each other

✤ Gauge bosons are massless since the term  is not invariant under local gauge transformations

✤ Gauge invariance fixes the strength of the gauge boson self-interactions and interactions with the fermion fields in 
terms of a single parameter g

N2 − 1 N2 − 1

−g ψ̄γμTkWk
μψ

−
1
4

Wk
μνWμν, k

Wμν, k = ∂μWν, k − ∂νWμ, k − gf ijkWμ, iWν, j

Wk
μWμ, k
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QCD Lagrangian

✤ The kinetic part for the gluon field  

                                                                    

carries information about triple and quartic gluon self-interactions.

✤ Altogether,  summing over flavours                                           Feynman rules 
 

            

ℒG = −
1
4

Fk
μνFμν, k Fμν, k = ∂μAν, k − ∂νAμ, k − gs f ijkAμ, iAν, j

ℒQCD = ∑
f

ψ̄( f ) (iγμ∂μ − mf ) ψ( f )

−(∂μAν − ∂νAμ)2

−gs ψ̄( f )γμTaAa
μψ( f )

−
1
2

gs (∂μAa
ν − ∂νAa

μ) fabcAμ, bAν, c

−
1
4

g2
s fabc Aμ, bAν, c fade Ad

μ Ae
ν

9



v

QCD Lagrangian

✤ The kinetic part for the gluon field  

                                                                    

carries information about triple and quartic gluon self-interactions.

✤ Altogether,  summing over flavours                                           Feynman rules 
 

            

ℒG = −
1
4

Fk
μνFμν, k Fμν, k = ∂μAν, k − ∂νAμ, k − gs f ijkAμ, iAν, j

ℒQCD = ∑
f

ψ̄( f ) (iγμ∂μ − mf ) ψ( f )

−(∂μAν − ∂νAμ)2

−gs ψ̄( f )γμTaAa
μψ( f )

−
1
2

gs (∂μAa
ν − ∂νAa

μ) fabcAμ, bAν, c

−
1
4

g2
s fabc Aμ, bAν, c fade Ad

μ Ae
ν

QED-like

non-abelian
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Electroweak (EW) theory

✤ Quantum field theory of electromagnetic and weak interactions 

✤ based on principle of gauge symmetry

✤ with massive weak gauge bosons (weak interactions ~ short range) but  massless photons, as well as massive 
fermions

✤ able to describe flavour-changing processes

✤ -decay (where weak interactions discovered) 
           -> at the quark level        

✤ with weak interactions chiral and maximally parity violating (Lee and Young’56, Wu’57): charged currents only 
involving left-handed particles (right-handed antiparticles) 

✤ neutral current weak processes (discovered after the EW Standard Model was proposed -> prediction of the theory)

β
n → p+ + e− + ν̄e d → u + e− + ν̄e

(Nobel Prize 1957)



Chiral fermions

✤ Chirality operator  
 

                                 

✤ Chirality projectors 

                                           

                               

✤ Left- (right-) handed fermions 
                               

✤ For massless particles chirality is equivalent to helicity  
(projection of direction of spin on the direction of motion)

γ5

γ5 = −
i
4

ϵμνλργμγνγλγρ = iγ0γ1γ2γ3 γ2
5 = 1 γ†

5 = γ5 {γ5, γμ} = 0

PL =
1
2

(1 − γ5) PR =
1
2

(1 + γ5)

P2
L/R = PL/R PRPL = PLPR = 0 PL + PR = 1

ψL = PL ψ ψR = PR ψ ψ = ψL + ψR ψ̄L/R = ψ̄ PR/L



Gauge group structure 

✤ At the time (beginning ’60s), only weak charged currents and EM current known → 3 particles as force carriers → 
 3 generators of SU(2)?

