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Statistics - an overview
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Slides: T. C. Petersen - “Applied Statistics 2020” course (W = Week)
Wiki: Good reference for ALL subjects (only specified when essential)
SciPy: SciPy Statistical Functions and (very brief) documentation

Hypothesis testing

Balow: Chap. , Cowans Chap. 4, Slides: Wi, Mon.

Barow: 53, Cowan: Chap. b,
Stides: W2, Tues.

ChiSquare

Model data (Predict & Understand)

==
e |P0isson

|Uniform| | Exponential | | Gaussian|

Test hypotheses on data (Decide)

Central Limit Theorem

Batow: 41, Sides: Weekd, Mondsy




Outline of lectures

Part I - the basics:

- Estimators

Probability Density Functions
ChiSquare & p-values
Calibration

Simpson’s Paradox

Part II - the necessities:

- Likelihood fitting

- Hypothesis testing

- Systematic uncertainties

Part III - the cool:

Setting limits

Look Elsewhere Effect
The art of plotting

The Fisher discriminant
sPlots & sWeights




Outline of lectures

Part I - the basics: Part I - the missing:

- Estimators - What is probability? Axioms!
Probability Density Functions Bayes Theorem & Jeffrey Priors
ChiSquare & p-values Proof of Central Limit Theorem
Calibration Significant digits

Simpson’s Paradox Uncertainty on uncertainties

Part II - the necessities: Part II - the complicated:

- Likelihood fitting - Proof of Minimum Variance Bound
- Hypothesis testing - Fisher Information

- Systematic uncertainties - Systematic uncertainty types

- Nuisance parameters
Part I1I - the cool:

- Setting limits Part III - the wierd:

- Look Elsewhere Effect - Details of Feldman-Cousins
- The art of plotting - Time series

- The Fisher discriminant - ...and surely lots more!

sPlots & sWeights



Why Statistics?



Why uncertainties?

In physics there are various elements of uncertainty:

® e ‘0 %

D
e Theory is not deterministic : o 400 °°
Examples: Quantum effects & chaos ° > "; =

e Random measurement errors

Fluctuations are present even without quantum effects!
e Things we could know in principle but don't...

e.g. from limitations in cost, time, etc.

We can quantify the uncertainty using PROBABILITY

Armed with the realisation of limitations, we can make better
calculations/experiments and informed conclusions.



Example: Speed of Gravity

Imagine that you measured the speed of gravity, and got the following result:

DT s A O 10° m/s

That would tell you...
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Example: Speed of Gravity

Imagine that you measured the speed of gravity, and got the following result:

DT s A O 10° m/s

That would tell you...
Nothing!!!
Because you have no idea of the uncertainty.

11



Example: Speed of Gravity

Imagine that you measured the speed of gravity, and got the following result:
Uprivity = 2.89°% 102 m/s
gravity — <«-

Depending on the uncertainty, you might foresee three very different conclusions:

Ugravity — (289 T 921) X :_()8 Hl/S Could be anything,

even negative!
_ L 108 Consistent with c,
Ugravity - (289 TR 009) X O m/S and not much else!

: - 4 103 Inconsistent with c:
Ugravity = (289 1 001) x 10 Hl/S New Discovery!!!

(extreme) Conclusion:
Numbers without stated uncertainties are meaningless!
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Why precision?

How well do we know Newton’s Law of Gravity?

13



Newton’s Law of Gravity

How well do we know Newton’s Law of Gravity? Well, reasonably well, but...

Force central?

Valid for all masses?

\

F=G

Z
mM

/T\

Range of validity?

/ Square Law?

No other dependencies?

14



Newton’s Law of Gravity

How well do we know Newton’s Law of Gravity? Well, reasonably well, but...

Seemingly... ‘ /NO - not large ones!
Why is G

so small? Z \/ i
I ’ G Being tested:

Related to

hf
WiayBg pot short raM r \Z?;I:nSig:;;ﬂore
Range of validity? / Square Law?

Yes, from generel relativity

No other dependencies?
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Why statistics in physics?

Experimental measurements are only SAMPLES of the reality,
they can never represent the entire set of possibilities, so

— they are affected by uncertainties

— results can be expressed as probabilities

Theoretical calculations are mostly APPROXIMATIONS

limited by finite resources to do the calculations or by
imprecise input parameters, so

— they are also affected by uncertainties

— predictions can also be expressed in terms of probability

Statistics gives the understanding of uncertainty
and probability in relating data and theory!!!

16



Why statistics in physics?

Statistics is about hypothesis testing, quantifying the answer to the question

“which theory matches the data best?”

Statistics is about collecting data
and logically analysing it, not
being fooled by coincidences
and chance observations.

Statistics is about fitting trends
in data, allowing for projections
and predictions.

Statistics is about understanding
data, and extracting the essential
information from it in the most
powerful way.
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Biases 1n statistics...

When ASKING people, one may introduce (deliberate?) biases:

Nt ey : ?
e Wording 1: Pick a color: red or blue? Color Choice |IRed | Blue

e Wording 2: Pick a color: blue or red?
Wording1l |59% |41 %

Wording2 (45% |55 %

One may also bias answers by giving (ir-)relevant information:

e Wording 1: Knowing that the population of the U.S. is 270 million,
what is the population of Canada?

e Wording 2: Knowing that the population of Australia is 15 million,
what is the population of Canada?

H

g . :

- L L L
s #1 S & & @ L J L J L J L ] L J L J * &

® ®
> £ 2 .
® ® ® ® ®
#2‘_’_._._?_._’ * T 2 T T T T
35 70 105 140 175 210 245
Population
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Biases 1n statistics...

When ASKING people, one may introduce (deliberate?) biases:

e Wording 1: Pick a color: red or blue?
e Wording 2: Pick a color: blue or red?

Color Choice [Red |Blue
Wording1l |59% |41 %
Wording2 (45% |55 %

One may also bias answers by giving (ir-)relevant information:

e Wording 1: Knowing that the population of the U.S. is 270 million,
what is the population of Canada?

e Wording 2: Knowing that the population of Australia is 15 million,
what is the population of Canada?

H
= . :
- ® ® ®
,6 #1 2 & & @& L J L J [ ) [ ) L J ® & |
® ®
= 213 &
® ® ® ® ®
#2‘_’_._._?_._’ * T * T T T T
39 70 105 140 175 210 245

Correct value (33M)

Population
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Mark Twain:
"There are three kinds of lies:

lies, dammned lies, and statistics.”

My opinion:
“The only way to convey accurate

information is by statistics.”

20



Mark Twain:
"There are three kinds of lies:

lies, damned lies, and statistics.”

My opinion:
“The only way to convey accurate

information is by statistics.”

Hal Varian [Chief economist of Googlel:

“I keep saying the sexy job in the next ten
years will be statisticians.”

21



Why statistics?

BSM  Theory Statistics Higgs LHC QCD Neutrinos




Why statistics?

BSM  Theory Statistics Higgs LHC QCD Neutrinos
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Central Limit Theorem



Adding random numbers

If each of you chose a random number
from your own favorit distribution®,
and we added all these numbers,
repeating this many times...

What would you expect?

* OK - to be nice to me, you agree to have similar RMSEs in these distributions!

25



Adding random num

aw mber
strlbutlareéﬁ\

these Wﬁﬁ)ers

from your ow
ing th ‘g\a times..

Ga% ey

Mblie&\ would you expect?

If each of you chose &

* OK - to be nice to me, you agree to have similar RMSEs in these distributions! 26



Adding random numbe\s

[f each of you chose mber

from your ow
these wkxbers

atmgt ‘g\a times...

_  wavw o - = -
Central Limit Theorem:

The sum of N independent continuous random variables x; with means

u; and variances 02 becomes a Gaussian random variable with mean
u = X. W, and variance 02 = £, 02 in the limit that N approaches infinity.

str1but18;géﬁ\
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Central Limit Theorem

Central Limit Theorem:

The sum of N independent continuous random variables x; with means
u; and variances 0,2 becomes a Gaussian random variable with mean
u = X. u, and variance 02 = ¥, 02 in the limit that N approaches infinity.

The Central Limit Theorem holds under fairly general conditions, which means

that the Gaussian distribution takes a central role in statistics...
-

The Gaussian is “the unit” of distributions!

Since measurements are often affected by many small effects,
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..

THE
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Central Limit Theorem

Central Limit Theorem:
The sum of N independent continuous random variables x; with means

u; and variances 0,2 becomes a Gaussian random variable with mean
u = X. u, and variance 02 = ¥, 02 in the limit that N approaches infinity.

"The epistemological value of probability theory is based on the
fact that chance phenomena, considered collectively and on a
grand scale, create non-random regularity."

[Andrey Kolmogorov, Soviet mathematician, 1954]

"Nowadays, the central limit theorem is considered to be the
unofficial sovereign of probability theory.”
[Henk Tijms, Dutch mathematician 2004]
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Example of Central Limit Theorem

Take the sum of 100 uniformm numbers!

Repeat 100000 times to see what distribution the sum has...

| Hist_Uniform |

14000

12000

10000

8000

6000

4000

2000

0

Hist_Uniform

|||I|||ll|||||l|||||

Entries 1000000
Mean -0.00108
RMS 0.9999

,{,__4||||||||

Hist_ Sum |

4000

3500

3000

2500

2000

1500

1000

500

o

(=] l|IIIIIIIIIIIIIII|I|IIIIII|II|IIIIIIIIIII

Hist_Sum
Entries 100000
Mean 0.002193
RMS 1.003
%2 1 ndf 58.35/84
Prob 0.9851
Constant 3981=15.4

Mean  0.001794 = 0.003169

Sigma 1.002 = 0.002

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

It turns out, that this is very general!!!




Example of Central Limit Theorem

Now take the sum of just 10 uniform numbers!

Hist_Sum H ist_Sum

4000 - Entries 100000
E Mean 0.0008772

3500 —
— RMS 1
3000 :_ %% | ndf 205.7173
2500 :— Prob 8.644e-17
2000 :_ Constant 3996 + 15.1
E Mean 0.002425+ 0.003160

1500 —
E Sigma 0.9965 + 0.0021

1000 —

500 —

0 - | | | | | | | L
-6 -4 -2 0 2 4 6




Example of Central Limit Theorem

Now take the sum of just 5 uniform numbers!

Hist_Sum Hist Sum
4000 :_ Entries 100000
5 Mean -0.0004084
3500 —
- RMS 1.002
3000 - %2 | ndf 558.9 / 66
2500 — Prob 0
2000 f_ Constant 4018 + 14.9
- Mean  0.00651+ 0.00315
1500 —
= Sigma 0.9878 + 0.0019
1000 —
500 —
" = P
-6 -4 -2 0 2 4 6




Example of Central Limit Theorem

Now take the sum of just 3 uniform numbers!

Hist_Sum Hist_ Sum
= Entries 100000
4000 —
- Mean -0.002565
3500 —
= RMS 1
3000 ;— %2 I ndf 2842 | 57
2500 — Prob 0
2000 - Constant 4125+ 14.9
= Mean -0.01674 = 0.00305
1500 —
= Sigma 0.941= 0.002
1000 —
500 —
; E e ——
-6 -4 -2 0 2 4 6




Example of Central Limit Theorem

This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution...

Hist_Exponential Hist_Exponential Hist_Sum | i
l _x1 oe | Entries 1e+07 - H ISt.._S um
= Mean -0.006042 = %
500 B S P 4000 — Entries 100000
B - Mean 0.001446
= 3500 —
400 — C RMS 1.002
- 3000 —
L = 2? I ndf 716.6 /1 82
300 — 2500 — Prob 0
E 2000— Constant 4018+ 15.6
200— 1500 = Mean -0.0003873+ 0.0032393
E 1000 E_ Sigma 0.9859 :+ 0.0022
100— E
- 500 —
ol gl - e o 0 E | . . |
-2 4 5 6 6 -4 2 0 2 4 6

It doesn’t matter what shape the input PDF has, as long as it has finite mean
and width, which all numbers from the real world has! Sum quickly becomes:

Gaussian!!!

It turns out, that this fact saves us from much trouble: Makes statistics “easy”! 34



Example of Central Limit Theorem

Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:

RecZ0

Entries 588400

22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Mean -4.885+ 0.08428

RMS 64.65 + 0.0596

o

OFTTTITT T[T T T T T[T T[T T [ T [ TT T T T TIT[TTT]]
=] L R LR LR LR R R R R R

| -200 -100 0 100 200




The Gaussian distribution

It is useful to know just a few of the Range Inside

most common Gaussian integrals:

0.4

0.3

0.2

0.0 0.1

Outside
+ 1o 68 % 32 %
+ 20 95 % 5 %
£ 3cE 99.7 % 0.3 %
+ 50 99.99995 %  0.00005 %

34.1% 34.1%
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Summary

The Central Limit Theorem

...1s your good friend because it...

ensures that uncertainties tend to be Gaussian

...which are the easiest to work with!

0.4

0.3

0.2

0.0 0.1

ol 34.1% 34.1%




Estimators



Defining the mean

There are several ways of defining “a typical” value from a dataset:
a) Arithmetic mean b) Mode (most probably) c) Median (half below, half above)

d) Geometric mean e) Harmonic mean f) Truncated mean (robustness)
1.6
— mode
14 :
— median
1.2 1
— Mean
1.0+
0.8
06 \\\\vguu,,, 0O = 025
E ”””’”’”l/
04 = Y 1
02 § Iy numnummmnmmu
00 = A —
00 02 04 06 08 10 12 14 16 18 20 22 39




Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

The second (central) moment of the data is called the variance, defined as:

A 1
V:N . (xi—u)z

Note the “hat”, which means “estimator”. It is sometimes dropped...

40



Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

Note the “hat”, which means “estimator”. It is sometimes dropped... i



Mean and Width

It turns out, that the best estimator for the mean is (as you all know):

For the standard deviation (Std), a.k.a. width or RMSE, it is:

1
/\_ __2
a N—lZ (i =)

Note the “hat”, which means “estimator”. It is sometimes dropped...

42



Why not “just” the naive SD?

Imagine taking 3 independent measurements, then estimating mean and SD:

X1 X2 X3
l l MUtrue l

< T > O'true

o4

43



Why not “just” the naive SD?

Imagine taking 3 independent measurements, then estimating mean and SD:

X1 X»> X3

l l ﬁest. MUtrue l

s T T > O'true

>

o4

N\
Gest. <

Above, all went well, because measurements were nicely distributed on both
sides of the mean, and spread out according to SD.

44



Why not “just” the naive SD?

Imagine taking 3 independent measurements, then estimating mean and SD:

X1 X»> X3

l l ﬁest. Mtrue l

s T T > O'true

>

o4

N
Oest. .
Above, all went well, because measurements were nicely distributed on both

sides of the mean, and spread out according to SD.

X1 X3 X2

l ﬁeit, l MUtrue

A ‘ < T » O'true
Oest.

However, now the mean is off and the Std way off (terribly so!).

o3 4

If we had used the true mean in the formula, it would have been less of a problem.

45



How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate:

5000

RMS frequency

4000

3000

2000

1000

Distribution of RMS estimates on three unit Gaussian numbers

RMS naive estimate (uw = 0.72)

RMS correct estimate (u = 0.99)

N=3

0.5 1 1.5 2 2.5
RMS estimate

So, the “naive” SD underestimates the uncertainty significantly...
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How incorrect 1s the naive SD?

Such questions can most easily be answered by a small simulation...
Produce N=5 numbers from a unit Gaussian, and calculate the SD estimate:

Distribution of RMS estimates on five unit Gaussian numbers

)
cC
% 6000 RMS naive estimate (u = 0.84)
é RMS correct estimate (i = 0.97)
o 5000

4000 J_ N 5

3000 [

2000

1000

T

J

|

ollll’llll[llllllll ‘llll’l II‘ [

(=]

05 1 1.5 2

2.5
RMS estimate

Here, the “naive” SD underestimates the uncertainty a bit...
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SD and Gaussian o relation

When a distribution is Gaussian, the Std. corresponds to the Gaussian width o:

0.4

0.3

) 34.19% 34.1%

0.2

0.1

0.0

48



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

49



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

6y =06/VN

50



Mean and Width

What is the uncertainty on the mean? And how quickly does it improve with
more data?

6y =06/VN

Example: Fia. .

Cavendish Experiment

_Mean

(measurement of Earth’s density) N j:
N =29 Fhe-
mu = 5.42 :\5 .

sigma = 0.333 T '.i LU %

sigma(mu) = 0.06
Earth density = 5.42 + 0.06

——> Value of Mean) Density.

51



Mean and Width
What is the uncertainty on the mean? And how quic m‘:‘.‘ove with

more data?
Exa .
C is ent . >
(m& nt ot Earth’s density) R |
N =29 o
mu = 5.42 s
sigma = 0.333 T - L L |
1 80 51243678 "

sigma(mu) = 0.06
Earth density = 5.42 + 0.06

———— RV, @ "l/enn': Density.



Weighted Mean

What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?

e g i
N T 1o

For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:

SR Vi

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

53



Weighted Mean

What if we
How to ave| Note that when doing a weighted mean,

one should check if the measurements
agree with each other!
This can be done with a ChiSquare test.

| y A -
GraEh |
72 | ndf 9.012/8
6 f
For measureme; e . xful SD!
The uncertainty po 3.599 + 0.3333

5

—

-

w
IlllllllllllllllllIIIIIIIIIIIII
[o——
P ) e et
Ve
r—]
P 1

Can be understq pasurements




Resolution using InterQuantile Range

A useful measure of resolution is the InterQuantile Range (IQR), as this is not

affected by long tails.

IQR measures statistical dispersion,
calculated as the difference

IQR = Q3 - Q1

The InterQuantile Efficiency (IQE) is
defined as:

IQE = IQR / 1.349

The factor 1.349 = 2 ®-1(0.75)
ensures that IQR = 1 for a unit
Gaussian.