✤ Problem: the generators corresponding to these currents do not form a closed algebra

✤ Solution: close the SU(2) algebra with an additional generator, corresponding to a new gauge field, mediating 
neutral currents, and add an extra U(1) group (Glashow’61) 
                          
                                                                    SU(2) x U(1)



SU(2)xU(1): fermion field transformations 

✤ Matter content (only 1st generation leptons for now): 
 

Left-handed fermions:                                                weak isospin doublet 

Right-handed fermions:                                                                               singlet under SU(2)

✤ In the original Standard Model only  (in accordance with observations) and neutrinos massless (though it is 
known now they are massive ➜ see lectures by G. Barenboim)

✤ SU(2)xU(1) transformations  
 
                                                                                
 
                              SU(2) generator    U(1) generator                                   under SU(2)       
                                                                                    
                                 

ψL = (νL

eL) ψ̄L = (ν̄L, ēL)

eR, ēR

νL

ψL → exp (iθkTk + iβY) ψL eR → exp(iβY ) eR

eR → eR



SU(2)xU(1): covariant derivatives

✤ Covariant derivatives 

                                                                  

 
                                            :  three gauge vector bosons of SU(2)              : gauge vector boson of U(1)                                                                               
                                             g: coupling constant of  SU(2)                                 : coupling constant of U(1)

✤ Fermionic part of the SU(2)xU(1) Lagrangian for the 1st generation leptons 
 
                                              

✤ Currents 
                               SU(2):                                                               U(1):                      
                            

DμψL = (∂μ + igTkWk
μ + i

g′￼

2
YBμ) ψL DμeR = (∂μ + i

g′￼

2
YBμ) eR

Wk
μ Bμ

g′￼

ℒlep,1 = ψ̄Liγμ (DμψL) + ēRiγμ (DμeR)

Jk
μ = ψ̄LγμTkψL Jμ = ēRγμYeR + ψ̄LγμYψL



✤ Currents    SU(2):                                        U(1):       
 

hence                                             

                                                                       

✤ Observe                         physical charged currents 

✤ Additionally                         

✤ Note      and identify it as a current corresponding to U(1) symmetry → 
weak hypercharge current 
                                                                               
                   

Jk
μ = ψ̄LγμTkψL Jμ = ēRγμYeR + ψ̄LγμYψL

Tk =
σk

2
, J1

μ =
1
2 (ν̄LγμeL + ēLγμνL) J2

μ =
i
2 (−ν̄LγμeL + ēLγμνL)

J3
μ =

1
2 (ν̄LγμνL − ēLγμeL)

J+
μ ≡ J1

μ + iJ2
μ = ν̄LγμeL J−

μ ≡ J1
μ − iJ2

μ = ēLγμνL

JEM
μ = − ēγμe = − ēLγμeL − ēRγμeR

2(JEM
μ − J3

μ) = − ēLγμeL − ν̄LγμνL − 2ēRγμeR

JY
μ ≡ 2(JEM

μ − J3
μ)

SU(2)xU(1): currents



✤ EW SM symmetry group 
                                                                                        
                                                                            weak isospin   weak hypercharge

✤ Weak isospin and hypercharge quantum numbers  are related by  

 
 
 
 
 

✤ The definition of  in terms of   -   and the resulting relation  are not unique;  the factor of 2 can be rescaled 

with the assigned Y values rescaled accordingly   

SU(2)L × U(1)Y

Q = T3 +
1
2

Y

JY
μ JEM

μ J3
μ Q = T3 +

1
2

Y

T Q Y

1/2 1/2 0 -1
1/2 -1/2 -1 -1

0 0 -1 -2

νL
eL

eR

SU(2)xU(1): quantum numbers

T3

T3



Charged current interactions

✤ Covariant derivative with  

                               

where 

✤
                                  

 
will then contain the charged current part       

and the neutral current part                                                                                

                                                                                                  

✤ Unlike the photon,  and  both couple to neutrinos

Tk =
σk

2

DμψL = (∂μ + igTkWk
μ + i

g′￼

2
YBμ) ψL = [∂μ + i

g

2 (
0 W−

μ

W+
μ 0 ) +

i
2 (

gW3
μ + g′￼YBμ 0

0 −gW3
μ + g′￼YBμ)] ψL

W±
μ =

1

2 (W1
μ ± iW2

μ)

ℒlep,1 = ψ̄Liγμ (DμψL) + ēRiγμ (DμeR) DμeR = (∂μ + i
g′￼

2
YBμ) eR

ℒlep,CC = −
g

2
W−

μ ν̄LγμeL −
g

2
W+

μ ēLγμνL = −
g

2
W−

μ J+,μ −
g

2
W+

μ J−,μ

ℒlep,NC = −
g
2

W3
μ (ν̄LγμνL − ēLγμeL) −

g′￼

2
Bμ [YL (ν̄LγμνL + ēLγμeL) + YRēRγμeR]

= − gW3
μJ3,μ −

g′￼

2
BμJY,μ

W3
μ Bμ



Neutral current interactions

✤ One can rotate the fields  and  using the weak mixing angle 
                                                                     

✤
After rotation            

                                                 

hence       and    

 

                                                                                                  

✤ With these relations and  

W3
μ Bμ

W3
μ = sin θW Aμ + cos θWZμ Bμ = cos θW Aμ − sin θWZμ

ℒlep,NC = (−g sin θWJ3,μ −
g′￼

2
cos θWJY,μ) Aμ + (−g cos θWJ3,μ +

g′￼

2
sin θWJY,μ) Zμ

= (−
g
2

sin θW +
g′￼

2
cos θW) ν̄LγμνLAμ + ( g

2
sin θW +

g′￼

2
cos θW) ēLγμeLAμ + …

g
2

sin θW −
g′￼

2
cos θW = 0

g
2

sin θW +
g′￼

2
cos θW = e

tan θW =
g′￼

g
g sin θW = e

J3
μ +

1
2

JY
μ = JEM

μ

ℒlep,NC = − eJEM,μAμ −
g

cos θW
(J3,μ − sin2 θWJEM,μ) Zμ = QED inter. −

g
2 cos θW [ν̄γμ ( 1

2
−

1
2

γ5) ν − ēγμ (−
1
2

+ 2 sin2 θW +
1
2

γ5) e] Zμ



Lepton interactions, Feynman rules

✤ Charged current 
 
 

               

✤ Neutral current 
 
 
 
 
 
 

−
ig

2 2
γμ(1 − γ5)

−ieγμ −
ig

2 cos θW
γμ(cl

V − cl
Aγ5)

e
1/2

1/2 -1/2

ν
cl

V
cl

A

−1/2 + 2 sin2 θW



Gauge fields interactions

✤ Lagrangian of the gauge bosons  
 

                                                  

 
with the field strength tensors     and   
 
Non-abelian structure of SU(2) →   interactions

✤ Express the Lagrangian in terms of physical fields 
 
                                                                             

✤ cubic gauge boson self couplings: A W+W-, ZW+W-

✤ quartic couplings: AA W+W- , AZ W+W-,, ZZW+W- , W+W- W+W-  

ℒgauge = −
1
4

Wk
μνWμν,k −

1
4

FμνFμν

Fμν = ∂μBν − ∂νBμ Wi
μν = ∂μWi

ν − ∂νWi
μ − gϵijkWj

μWk
ν

Wi

W3
μ = sin θW Aμ + cos θWZμ Bμ = cos θW Aμ − sin θWZμ



Gauge boson self-interactions, Feynman rules



Towards EW SM

✤ So far, we have built an SU(2) x U(1) theory, BUT with massless gauge bosons and massless fermions — both  
and  terms are not gauge invariant, so cannot be present in the Lagrangian

✤ Solution (Brout, Englert’64, Higgs’64, Guralnik, Hagen, Kibble’64): spontaneous symmetry breaking  -> Higgs, or Brout-
Englert-Higgs (BEH), mechanism (Nobel Prize 2013)

✤ application  (Weinberg’67, Salam’68) to the SU(2)xU(1) model (Glashow’61) renders EW SM (Nobel Prize 1979)

✤ Generally speaking, the equations (Lagrangian) obey a symmetry while the solutions (ground state of the system) 
don’t -> “symmetry broken by vacuum”

Wi
μWi,μ

ψ̄ψ = ψ̄LψR + ψ̄RψL



Abelian Higgs model

✤ A simpler model with U(1) local gauge symmetry with one complex scalar field  

                                                   

                                                                                                (potential bounded from below)                                            
 

invariant under                                   

Potential  as  a function of the field : 

                                                                                                   