Lower Quantile

Upper Quantile

Qs

25% 25%

smallest
value
(minimum)

'
megian
50th largest
25th  percentile 75th value
percentile percentile (maximum)
I l
First Quartile Third Quartile 100th
(Qy) (Q5) percentile

AF—J

Interquartile Range = Q3- Q4

95



Skewness and Kurtosis

Higher moments reveal something about a distributions asymmetry and tails:

— > —p

Negative Skew Positive Skew 1 —\4

o — N i@ — ) 3
(4 2\ 2)2
(& 2ui(wi — 2)?)
LEPTOKURTIC MESOKURTIC PLATYKURTIC

(thicker tails) (normal tails) (thinner tails)

Y A Y A Y A
.'/“
N /\
> X e > X - > X
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Correlation

Temperdure (Fahrenheit)

65

55

North Atlantic Oscillation (NAO) Effects

Upper Texas Coast Temperature

Are there any correlations here?
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Correlation

Temperdure (Fahrenheit)

North Atlantic Oscillation (NAO) Effects

Upper Texas Coast Temperature

Are there any correlations here?

40

- L ore
2 . o .- o = -
o =] o . -I. .. -J o = ]
o k- ..'-'r '{."rlﬂvﬂ o
- ’l‘ "n‘ ., = :.
T - .l .' m = "u ]
"
z"® .
8 - o n

www.guessthecorrelation.com

30 20 10

NAO Value

30
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http://www.guessthecorrelation.com

Correlation

North Atlantic Oscillation (NAO) Effects

guessthecorrelation.com G M
"' HIGH SCORE MAIN MENU
L1 ]
e
1.0 ME:ET
TRUE R 0.21
. oe T GUESSED R 025
wa . s DIFFERENCE o.ou
0.5 RPN STREAKS 1
m L 1 " om
" e o . MEAN ERROR o.07

LT T wages

o.0D "
o.0 o.5 1.0

40 30

NAQO Value

www.guessthecorrelation.com

30
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Correlation

Recall the definition of the Variance, V:

V=02= 23 (@i —w)? =Bz -

60



Correlation

Recall the definition of the Variance, V:
1 T
V=0"==) (z— )’ =Ellz—p)? = Bl2") — p°

()

Likewise, one defines the Covariance, Vyy:

Viw = 5 D@1 — ) i — 1) = El(zi = 1) (31 — )

61



Correlation

Recall the definition of the Variance, V:
1 T
) 2 D 2 2
V=0?==) (&)’ =Elz—p)? = E[*) —u
)
Likewise, one defines the Covariance, Vyy:

Viw = 5 D@1 — ) i — 1) = El(zi = 1) (31 — )

“Normalising” by the widths, gives Pearson’s (linear) correlation

coefficient: me —1 < Py <1
Pxy =
O'a;O'y O'(,O) ~ \/%(1—102)24—0(71_2)

62



Correlation Matrix

The correlation matrix Vyy explicitly looks as:

e 2 2 2 2
0-1 0-12 o o o O-lN
2 2 2

AP 2N ER R NI\
2 2 2
On Opno -+ ONN

The variance of variables can be found along the diagonal,
while the (symmetric) off-diagonal terms show the co-variances.



Planck example

o)

n,l 4% T6% 41%

60% -46%

1 -5l%

99%-845-99%
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Correlation and Information

Correlations influence
results in complex ways!

They need to be taken into
account, for example in
Error Propagation!

Correlations may contain
a significant amount of
information.

We will consider this more
when we play with
multivariate analysis.




Rank correlations

Sometimes, variables are perfectly correlated, just not linearly:

In this case the Pearson Spearman corre.lation =1
et Pearson correlation=0.88

correlation is not the best 10— ! 1 ! ! 1

measure. '

Rank correlation compares
the ranking between the
two sets, and therefore gets
a good measure of the
correlation (see figure).

The two main cases of rank _10”@””””? """"" S A S
correlations are: : : : : |
e Spearman’s rho —15- ‘ ' ' ‘ '

e Kendall’s tau X




Rank correlations

An additional advantage is,
that the rank correlation is
less sensitive to outliers:

The two rank correlations are
special cases of a more general
rank correlation.

Typically, Spearman’s rank
correlation is used.

The definition is:

Spearman correlation=0.84
Pearson correlation=0.67

SRR RERELIEILL EELEEEE @i foemeneenee .
5 e O 5 o
L e@e® °e
0. 88,0 z o
. © i i @
- Qi 58 ----- S ERRRRRRRRE Rt St

o §I° E |
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where r; and s; is the rank of the i’th element.




Correlation

Correlations in 2D are in the Gaussian case the “degree of ovalness”!
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Note how ALL of the bottom distributions have o = 0, despite obvious correlations!
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Non-linear correlations

Non-linear correlations (associations) are harder to measure, but possible:

e Maximal Information Coefficient (MIC), see reference and Wikipedia on MIC.
e Mutual Information (MI), linked to entropy, see Wikipedia on MI and SKLearn.

e Distance Correlation (DC) between paired vectors, see Wikipedia on DC.

Pearson r=1.0 Pearsonr=0.8 Pearsonr=0.4 Pearsonr=0.0 Pearsonr=-0.4 Pearsonr=-0.8 Pearson r=-1.0
MIC=1.0 MIC=0.5 MIC=0.2 MIC=0.1 MIC=0.2 MIC=0.6 MIC=1.0

N\,

Pearson r=1.0 Pearsonr=1.0 Pearsonr=1.0 Pearsonr=-0.0 Pearsonr=-1.0 Pearsonr=-1.0 Pearson r=-1.0
MIC=1.0 MIC=1.0 MIC=1.0 MIC=0.3 MIC=1.0 MIC=1.0 MIC=1.0

-~
-

R LY

Pearson r=-0.0 Pearson r=0.1 Pearson r=0.0 Pearson r=0.1 Pearson r=-0.0 Pearson r=-0.0 Pearson r=-0.0
MIC=0.7 MIC=0.2 MIC=0.2 MIC=0.4 MIC=0.6 MIC=0.1
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Original paper: "Detecting Novel Associations in Large Data Sets” (2011). Science 334 (6062): 1518—-1524. gg


https://en.wikipedia.org/wiki/Maximal_information_coefficient
https://en.wikipedia.org/wiki/Mutual_information
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
https://en.wikipedia.org/wiki/Distance_correlation

Correlation Vs. Causation
“Com hoc ergo propter hoc”

(with this, therefore because of this)
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Correlation Vs. Causation
“Com hoc ergo propter hoc”

(with this, therefore because of this)

85000

2 | ndf 10.84/9
Prob 0.2868
p0 3.213e+04 = 3375
p1 928.2+101.9
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Digression on correlations

Why do correlations play a fundamental role?

1. Itis the fundamental relation between variables.

2. Possible independent variables give you handles (see below).

3. The degree of simplicity /linearity tells you what methods to use.
4. Correlation with variable of interest is often key.

Imagine, that you find two sets of PID variables, which are uncorrelated.

In this case, you can produce two independent ways to identify signal,
giving you a method for measuring performance, cross checking results,
and producing enriched samples of each type.

The two methods can of course be combined (with Likelihood or ML).
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PDFs

Probability Density Functions
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Probability Density Functions

A Probability Density Function (PDF) f(x) describes the probability of
an outcome x:

probability to observe x in the interval [x, x+dx] = f(x) dx
PDFs are required to be normalised:

!Lf@szl

The expectation value (aka. mean) and the variance (i.e. standard
deviation squared) are then defined as follows:

u:/iﬁﬂ@m
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Probability Density Functions

Example:
Consider a uniform distribution:

f(:l:):{ (1) x € [0,1]

else

Calculating the mean and variance:

L 9
1, 1, 1, 1 1 1 1
3T gt tth =3 -5+ 1= 5
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Cumulative distributions functions

Completely basic to every PDF is the Y SRasanas GauSSI e PDI,: —
cumulative distribution function, CDF, - Shsoes
defined as: - g T

:/_oo fx(b) dt

In words, this means that it is the
probability of getting x, or something
below that value.

The CDF is used in many ways, and we
will meet it again soon, when we
discuss hypothesis testing.




Cumulative distributions functions

Completely basic to every PDF is the
cumulative distribution function, CDF,
defined as:

Fy(z) = /_ " ()t

In words, this means that it is the
probability of getting x, or something
below that value.

The CDF is used in many ways, and we
will meet it again soon, when we
discuss hypothesis testing.
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Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

Discrete distributions [ edt source | edt beta)

With finite support [ edt source  edt peta]

The Bernoull distribution, which takes vake 1 with
The Rademacher dstribution, which takes vake 1
The binomial dstribution, which descrbes the num!
The beta-oinomal dstribution, which descrbes the
The degenerate distribution at xp, where X is cerna
random vanables in the same formalsm.

The discrete uniform distribution, where all element
shuffled deck.

The hypergeometric dstnbution, which descnbes tf
there is no replacement.