ℒ = −
1
4

FμνFμν + (Dμϕ)*(Dμϕ) − V(ϕ) Dμϕ = ∂μ + igAμ

V(ϕ) = − μ2ϕ*ϕ + λ(ϕ*ϕ)2 λ > 0

ϕ(x) → eiα(x)ϕ(x) Aμ(x) → Aμ(x) +
1
g

∂μα(x)

V(ϕ) ϕ(x) =
1

2
(ϕ1(x) + iϕ2(x))



Abelian Higgs model

✤ A simpler model with U(1) local gauge symmetry with one complex scalar field  

                                                   

                                                                                                (potential bounded from below)                                            
 

invariant under                                   

Potential  as  a function of the field : 

                                                                                                    

ℒ = −
1
4

FμνFμν + (Dμϕ)*(Dμϕ) − V(ϕ) Dμϕ = ∂μ + igAμ

V(ϕ) = − μ2ϕ*ϕ + λ(ϕ*ϕ)2 λ > 0

ϕ(x) → eiα(x)ϕ(x) Aμ(x) → Aμ(x) +
1
g

∂μα(x)

V(ϕ) ϕ(x) =
1

2
(ϕ1(x) + iϕ2(x))

μ2 > 0

broken, or “hidden” symmetry
circle of degenerate minima

symmetry is broken by the system 
choosing one of the ground states

ϕ*ϕ =
μ2

2λ
⇒ |ϕ | =

μ2

2λ

μ2 < 0

exact symmetry
unique minimum

ϕ*ϕ = 0 ⇒ |ϕ | = 0



Abelian Higgs model

✤ A simpler model with U(1) local gauge symmetry with one complex scalar field  

                                                   

                                                                                                (potential bounded from below)                                            
 

invariant under                                   

Potential  as  a function of the field  

                                                                                                                  

ℒ = −
1
4

FμνFμν + (Dμϕ)*(Dμϕ) − V(ϕ) Dμϕ = ∂μ + igAμ

V(ϕ) = − μ2ϕ*ϕ + λ(ϕ*ϕ)2 λ > 0

ϕ(x) → eiα(x)ϕ(x) Aμ(x) → Aμ(x) +
1
g

∂μα(x)

V(ϕ) ϕ(x) =
1

2
(ϕ1(x) + iϕ2(x))

exact symmetry
unique minimum

vacuum expectation value ⟨ϕ⟩ = 0

μ2 < 0 μ2 > 0

broken, or “hidden” symmetry
circle of degenerate minima

|⟨ϕ⟩ | =
μ2

2λ
≡

v

2



Abelian Higgs model (2)

✤ Field redefinition: expansion around (chosen, without loss of generality) minimum    
 

 

 

             

✤ Potential becomes 

✤ mass term for the scalar  with ,  no mass term for the  scalar 

✤ Interpretation:  corresponds to radial excitations → curvature of potential → massive particle 
                            corresponds to tangential excitations →  flat direction →  no mass term for the would-be Goldstone boson mode 
                           (massless Goldstone bosons appear as a result of spontaneous breaking of continuous global symmetries )

ϕ(x) =
1

2
(v + ρ(x)) eiξ(x)/v =

1

2
(v + ρ(x) + iξ(x) + …)

ℒ = −
1
4

FμνFμν + (Dμϕ)*(Dμϕ) − V(ϕ) V(ϕ) = − μ2ϕ*ϕ + λ(ϕ*ϕ)2

V(ϕ) =
−μ4

4λ
+ μ2ρ2 + 𝒪(ρ3)

ρ m2
ρ = 2μ2 = 2λv2 ξ

ρ
ξ

ϕ0 =
v

2



….or alternatively…
(picture/idea credit: A. Pich)

…  thankfully other carrots can be  
reached with no effort… 

symmetric food configuration: 
both carrots are identical  

but one needs to be chosen first… 



Abelian Higgs model (3)

✤
Field redefinition: expansion                               

✤ Kinetic term 

✤ suggests massive gauge boson A with   !