The Poisson binomial dstribution, which describes
Fsher's noncentral hypergeometric distribution
Wallenius' noncentral hypergeometric distribution
Benford's law, which describes the frequency of th

With infinite support [ edt source  edt peta]

The beta negative binomal dstribution
The Boltzmann distribution, a discrete distribution |
analogue. Special cases include:
« The Gibbs dstnbution
+ The Maxwell-Boltzmann distribution
The Borel dstribution
The extended negative binomal dstrbution
The extended hypergeomeatnc dstribution
The generalized log-senes distribution
The generalzed normal distribution
The geometnic dstrbution, a discrete dstribution w
The hypergeometric distribution
The loganthmic (senes) dstrbution
The negative binomial dstribution or Pascal distrix
The parabolc fractal dstribution
The Poisson distribution, which describes a very I3
Poisson, the hyper-Poisson, the general Poisson &
« The Conway-Maxwel-Poisson dstribution, a tw
The Polya-Eggenberger distribution
The Skellam distribution, the distribution of the dify
The skew eliptical distribution
The skew normal distribution
The Yule—Simon distribution
The zeta dstrbution has uses in appled statistics
Zpt's law or the Zpf distribution. A discrete power-
The Zpl-Mandelorot law is a discrete power law dis

Continuous distributions [ edt source | edt beta]

Supported on a bounded interval [ edt source  edt
« The Arcsine dstrbution on [a,b], which is a speci.
« The Beta dstnbution on [0,1], of which the uniforr
« The Logitnormal distribution on (0,1).

« The Dirac delta function although not strictly a fur
but the notation treats it as if it were a continuous

« The continuous unform distribution on [a,b], when

« The rectangular distribution is a uniform distrib
« The Irwin-Hall dstnbution is the distnbution of the
« The Kent dstribution on the three-dmensional spr
« The Kumaraswamy dstrbution is as versatile as t
« The logarithmic distribution (continuous)
« The PERT dstribution is a special case of the bat
« The raised cosine dstribution on [ — 8. u + 8]
« The reciprocal distribution
« The trnangular dstrbution on [a, b), a special cast
« The truncated normal distribution on [a, b].
« The U-quadratic distribution on [a, b).
« The von Mses distribution on the circle.
« The von Mses-Fisher dstrbution on the N-dmens
« The Wigner semicircle distribution is important in t
Supported on semi-infinite intervals, usually [0,=)
« The Beta prme distribution
« The Bimbaum-Saunders dstribution, also known &
« The chi dstribution
« The noncentral chi distribution

« The chi-squared dstribution, which is the sum of 1
« The inverse-chi-squared dstribution
« The noncentral chi-squared distribution
« The Scaled-inverse-chi-squared distribution

« The Dagum distnbution

« The exponential dstribution, which describes the

« The F-dstrbution, which is the dstnbution of the |

ratio of two chi-squared vanates which are not nor

« The noncentral F-distribution

« Fsher's z-dstribution

« The folded normal distribution

« The Fréchet dstribution

« The Gamma dstribution, which describes the time
« The Erlang dstribution, which is a special cast
« The inverse-gamma distribution

« The generalzed Pareto dstribution

« The Gamma/Gompertz distribution

« The Gompertz distribution

« The half-normal distribution

« Hoteling's T-squared distribution

« The inverse Gaussian dstribution, also kn

« The Lévy dstrbution

« The log-Cauchy distribution

« The log-gamma distribution

« The log-Laplace dstribution

« The log-logistic distribution

« The log-normal dstribution, descnibing van

« The Mittag-Leffler distribution

« The Nakagam dstribution

« The Pareto distribution, or "power law" dist

« The Pearson Type |l| distribution

« The phased bi-exponential distribution is ¢

« The phased bi-Weibull distribution

« The Rayleigh dstribution

« The Rayleigh mxture dstribution

« The Rce dstribution

« The shifted Gompertz distribution

« The type-2 Gumbel dstribution

« The Webull dstrbution or Rosin Rammier

gnnding, milng and crushing operations.

Supported on the whole real line [ edt soun

« The Behrens—Fisher distribution, which ant

« The Cauchy dstrbution, an example of a ¢
resonance energy distrbution, impact and
Chemoft's distribution
« The Exponentially modfied Gaussian dstn
The Fisher-Tippett, extrems valkue, or log-

« The Gumbel dstribution, a special cast
Fsher's z-distribution
« The generalzed logistic distribution
« The generalzed normal distribution
« The geometric stable distnbution
The Holtsmark distribution, an example of
The hyperbolc distribution
The hyperbolic secant distribution
The Johnson SU distribution
The Landau distribution
The Laplace distribution
The Lévy skew alpha-stable distribution or
distribution, Lévy distribution and normal ¢
« The Linnik distribution
The logistic distribution
« The map-Airy distribution
The normal distribution, also called the Ga
independent, identically distnbuted vanabh
« The Normal-exponential-gamma distributior
« The Pearson Type |V distnbution (see Pes
« The skew normal distribution

« Student's t-dstribution, useful for estimating «
+ The noncentral t-distribution
« The type-1 Gumbel distribution
« The Voigt dstribution, or Voigt profile, is the ¢
« The Gaussian minus exponential distribution it
‘With variable support [ edt source ' edt petza]
« The generalzed extreme value dstrbution hat
parameter
« The generalzed Pareto distribution has a sup;
« The Tukey lambda distribution is either suppot
« The Wakeby distribution
Mixed discrete/continuous distributions [ ed:

« The rectified Gaussian distribution replaces m
Joint distributions [ edt source | edt bata)
For any set of independent random vanables the

Two or more random variables on the same sar

« The Dirichlet dstrbution, a generalzation of t
« The Ewens's samplng formula is a probabilty
The Baldng-Nchols model
« The multinomial distribution, a generalization ¢
« The multivanate normal distribution, a general
« The negative multinomial distribution, a gener:
« The generalzed multivanate log-gamma dstnt
Matrix-valued distributions [ edt source adt ¢
« The Wishart distribution
« The inverse-Wishart distribution
« The matrix normal dstribution
« The matnx t-distribution

Non-numeric distributions [ edt source ' edt |
« The categorical distribution

newton dstnbution

Miscellaneous distributions [ edt source | edt

« The Cantor distribution

« The generalzed logistic distribution family
« The Pearson dstrbution family

« The phase-type dstrbution

And surely more!



Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

D

iscrete distributions

With finite support [ edt source

The Bernoull distribution, which takes value 1 with

The Rademacher dstnbution, which takes vake 1

The binomial dstribution, which descrbes the num!
vomal dstnbu , which descnbes the

te dstribution at xp, where X is certa

random vanables in the same formalsm.

The dsc unform dstrbution, where all element

shutfled deck.

The hypergeometric dstrbution, which descnbes th

there is no replacemeant.

The Poisson binomial dstribution, which describes

xmetnc distnbution

Fisher's noncentral hyp:

Walleniis' noncentral hvo, peloc distrnution

Continuous distributions [ edt

Supported on a bounded interval

The Arcsine dstrbution on [a,b], which is a spec

The Beta dstn n on [0,1], of which the uniforr
tnormal distribution on (0,1).

delta function although not strictly a fur

but the notation treats it as if it were a continuous

The continuous uniform distribution on [a,b], when

« The rectangular dstribution is a uniform distrib
The Irwin-Hall distribution is the distribution of the
The Kent dstribution on the three-dmensional spr
The Kun ny distribution is as versatile as t
The loganthmic distnbution (continuous)

The PERT dstrbution is & special case of the

Hotelling's T-squared distribution

1, useful for estimating «

The a1
t-distrid
The . a1 Gumbel distribution
The Y t B tion, or Voigt profile, is 1
The

The
The
The log-normal distn

Leffler distn

ttps://docs.scipy.org/doc/scipy/reference/stats.html

ell-Boltzmann distnb
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The extended nex
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ve binomal dstribution or Pascal distriby
al distribution

The Poisson dstribution, which describes a very la
Passon, the hyper-Poisson, the general Passon
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normal distrid
The Yule—Simon distnid
The zeta dstrbution has uses in appled statistics
Zpt's law or the Zpf dstribution. A dscrete power-
The Z aw s a dscrete power law ds

Supported on semi-infinite intervals, usually [0,=)

The Beta prime distribution
The Birnbaum-Saunders distribution, also known ¢

n, which descrbes the !
The F-dstribution, which is the distribution of the
ratio of two chi-squared vanates which are not nol

« The noncentral F-distribution

, which descnbes the time
, which is a special cast

The n
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energy distribution, impact and

Chernoff's distribution

The Exponentially modfied Gaussian dstr
The Fsher-Tippett, extreme vake, or log-

« The
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. The
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« The Gum \, & special cast

Fsher's z-d
The
The

The ¢

distniby \ « The ¢

n, an example of

newton distnbution

Miscellaneous distributions [ edt
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https://docs.scipy.org/doc/scipy/reference/stats.html

Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

, useful for estimating «

Continuous distributions [ ed

ution, also kn

¥ch takes value 1 with
2 Radem

The binon

, whech takes valie 1

tion has a supy

23 In the same ‘c-ma\ sm.

~ e 3 unt sirn ) S either suppot
The discrete uniform distribution, where all element alukstaintithesieey . T n, or “power law' dist
shutflacas + The Irwin-Hall distribution is the distribution of the . The 111 distribution
Tré B
there

.T"p:-:ll ,, ]

| "Essentially, all models are wrong,

“but some are useful”
' [George E. P. Box, British Statistician, 1919-2013]
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. T
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3
33

n and normal ¢

And surely more!
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Probability Density Functions

An almost complete list of those we will deal with in this course is:
e Gaussian (aka. Normal)

e Poisson See Barlow chap.3
e Binomial (and also Multinomial) and Cowan chap.Z
e Students t-distribution

e Uniform

e ChiSquare
e Exponential
e Error function (integral of Gaussian)

You should already know most of these, and the rest will be explained.
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Binomial, Poisson, Gaussian

N!
f(n; N, p) = n!(N_n)!p"(l—p

)N—n

Given N trials each with p chance of =30 =50
success, how many successes n 5 o P . 8
should you expect in total? 8 s g = 1 58
- - o5 15 25 = 0 10 20 30 40 50
This distribution is... Binomial, with
Mean = Np s s el
Variance = Np(1-p) . 5 o j
This means, that the error on a I BT R R T = G e
0 2 4 6 8§ 10 o5 15 25 0 10 20 30 40 50
fraction f =n/N is:
n=10 n= 30 n= 30
f(l_f) ) p=0.8 p=0.8 p=0.8
U(f):\/ N EE

0 2 4 6 8 10 05 15 25 0102030405082



Binomial, Poisson, Gaussian

N!