✤ quadratic mixing term   : quadratic terms not diagonalized, cannot read off particle spectrum 

✤ Degrees of freedom: 

✤ 4  for unbroken symmetry ( 2 scalars + 2 polarisation of a massless photon) so apparent mismatch after symmetry 
breaking (3 polarisations of a massive photon + 2 scalars) 

✤ one field must be unphysical such that  it is not counted as an independent d.o.f. ->  would-be Goldstone boson 
mixes with photon, giving rise to photon’s longitudinal polarisation

ϕ(x) =
1

2
(v + ρ(x)) eiξ(x)/v =

1

2
(v + ρ(x) + iξ(x) + …)

(Dμϕ)*(Dμϕ) =
1
2

(∂μρ)2 +
1
2

(∂μξ)2 +
1
2

g2v2AμAμ + gvAμ∂μξ + interaction terms

m2
A = g2v2

gvAμ∂μξ



Abelian Higgs model (4)

✤ In fact, the field  can be transformed away using the following gauge transformation, called unitary gauge 

 

✤ In this gauge (dropping primes) 

 

✤  is a massive scalar field with      →  BEH field

✤ Photon acquired  mass  . No mixing term, no other terms containing  . 

✤ In a spontaneously broken gauge theory  gauge bosons acquire mass and the would-be Goldstone bosons’ degrees of 
freedom are used for transition from massless to massive gauge bosons -> they are “eaten” by gauge bosons

ξ

ϕ(x) → ϕ′￼(x) = e(−iξ(x)/v)ϕ(x) =
1

2
(v + ρ(x))

Aμ(x) → A′￼μ(x) = Aμ(x) −
1
gv

∂μξ(x)

ℒ = −
1
4

FμνFμν +
1
2

(∂μρ)2 +
1
2

g2v2AμAμ − μ2ρ2 +
1
2

g2AμAμρ2 + g2vAμAμρ − λvμρ3 −
λ
4

ρ4 +
1
4

μ2v2

ρ m2
ρ = 2μ2 = 2λv2

m2
A = g2v2 ξ

ϕ(x) =
1

2
(v + ρ(x)) eiξ(x)/v



BEH mechanism for SU(2)xU(1)

✤ Introduce an SU(2) doublet of complex scalar fields      
 

                                           transforming as         

   construct                                                                          
     

                                                      

 
                                                                         

Φ = (ϕ+

ϕ0) = (ϕ1 + iϕ2

ϕ3 + ϕ4 ) Φ → exp (iθkTk + iβY) Φ

ℒΦ = (DμΦ)†DμΦ − V(Φ)

DμΦ = (∂μ + igTkWk
μ +

i
2

g′￼Bμ) Φ V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 (λ > 0)

ℒΦ = (DμΦ)†DμΦ + μ2Φ†Φ − λ(Φ†Φ)2



BEH mechanism for SU(2)xU(1)

✤ Introduce an SU(2) doublet of complex scalar fields      
 

                                           transforming as         

   construct                                                                          
     

                                                      

 
                                                                         

Φ = (ϕ+

ϕ0) = (ϕ1 + iϕ2

ϕ3 + ϕ4 ) Φ → exp (iθkTk + iβY) Φ

ℒΦ = (DμΦ)†DμΦ − V(Φ)

DμΦ = (∂μ + igTkWk
μ +

i
2

g′￼Bμ) Φ V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 (λ > 0)

ℒΦ = (DμΦ)†DμΦ + μ2Φ†Φ − λ(Φ†Φ)2

✤ Spontaneous symmetry breaking when , then minima of the potential at 

✤
Selecting a particular vacuum state breaks the symmetry. Choose . 

μ2 > 0 Φ†Φ =
μ2

2λ
=

v2

2

⟨Φ⟩ =
1

2 (0
v)



BEH mechanism for SU(2)xU(1)
 

                                             with ,            

and  

                                                                                  

✤ Under  
                                                         

✤
For                                       and      

✤ Invariance of the vacuum under U(1) of electromagnetism  symmetry preserved

Φ = (ϕ+

ϕ0) ⇒ Q = T3 +
1
2

Y Y(ϕ+) = Y(ϕ0) = 1

Q =
1
2

σ3 +
1
2

I = (1 0
0 0)

U(1)EM
⟨Φ⟩ → e(iαQ) ⟨Φ⟩ ≃ ⟨Φ⟩ + iαQ ⟨Φ⟩

⟨Φ⟩ =
1

2 (0
v) Q ⟨Φ⟩ = (1 0

0 0) 1

2 (0
v) = (0

0) ⟨Φ⟩ → ⟨Φ⟩

⇒ U(1)EM

SU(2)L × U(1)Y → U(1)EM



BEH mechanism for SU(2)xU(1)