N—n
f(n; N,p) = p (1—p
The binomial distribution was first introduced by (z +1)* = z* + 423y + 622 + day® + ¢,
Jacob Bernoulli in 1713 (posthumously). 1
The binomial distribution basically consists of two 1 3 3

elements: The binomial coefficient (green) and the
probabilities of exactly n such events (blue).

Even though a system has many outcomes, it is
typically possible to refer to either “success” of
“failure”.

Assume the probability to have COVID19 is 1%. In a
sample of 50 people the chance to have 1 or more
infected 1s: 1-p(0) =1 - 0.99%0 = 0.60

0
1

2
3
4:
5
6
7
8

1 5 10 10 5 1
1 6 15 20 15 6 1
17 21 3% 3 21 7 A1
1 8 28 56 70 56 28 8 1




Binomial, Poisson, Gaussian

Requirements to be Binomial:

® Fixed number of trials, N

® Independent trials.

e Only two outcomes (success/ failure).

e Constant probability of success/failure.

If number of possible outcomes is more than two = Multinomial distribution.

Examples of Binomial experiments:

® Tossing a coin 20 times counting number of tails.
e Asking 200 people if they watch sports on TV.
e Rolling a die to see if a 6 appear (Multinomial for all outcomes!).
e Asking 100 die-hards from Enhedslisten, if they would vote
for Konservative at the next election!

Examples which aren’t Binomial experiments:

e Rolling a die until a 6 appears (not fixed number of trials).
e Drawing 5 cards for a poker hand (no replacement = not independent)

84



Binomial, Poisson, Gaussian

If N — oo and p — 0, but Np — A then a Binomial approaches a Poisson: (see

Barlow 3.3.1)
An 0.4 : — 77—
A : :

f(na )‘> =5 He_

e

o A=10
In reality, the approximation - ]
is already quite good at e.g. 02F ]
N=50 and p=0.1. F :
The Poisson distribution only 0.1F e N E

has one parameter, namely A.
Mean = A
Variance = A

So the error on a number is...

...the square root of that number!
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Binomial, Poisson, Gaussian

The error on a
(Poisson) number...
is the square root
of that number!!!




Binomial, Poisson, Gaussian

The error on a

A very useful case of this is the error to assign a bin in a histogram,
if there is reasonable statistics (N; > 5-20) in each bin.

ﬁpnjqcmﬂ nitmber

1S the square root
of that number!!!




The error on a
(Poisson) number...
is the square root
of that number!!!

Note: The sum of two Poissons with A; and Ay is a new Poisson with A = A, + Ap.
(See Barlow pages 33-34 for proof)




Binomial, Poisson, Gaussian

The Poisson distribution has the advantage that neither the number of trials N
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance,
area, volume, etc.
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Binomial, Poisson, Gaussian

The Poisson distribution has the advantage that neither the number of trials N
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance,

area, volume, etc.

Example (real from 1898):
There were 122 deaths by horse kicks over 10 different
regiments, over 20 years. What is the predicted number

of deaths in a specific regiment and year?

First we estimate the mean value: 122

- — 0.61
= 20x10 00

This means that the probability that 0 will die is given by:

0.61Y

o = 0.54

P(0) = ¢’




Quick Quiz

You need to know the efficiency of your PID system for positrons.

Find 1000 data events where two electron candidates have a combined
mass of 91.2 GeV (Z°) and the negative candidate is identified as an
electron (“Tag-and-probe” technique).

In 900 events the positive candidate is also identified as an electron.
In 100 events it is not. Efficiency is 90%, but what about the uncertainty?

Colleague A says sqrt(900) = 30, thus 90.0 + 3.0 %
Colleague B says sqrt(100) = 10, thus 90.0 + 1.0 %

Which is right?
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Quick Quiz

You need to know the efficiency of your PID system for positrons.

Find 1000 data events where two electron candidates have a combined
mass of 91.2 GeV (Z°) and the negative candidate is identified as an
electron (“Tag-and-probe” technique).

In 900 events the positive candidate is also identified as an electron.
In 100 events it is not. Efficiency is 90%, but what about the uncertainty?

Colleague A says sqrt(900) = 30, thus 90.0 + 3.0 %
Colleague B says sqrt(100) = 10, thus 90.0 + 1.0 %

Which is right? Neither!
This is not a Poisson but a Binomial (N = 1000 trials, p = 0.9 of success)
Uncertainty is sqrt(N*p*(1-p)) = 9.49, thus 90.0 £ 0.9 %

From previous page: ¢ (f) = \/f(lj\; f)
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Binomial, Poisson, Gaussian

For proof, see
Barlow p.40

Percentage of
cases in 8 portions
of the curve

Standard Deviations

Cumulative
Percentages

Percentiles

Z scores

T scores

Standard Nine
(Stanines)

Percentage
in Stanine

Normal,

Bell-shaped Curve

If A—co, the Poisson becomes a Gaussian...

...and A > 20 is enough!

13.59%| 34.13% 34.13% |13.59% 2.14% 13%
-40 -30 -20 -10 0 +10 +20 +30 +40
I | I I | I |
0.1% 2.3% 15.9% 50% 84.1% 97.7% 99.9%
| | 1 |
i % | | i T 1 | 1 1 111 | I [
5 10 20 30 40 50 60 70 80 90 95 99
-4.0 -3'0 -2To -1'0 (3 +110 +2'o +370 +4.0
20 30 40 50 60 70 80
1 2 3 4 5 6 7 8 9
4% 7% | 12% [ 17% | 20% | 17% | 12% | 7% 4%

All fields encounter the Gaussian, and for this reason, its scale has many names!
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Frequency

Binomial, Poisson, Gaussian

[f A—co, the Poisson becomes a Gaussian... ...and A > 20 is enough!

Poisson and Gaussian distribution comparison

0
o
o
o

—— Poisson (A = 20)
—— Gaussian (u = 20)
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Frequency

Binomial, Poisson, Gaussian

[f A—co, the Poisson becomes a Gaussian... ...and A > 20 is enough!

Poisson and Gaussian distribution comparison

0 —— Poisson (A = 20)
- —— QGaussian (u = 20)

10° =

10°

10

I | 1 | | I | 1 1 1 I | 1 | | l 1 L L [
10 20 30 40 50
Value

1

ofF T HIHW

However, note that the TAILS are not quite the same!!!
This is the very reason for the difference between Chi2 and (binned) likelihood! g5



Binomial, Poisson, Gaussian
“If the Greeks had known it, they would have deified it.”

O
o

0.3

0.2

0.1

=
o

34.19 34.1%

—30 —20 —1o M lo 20 30

“If the Greeks had known it, they would have deified it. It reigns with serenity and in complete
self-effacement amids the wildest confusion. The more huge the mob and the greater the
apparent anarchy, the more perfect is its sway. It is the supreme Law of Unreason.
Whenever a large sample of chaotic elements are taken in hand and marshalled in the order
of their magnitude, an unsuspected and most beautiful form of reqularity proves to be latent
all along.” [Karl Pearson]
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Binomial, Poisson, Gaussian

. . Range Inside Outside

The Gaussian defines s 68 7 55 07
the way we consider (e 95 7% 5 70
i + 30 99.7 % 0.3 %
uncertainties. + 50 99.99995 %  0.00005 %

34.1% 34.1%
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Student’s t-distribution

Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the

mean u and width o well - we only know estimates of them! This changes the
PDF to:

v+1

[zt 1 —5\2\ 2
p([l?‘l/,ﬂ,éj)zr (2) <1+_<xAlu) V= Np,r=n-—1

(%) Vrvo? v o

N|R
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Student’s t-distribution

Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the
mean u and width o well - we only know estimates of them! This changes the
PDF to: "

(= 1 (m—,&)2 -

AA2 2

x|V, L,0%) = 14+ — - V= Npr=n—1
p(z|v, f1,67) T() Vavor == DoF

“Discovered” by William Gosset, student’s t-distribution takes into account the
lacking knowledge of the mean and variance (as is the case for small samples).

0.40 1.0
0.35
0.8
0.30
0.25 06
=0.20 <
0.15 *04
0.10
0.2
0.05
0.00 0.0
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Student’s t-distribution

Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the
mean u and width o well - we only know estimates of them! This changes the
PDF to:

v+1

(= 1 <x—,1>2 -
~ A2 2
x|V, L,0%) = 14+ — - V= Npr=n—1
el i) = p me o s =

“Discovered” by William Gosset, student’s t-distribution takes into account the
lacking knowledge of the mean and variance (as is the case for small samples).