✤
Parametrize  around chosen minimum 

✤
In the unitary gauge  

                      

 

 + interaction terms

✤
Remember  mixing                                             

 

                                        + interaction terms

Φ Φ =
1

2
exp ( i

2
θkTk) ( 0

v + H)
Φ =

1

2 ( 0
v + H)

DμΦ = (∂μ + igTkWk
μ +

i
2

g′￼Bμ) Φ =
1

2
∂μ + i

g

2

W3
μ / 2 W−

μ

W+
μ −W3

μ / 2
+

i
2

g′￼Bμ ( 0
v + H)

(DμΦ)†(DμΦ) =
1
2

∂μH∂μH +
g2v2

4
W+,μW−

μ +
v2

8
(gW3

μ − g′￼Bμ)(gW3
μ − g′￼Bμ)

W3
μ = sin θW Aμ + cos θWZμ Bμ = cos θW Aμ − sin θWZμ tan θW =

g′￼

g

(DμΦ)†(DμΦ) =
1
2

∂μH∂μH +
g2v2

4
W+,μW−

μ +
v2

8
(g2 + g′￼2)ZμZμ



BEH mechanism for SU(2)xU(1)

       + interaction  terms

✤ W and Z bosons acquire mass!   
 

                                        

✤ Ratio of  to  is the prediction of the EWSM           

(DμΦ)†(DμΦ) =
1
2

∂μH∂μH +
g2v2

4
W+,μW−

μ +
v2

8
(g2 + g′￼2)ZμZμ

(g′￼ = g tan θW)

MW =
gv
2

MZ =
v
2

g2 + g′￼2 =
gv

2 cos θW
=

MW

cos θW
MA = 0

MW MZ

✤ Degrees of freedom 
 
Before SSB                              4    x    2    +     2   x   2     =    12   =   3  x   3           +         2     +    1                           After SSB                                                       
 
                                                                                                A             HW1,2,3, B ϕ+, ϕ0 W+, W−, Z



Gauge boson - Higgs interactions

✤  also provides trilinear and quadric couplings of the Higgs boson to gauge bosons 
 

                                 

✤ Feynman rules 
 
 
 
 
 
 
 
 
 

(DμΦ)†DμΦ

(DμΦ)†(DμΦ) =
1
2

∂μH∂μH + [ g2v2

4
W+,μW−

μ +
v2

8
(g2 + g′￼2)ZμZμ] (1 +

H
v )

2



Higgs self-interactions

                                                        

                           + constant

V(Φ) = − μ2Φ†Φ + λ(Φ†Φ)2 Φ =
1

2 ( 0
v + H)

⇒ V(Φ) = μ2H2 + λvH3 +
λ
4

H4
                    

✤ Mass term for the Higgs boson  
    
               

✤ v and  measured by experiment 
(  GeV,  = 125 GeV)  Higgs 
self-coupling  fixed  ( =0.129)

MH = 2μ = 2λv

MH
v = 246 MH ⇒

λ λ

                    

✤ Feynman rules 
 
 
 
 
 
 



Fermion masses

✤ One more  nut to crack: explicit mass terms for fermions break gauge invariance  

✤ Introduce gauge-invariant Yukawa terms (now only for the electron) 
 
                                                                                   

✤
After SSB, in the unitary gauge  

 

                                                                                                        mass term    interaction term

✤
Mass term for the electron with 

✤
 Yukawa coupling  proportional to the electron mass                                                                      

ψ̄ ψ = ψ̄LψR + ψ̄RψL

ℒYukawa,e = ye [ψ̄LΦeR + ēRΦ†ψL]

Φ =
1

2 ( 0
v + H)

ℒYukawa,e = − ye
v + H

2
(ēLeR + ēReL) = −

ye

2
(v + H) ēe = −

yev

2
ēe −

ye

2
ēe H

me =
ye

2
v

ye = 2
me

v
=

g

2

me

MW

under SU(2)

“5th force”