0.40 1.0
0.35 v=1
0.30 _— =2 0.8
0.25 V=9
= — =4 \’,<|0'6R
Z0.20 x
nac % 0.4}

When mean and width are poorly known, estimating it from sample gives:
| z — , z — I
Gaussian: z = ——— Student’s: { = —
o o
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I like the following overview of the most common PDFs, though it is far from

Distribution Overview

perfect. However, it shows what makes the essential differences between PDFs.

Discrete

Can you estimate
outcomes and

Distributional Choices/Identification

Is the data discrete or
continuous?

N\

Continuous

Is the data symmetric or

probabilities? asymmetrric?
7/ - i
Yes Mo Symmetric Asymmetric
\ I e P Where do the outiiers
- ie?
Estimate ) central value? o
probability Is the data symmetric
distribution of aymmetric? \
i — Yes
Symmetric  Aysmmetric \
: How likely
Are the values clustered Are the outliers Only - Mostly
around a central value? positive or No oo the positive SOy powsive negative
negative? outliers?
N : |
No - ! o
\/’es Only +V More+Ve More -ve No outliers. Limits on data Ver‘fl low Low
v i \
. ’ Uniform or s . Lognormal e
. . Uniform ) Negative Hyoergeo ) " Logistic | Exponential Minimum
Binomial Geometric : ) ’ Multi- Triangular Normal Gamma
Discrete Binomial metric modal Cauchy Weibull Extreme
Bnomal Duscrete Urdom Meg Bromal ”V‘}' wiie ~ Undoin Tnangubar Noimal Logiste Logrernal - —
From: A. Damodaran
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Distribution
Relationship

The different PDFs are
related.

As can be seen, essentially
all PDFs “converges”
towards the Gaussian
(normal) distribution.

630

Table of Common Distributions

Geometric Discrete
C/ @) n=1 uniform
min X, A Negative a=f =\ Beta-binomial
binomial (n,a,B)
(n, p) i« Hypergeometric
; |P= &+
E)\="(1‘P) | (M, N, K)
| i B l g+~ —
* )\ =np + /”///
Poisson n— o Binomial{ __--"" p =M/N,n=K
™ (n, p) N oo
CadW - %
X, \\\ —)‘\" /u=np Bernoulli
X, NAT* ’nO‘:'IP(I—p) n=1 2
N X Normal
L | (#’0-2) '\\\ o= B—Cb
ognormal [*___ ] ~~o
log X X-u N \\ “~~._| Bena
g X, \ U=TA (a, B)
Normal ¢ ek
0,1
s
X, " LX? X
/
=X, /
; / /\‘ Az Uniform
/7N / Chi-squared v\ _ o _; X
/ X /v (y) - X
1 / 177 =2 e~
% C Cauchy // X./v, / y=2 /
; i x —Xlog X
y— o // /// py—
/ FF -
// (v, v,)
p=1 /, X, - X,
/ 4
/ X
/ Weibull Double
' (y.N) exponential
(v)

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986).
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Distribution
Relationship

The different PDFs are
related.

As can be seen, essentially
all PDFs “converges”
towards the Gaussian
(normal) distribution.

Don’t worry about
knowing them all....
Through a long life in
statistics, I have still yet to
encounter all of these in
use!

630  Table of Common Distributions

Geometric Discrete
C) @) n=1 uniform
min X, A Negative a=f =\ Beta-binomial
binomial (n,a,B)
(""p) E p= & Hypergeometric
A=n(1~p) s (M,N, K)
i B l g+~ -
A=np T
Poisson n— o Binomial |} _-~~" p=M/N,n=K
™ (. p) N=oo
: £ IX
X, Y —)‘\" Bernoulli
nx, N p— g0 =np(l-p) ,_] (P
N e*
Lognormal
log X X-yu
7
Normal
0,1
s
X, P . ¢
=X / 2 Unif
=
N\ / Chi-squared ") _» yr -1 £X o
/ X /v ) ¢
1 Cauchy / Lt i =2, e
% 7 X /,,2 - y=2
/ X : —X log X
e 5 P Exponential
/ F ¥ M\
/ (v, v,) min X, —Z
yv=1] // X! X' - Xz
// 5 y=1 (X
/ X

Weibull
(v N)

Double
exponential

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986).
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630  Table of Common Distributions
[ ] [ ] [ )
Distribution peassases e
N u

. . ; EEER n l..l =
R e 1 atl O n S h 1 min X, L% Negative a=8=1 Beta-binomial E
binomial : (n,a,ﬁ) : S EEEEEEEEEEEEE
("»P) .lllllﬁlllll| : H ; :
I \=n(1~p) 7= @+ : yr:;;’g;c?r[rgmc :
The different PDFs are — s SR
Poisson n—co Binomial [} =" p=M/N,n=K
related. O‘) (n’ P) EXI;J:-“: EEEEENg
X DN =;\’2 / 1 | Bernoulii | =
mnx, N g— o =np(l=p) 1% ®» |=
As can be seen, essentially £ et Norml e SRLEEEEEELE
Lognormal ’ \\\\: : EEEEEEEN l:
all PDFs “converges” 8 X xu ST N G ke |
. -lllllllllg i \B=T :~ (a, B) :
towards the Gaussian e o N L
. . . : ((V8Y)} : 3 X, =83=1
(normal) distribution. s ———(¥7%  \
A ; (am;r)la
Xz // EX'Z :X, r, | B BN EEEENg
X, / . i .
Don’t worry about Tt // ) Chisquared [} 55 12 \\£x, & [ U
kTIOWing them all . )}E Ei Cauchy E // X:_;:: , (v) A=2 I o X B ; Il " ;I m
. :lll T, //VIX - - —A log
Through a long life in o) g e Exponentil
. . . / V., in X, —Z
statistics, I have still yet to A A S i -
. I A a=1 A '
encounter all Of these ln /// X = FEEhEyEEEEyg
' FuEn lf mmmy Weibull : Double :
use. - ! . (y. N a| exponential | =
: (v) : :lllllllll:

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986).
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Distribution Overview

T | e
A AV
o |5

Geometric

-
r 4

——
o
Bt
=
AN

I h}isson € > Exponential
| T
Log Normal l Weibull
N
Normal s
(Gaussian) B itiffuared
Student’s t « N v
Gamma
Wb

A perhaps simpler overview.

N -
¢ C |
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The ChiSquare



Ophiuchus

The dlscovery of Cereé

Dwarf planet and the largest astroid- (r—487km)

T T "+ Theta Ophiuchi




*- Theta Ophiuchi

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet
until 11th of February. He published the positions, but duie to Ceres being behind the sun, it would be out
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it
was recovered on the 81st of December 1801 by von Zach and H. Olbers. |

The young man’s name was Catl Friedrich Gauss, and the method he used /invented for this was...



*- Theta Ophiuchi

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet
untif 11th of February. He published the positions, but due to Ceres being behind the sun, it would be out
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it
was recovered on the 81st of December 1801 by von Zach and H. Olbers. |

The young man’s name was Catl Friedrich Gauss, and the method he used /invented for this was...

..method of least squares!



Method of Least Squares

The problem at hand is determining the curve that best fitted data:

Equation of fitted line:éy = 0.40x+0.51

Sum of areas = 0.51

The “best fit” is found by minimising the sum of the squares...

Originally, uncertainties were not included (not “invented” yet!)
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Method of Least Squares

The method of least squares is a standard approach to the approximate
solution of overdetermined systems, i.e. sets of equations in which
there are more equations than unknowns.

[Graph |

o R "o

5 - po 3.599 + 0.3333
“Least squares” means that the overall 3 l ] | ’ ’
solution minimises the sum of the squares | 1 i | l ‘ ’
of the errors made in solving every single i
equation. E }

L e B B g

The most important application is in data fitting. The best fit in the
least-squares sense minimises the sum of squared residuals, a residual
being the difference between an observed value and the fitted value
provided by a model.
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Method of Least Squares

The problem at hand is determining the curve that best fitted data:

15F

10

Originally, uncertainties were not included (not “invented” yet!)
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Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method

g3
: [ ]
21—
=
0~
1 :_ —— Sine function + constant
= Two 2. deg. polynomia
_o— o o - 3. deg. polynomium
E o * — 4. deg. polynomium - qubic term
—1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

1 0 1 2 3 4

Well, what do you define as “best”? 13



Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method

LS = 4.8
LS = 8.1
LS = 6.2
LS= 7.6

Sine function + constant

Two 2. deg. polynomia

o — 3. deg. polynomium

4. deg. polynomium - qubic term

3 4
X

L
o
-
N

Well, what do you define as “best”? And how good is it?!? 1



Method of Least Squares

Look at the figure below, and determine which curve fits best...
lllustration of Least Squares' Method

3 f_ — LS=10.4 . .
— — LS=104
o[ — LS =10.6
E — LS=10.2
1=
0~
1 : ——  Sine function + constant
[ . Two 2. deg. polynomia
2 :_ ) — 3. deg. polynomium
3 E * — 4. deg. polynomium - qubic term
el ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! | ! ! ! ! |

L
o
—_
N

3 4
X

Well, what do you define as “best”? And how good is it?!? )
5



Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

3
— ==8
2 — % .\~\
= ¥ \
= V7 24 |
11— \ %%
[ 7
- / )
= / \
E N /7
1 \\ // ——— Sine function + constant
[ Z4
— St | Two 2. deg. polynomia
-2 :_ | ——— 3. deg. polynomium
3 :_ — 4. deg. polynomium - qubic term

1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
1 0 1 2 3 4

Well, what do you define as “best”? 16



Defining the Chi-Square

Problem Statement: Given N data points (x,y,0y), adjust the parameter(s)
O of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting

data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

3
— ==8
2 — % .\~\
= ¥ \
= V7 24 |
11— \ %%
[ 7
- / )
= / \
E N /7
1 \\ // ——— Sine function + constant
[ Z4
— St | Two 2. deg. polynomia
-2 :_ | ——— 3. deg. polynomium
3 :_ — 4. deg. polynomium - qubic term

1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
1 0 1 2 3 4

Well, what do you define as “best”? 18



Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

————  Prob(y2= 62.1, Ndof=42) = 0.024
Prob(y2= 50.3, Ndof=42) = 0.179
———  Prob(y?= 39.2, Ndof=42) = 0.595 i

(
(
(
Prob(y?= 65.7, Ndof=42) = 0.011

||||||||||| |||||||||T|||||||||||||
/
\
//

0 * \ /7
~1 \\ // ——— Sine function + constant
v <
St—11| Two 2. deg. polynomia
. [ — 3. deg. polynomium
3 — 4. deg. polynomium - qubic term

1 0 1 2 3 4

Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

Prob(y®= 62.1, Ndof=42) = 0.024

— (
3
Prob(x?= 50.3, Ndof=42) = 0.179 L
» ———  Prob(y?=39.2, Ndof=42) = 0.595 ,;é‘"'!\i‘ I\I?ejtl
———  Prob(y?= 65.7, Ndof=42) = 0.011 // \ ode

||||||||||| |||||||||T|||||||||||||
/
\
//

0 * \ /7
~1 \\ // ——— Sine function + constant
v <
St—11| Two 2. deg. polynomia
. [ — 3. deg. polynomium
3 — 4. deg. polynomium - qubic term

1 0 1 2 3 4
X

Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare Method

Not bad
3 ———  Prob(y2= 62.1, Ndof=42) = 0.024 / either!
Prob (2= 50.3, Ndof=42) = 0.179 JEE
5 ———  Prob(y?= 39.2, Ndof=42) = 0.595 ,;é‘"'!\i\ N?ejtl
———  Prob(y?= 65.7, Ndof=42) = 0.011 // \ ode

||||||||||| |||||||||T|||||||||||||
/
\
o
A

O i Ny V4
-1 \ /// - Sine function + constant
Nt—t | Two 2. deg. polynomia
-2 | — 3. deg. polynomium
3 — 4. deg. polynomium - qubic term

1 0 1 2 3 4

Well, what do you define as “best”? The Chi2 quantifies this!
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare Method

Sine function + constant
Two 2. deg. polynomia
3. deg. polynomium

4. deg. polynomium - qubic term

What about now with larger errors?

3
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare Method

4 F—
— ———  Prob(x?= 40.9, Ndof=42) = 0.520
3— Prob(x2= 42.6, Ndof=42) = 0.446 I
— ———  Prob(y?= 41.7, Ndof=42) = 0.483 T
21— T N
- ——— Prob(=415, Ndof=42) =0.492 | LI | TR
I W 4 ™
= 74
= \ 7 \
= | \ | /&/ k
E N P
-1 \ =4 — Sine function + constant
o Two 2. deg. polynomia
= | — 3. deg. polynomium
-3 :_ — 4. deg. polynomium - qubic term
_I I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1
-1 0 1 2 3

What about now with larger errors?
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Chi-Square method

Look at the figure below, and determine which curve fits best...

lllustration of ChiSquare

Meth
ethod With larger errors

4 — n
— it th
— ——  Prob(y?= 40.9, Ndof=42) = 0.520 all models fit the
- data well.
3 Prob(y?= 42.6, Ndof=42) = 0.446
— ———  Prob(y?= 41.7, Ndof=42) = 0.483 T
21— T N
- ——— Prob(=415, Ndof=42) =0.492 | LI | TR
1 il \ i /%/ \
— / N
= \ 7 \
= | \ | // §
E N P
-1 \\ —// — Sine function + constant
o Two 2. deg. polynomia
= | — 3. deg. polynomium
-3 :_ — 4. deg. polynomium - qubic term
_I I 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I
-1 0 1 2 3 4

What about now with larger errors?
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

4 \

- Sine function + constant
Two 2. deg. polynomia
— 3. deg. polynomium

4. deg. polynomium - qubic term

o
III|IIII|IIII|IIII|IIII|IIII|I
5 \\\

e

I 1 1 1 1 I 1 1 1 1 I
2 3 4

|
—_
o
—_

What does smaller errors do?
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Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

3 ———  Prob(y2= 84.5, Ndof=42) = 0.000
Prob(x?= 65.8, Ndof=42) = 0.011
2 ——— Pro

Prob(y?= 72.3, Ndof=42) = 0.003

// \

(
( = == SN
b(x2= 33.1, Ndof=42) = 0.835 / \
( 7 N
7

- Sine function + constant
Two 2. deg. polynomia
— 3. deg. polynomium

4. deg. polynomium - qubic term

o
T[T T[T T[T T[T TTTT]
\\\
=

3 4

N
o
-
N

What does smaller errors do?
126



Chi-Square method

Look at the figure below, and determine which curve fits best...
lllustration of ChiSquare Method

3 ———  Prob(y2= 84.5, Ndof=42) = 0.000
Prob(x?= 65.8, Ndof=42) = 0.011
2 ———  Prob(x2= 33.1, Ndof=42) = 0.835
——— Prob(y2= 72.3, Ndof=42) = 0.003
1 With smaller errors
there is only ONE model
0 that fits the data well.

\\
Sine function + constant

Two 2. deg. polynomia
3. deg. polynomium

4. deg. polynomium - qubic term

3 4
X

N
o
-
N

What does smaller errors do?
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Defining the Chi-Square

Problem Statement: Given N data points (x,y,0y), adjust the parameter(s)
O of a model, such that it fits data best.

The best way to do this, given uncertainties o; on y; is by minimising:

XQ(H) = Z (yz ¥ fg(;vza 9))2

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting

data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!
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Defining the Chi-Square

Problem St Note that when doing a weighted mean, arameter(s)
one should check if the measurements
agree with each other!

e This can be done with a ChiSquare test. e
> 2
2 (yz =+ f (37 i 6)))
X“(0) = E : 52 7

%% I ndf 9.012/8

- Prob 0.3413
- po 3.599 + 0.3333

=30 N I to overstate!
- | ] |[ que way of fitting
: rof-fit measure.

The power ¢

Not only does it pr¢
data, but more impx

Th: FeSt!

= N w & wn (=2}
T ||l||
_—
P
et
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Weighted mean & ChiSquare

The weighted mean is actually an analytical ChiSquare minimisation to a
constant. The result is the same, and one can then calculate Prob( 2, Ndof).

Example:

Data (from pendulum experiment) could be four length measurement (in mm):

d:[17.8 £0.5,18.1 £0.3,17.7 £ 0.5,17.7 =+ 0.2]

The output from the above data is (many digits for checks only):

Mean = 17.8098 mm
Error on mean = 0.15057 mm
ChiSquare = 1.28574
Ndof =3
Probability =0.7325213

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or
similarly, which could be biased by an angled view. Then we would be fooling

ourselves. We will discuss such “systematic uncertainties” more! 130



Weighted mean & ChiSquare

The weighted mean is actually an analytical ChiSquare minimisation to a
constant. The result is the same, and one can then calculate Prob( 2, Ndof).

Example:

Data (from pendulum experiment) could be four length measurement (in mm):

d:[17.8 £0.5,18.1 £0.3,17.7 £ 0.5,17.7 =+ 0.2]

The output from the above data is (many digits for checks only):

Mean = 17.8098 mm

Err.or on mean = 0.15057 mm d=(17.81 + 0.15) mm
ChiSquare = 1.28574 p(x2=1.3, Nao=3) = 0.73
Ndof =3

Probability =0.7325213

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or
similarly, which could be biased by an angled view. Then we would be fooling

ourselves. We will discuss such “systematic uncertainties” more! 131



Why the ChiSquare is great

132



Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

133



Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>
6.5

— %= 0.0

6 Linear: p1
5.5
5
4.5
4

3.5

3

1T IIII|IIII|IIII|IIII|IIII|IIII|IIII|II
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

6.5

1T IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

— %= 0.0

Linear: p1

This can only be done
in one (unique) way:

Ndof = 0!

2.5 3
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

— %= 0.0

Linear: p1
— %= 0.0

>

This can only be done
in one (unique) way:

Ndof = 0!

1 1.5 2 2.5 3

Exponential

1T IIII|IIII|IIII|IIII|IIII|IIII|IIII|II
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

lllustration of Number of Degrees of Freedom

>

_ X2= 14.5 Linear: p1
— ¥2=20.4 |

. Now there is one
Exponential

point “too many”:
| Ndof =1

0.5 1 1.5 2 2.5 3 3.5

X
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Number of degrees-of-freedom

How to find / calculate the Number of degrees-of-freedom (Ndof) in a fit?