Weak interactions of quarks 

✤ So far, only 1 generation of leptons considered

✤ Extension to three lepton generations in the original EWSM (with massless neutrinos) is a trivial threefold copy of the Lagrangian 
for the 1st generation leptons

✤ Extending to 1st generation quarks 

✤ Matter content 

                                                          

✤ Quark masses :  need an additional Yukawa term to generate up quark mass 
 

    (analogous to electron)                      with      
  

 After SSB                   and                                       

ψq = (uL

dL) uR, dR

ℒYukawa,d = − yd ψ̄qΦdR + h . c . ℒYukawa,u = − yd ψ̄†
qΦcuR + h . c . Φc ≡ iσ2Φ*

Φc =
1

2 (v + H
0 ) ℒYukawa,u = − yd

v + H

2
(ūLuR + ūRuL)

T3

T3

T Q Y

1/2 1/2 2/3 1/3
1/2 -1/2 -1/3 1/3

0 0 2/3 4/3
0 0 -1/3 -2/3

T3

uL
dL

dR

uR



Weak interactions of fermions 

✤ In general, the structure of the Yukawa terms (after SSB) for all generations of quarks   is 
 

                  

 
where   is a non-diagonal mass matrix for quarks

✤ Introduce unitary transformations  and   rotating the vectors 

                     and    in the gauge basis  to  vectors in the mass basis       

                                                                such that the matrix      is diagonal

                 

(i, j = 1,2,3)

ℒYukawa = − yij
u

v + H

2
ūi

Luj
R − yij

d
v + H

2
d̄i

Ldj
R + h . c . = − ∑

f

f̄L Mf fR (1 +
H
v ) + h . c .

Mij
f = yij

f
v
2

Uf
L Uf

R

fL =
f1
L

f 2
L

f3
L

fR =
f1
R

f 2
R

f3
R

f′￼L =
f ′￼1
L

f ′￼2
L

f ′￼3
L

= Uf
L fL f′￼R =

f ′￼1
R

f ′￼2
R

f ′￼3
R

= Uf
R fR

Mf,D = Uf
L Mf (Uf

R)†

⇒ ℒYukawa = − ∑
f

f̄L (Uf
L)† Mf,D Uf

R fR (1 +
H
v ) + h . c . = − ∑

f

mk
f (f̄ ′￼k

L f ′￼k
R + f̄ ′￼k

R f ′￼k
L ) (1 +

H
v ) + h . c .

T3



Quark sector

✤ Write the charged quark current in terms of mass eigenstates    and   
 
             

 
where        is the Cabibbo-Kobayashi-Maskawa (CKM) matrix 

 
 physical charged currents mix flavours, known as flavour-changing charged currents (FCCC)

✤ Neutral currents are diagonal in the mass basis  no flavour-changing neutral currents (FCNC) in the SM at tree level

✤ CKM matrix provides a source of CP violation in the SM  ➜ see lectures by A. Lenz 

u′￼k
L d′￼k

L

ℒq,CC = −
g

2
W−

μ ūj
L γμ dj

L −
g

2
W+

μ d̄j
L γμ uj

L = −
g

2
W−

μ ū′￼k
L (Uu

L)kj γμ (Ud †
L ) jld′￼l

L + h . c . = −
g

2
VklW−

μ ū′￼k
L γμ d′￼l

L + h . c .

Vkl = (Uu
LUd †

L )kl

⇒

⇒



Electroweak (EW) theory

✤ What do we want? 

✤ Quantum field theory of electromagnetic and weak interactions 

✤ based on principle of gauge symmetry

✤ with massive weak gauge bosons (weak interactions ~ short range) but  massless photons, as well as massive 
fermions

✤ able to describe flavour-changing processes, e.g. -decay (where weak interactions discovered) 
           -> at the quark level        

✤ with weak interactions chiral and maximally parity violating (Lee and Young’56, Wu’57): charged currents only 
involving left-handed particles (right-handed antiparticles) 

✤ neutral current weak processes (discovered after the EW Standard Model was proposed -> prediction of the theory)

β
n → p+ + e− + ν̄e d → u + e− + ν̄e

SU(2)xU(1)

BEH mechanism Yukawa terms

FCCC

ℒCC

ℒNC
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