>

6

lllustration of Number of Degrees of Freedom

Exponential

Of course for pol2 the
solution is still unique:

Ndof=0

3.5
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Number of degrees-of-freedom

The number of degrees-of-freedom, Ndof, can be calculated as the
number of points in the fit minus the number of parameters in the fit
function:

Ndof = Ndata points — Nfit variables

lllustration of Number of Degrees of Freedom

- With 39 points

and 3 parameters:

E | ||||||||||%||||||| Ndof = 36

llllllllllllllllllllllllllllllllllllllll
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The Chi-Square distribution and test

The Chi-Square distribution for Ngof degrees of freedom is the distribution of
the sum of the squares of Nqof normally distributed random variables.
fi(x) 2 Fi(z) ¥

k=1
03 T ]. E_l _ A,_‘) L.OT
SErey BT T s
0.41 22 F(§) Tl 0.81 —
: — k=6 k=1
0.31 k=9 0671 — k=2
k=3
0.4 =14
— k=6
2
0.2 31,
l 0.0 4 | l
o 1 2 3 4 5 6 7 8

The Chi-Square test consists of comparing the Chi-Square value obtained from
a fit with the PDF of expected Chi-Square values. This allows the calculation of
the probability of observing something with the same Chi-Square value or
higher...

Rule of thumb: Chi-Square should roughly match Ngos
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Chi-Square probability calculation

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...
what is the probability of getting this
Chi-square value or something worse,
assuming this is the correct fit function!

Example:

A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof=k=5)at7.1)...

Chi-square distribution(s)
e

vvvvvvvvvvvv

— k=1
— k=2

k=3
— k=4
—— k=5

...and cumulated.

..............




Chi-Square probability calculation

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...
what is the probability of getting this
Chi-square value or something worse,
assuming this is the correct fit function!

Example:

A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof=k=5)at7.1)... 1-0.78 =22%

Chi-square distribution(s)
e

vvvvvvvvvvvv

— k=1
— k=2

k=3
— k=4
—— k=5

...and cumulated.

............




Chi-Square probability calculation

In the table below, one can get a quick estimate for low Ngof.

x2 value 1€

Degrees of freedom (df)

1 0.004 0.02 0.06 0.15 0.46 1.07

0.10
0.35
0.71
1.14
1.63
2.17
2.73

© oo N O O~ M

3.32
10 3.94
P value (Probability) 0.95

0.21 0.45 0.71 1.39 2.41
0.58 1.01 1.42 2.37 3.66
1.06 1.65 2.20 3.36 4.88
1.61 2.34 3.00 4.35 6.06
2.20 3.07 3.83 5.35/7.23
2.83 3.82 4.67 6.35 8.38
3.49 4.59 5.53 7.34 9.52

1.64
3.22
4.64
5.99
7.29
8.56
9.80

2.71
4.60
6.25
7.78
9.24
10.64
12.02

11.0313.36

4.17 5.38 6.39 8.34 10.66 12.24 14.68

4.86 6.18 7.27 9.34 11.78 13.44 15.99

Non-significant

3.84
5.99
7.82
9.49

6.64 10.83
8.21 13.82
11.34 16.27
13.28 18.47

11.07 15.09 20.52

12.59 16.81 22.46

14.07 18.48 24.32

156.51 20.09 26.12

16.92 21.67 27.88

18.31 23.21 29.59
0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001

Significant
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Chi-Square probability calculation

In the table below, one can get a quick estimate for low Ngof.

Degrees of freedom (df)

x2 value |16

1 0.004 0.02 0.06 0.15 0.46 1.07 164 271 3.84 6.64 10.83

0.10

Nnag

0.21 0.45 0.71 1.39 241 322 460 599 9.21 13.82

chi2_prob = stats.chi2.sf(chi2_value, Npor)

NEQ 4 N4 4 A0 007900 AcA oo 789 1134 16.27

Python:
0.49 13.28 18.47

sf (survival function) = 1 - CDF 11.07 15.09 20.52

1.63
2.17
2.73

© oo N O O~ M

3.32
10 3.94
P value (Probability) 0.95

2.20 3.07 3.83 56.35 7.23 8.56 10.64 12.59 16.81 22.46
2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 18.48 24.32
3.49 459 5563 7.34 9.52 11.03 13.36 15.51 20.09 26.12
4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 21.67 27.88
486 6.18 7.27 9.34 11.78 13.44 15.99 18.31 23.21 29.59
0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001
Non-significant Significant
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Chi-Square probability interpretation

The Chi-Square probability can roughly be interpreted as follows:
e If x2/ Ndof = 1 or more precisely if 0.01 < p(x2,Ndof) < 0.99,
then all is good.
o If x2/ Ndof » 1 or more precisely if p(x2Ndof) < 0.01,
then your fit is probably bad! Four potential reasons:
Hypothesis/model wrong, data is faulty, errors too small or unlucky!
o If x2/ Ndof « 1 or more precisely if 0.99 < p(x2,Ndof),
then your fit is TOO good! Two potential reasons:
Overestimated uncertainties or lucky!

If the statistics behind the plot is VERY high (great than 10¢), then you
might have a hard time finding a model, which truly describes all the
features in the plot (as now tiny effects become visible), and one hardly
ever gets a good Chi-Square probability. However, in this case, one
should not worry too much, unless very high precision is wanted.

145



Chi-Square probability interpretation

The Chi-Square probability can roughly be interpreted as follows:
e If x2/ Ndof = 1 or more precisely if 0.01 < p(x2,Ndof) < 0.99,
then all is good.
e If x2/ Ndof » 1 or more precisely if p(x2,Ndof) < 0.01,
then your fit is probably bad! Four potential reasons:
Hypothesis/model wrong, data is faulty, errors too small or unlucky!
o If x2/ Ndof < 1 or more prec1sely if 0.99 < p(x2,Ndof),
then =
Of,er Note One Should only use Xz Ndof as a

rule-of-thumb, and be cautious anyway:

If the st Prob(x2=3.0, Ngo=2) = 0.223 ﬁyou
might t Prob(x2=300.0, Ngo=200) = 0.000006 the
features nardly
ever ge IS
should | Always calculate and consider the probability! |
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Chi-Square for binned data

If the data is binned (i.e. put into a histogram), then Pearson’s Chi-square applies:

101 121314151617 1819 f—é
B— 20 25 30 35 39— -
=r AN SR B N = Hist Sum
E— 80 85 30 95 99 —E m—
A- OBSERVED Entries 100000
\\ Mean 0.002193
e EXPECTED
. \\\ > RMS 1.003
B8, 2
~ .
. \“\io 721 ndf 58.35 / 84
L {
c o e o S
s A AN Prob 0.9851
2 e, 80 " )
E Lo g, ) Ll 7 Ll
W A Constant 3981+ 15.4
Ty i
N 100 g T,
B Mean  0.001794= 0.003169
Sigma 1.002 = 0.002

(OBS - EXP)2/ EXP~

0887654 3 2 105 o 05 1 2 3 45678910

L e

+3 +2 + [] -1 -2 o
(0BS-EXP) / VEXP

-6 -4 -2 0 2 4 6

The formula (based on Poisson statistics) is:

O, — E,)?
o_ (0= B)

1 € bin

/
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Chi-Square for binned data

While Pearson’s Chi-square test is quite useful, it has some limitations, especially
when some bins have low statistics.

The expected cell count (E;) should not be too low. Some require 5 or more, and
others require 10 or more. A common rule is 5 or more in 80% of bins, but no cells
with zero expected count. When this assumption is not met, Yates’s Correction
can be applied.

One alternative is to divide by O; when O; is not 0 (ROOT /Minuit).

Another alternative is the likelihood 9 Z (OZ L E’L ) 2

fit, which does not suffer under X S —
low statistics. EZ
1 € bin
Yet, another alternative is the G-test,
which is more robust at low .
cn | G=2%" 0, n(0;/E)
statistics. However, I've never

seen it in use. . .
1 € bin 148



Example of Chi-Square

300 T T T ‘ T T T T T T T T | T T T ;' ]
. [\ -
L |\ 4
i | 4
250 " .
— i [ \J
- ! [ 3
& } l J
p | [ —
3 200 |
£ N 4
T : [N
< = 4
— 150 H- / —
| L .". A
C 3 " | 'c‘ 4
p—1 - | .
6 | || /
2 100 '_'T | —
- o ' 1
% [ ,I ]
50 —\__~ | ]
0 L 1 1 1 1 l 1 1 1 1 I 1 1 \r\ )-/I 1 1 1 J
0.0 0.5 1.0 1.5 2.0 2.5
x

The fact that there are several minima makes fitting difficult/uncertain!
Always give good starting values!!! 149



Why the ChiSquare is (near) magic
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Example of Chi-Square

The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.

b=-0.715-0.0593 + 0.0593
i
17 - !
I
I
I
I
I
16 - -
I
I
I
I
I
I
O 15 :
I
I
I
I
:
141 : X2 minimum + 1
\ :
I
I
137 v H v X2 minimum
-0.80 -0.75 ~0.70 ~0.65 ~0.60
b 151




Example of Chi-Square

Please commit to memory!

The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.

FCN

17 -

16 -

14 -

13 A

b =-0.715-0.0593 + 0.0593

N

v

—0.80

-0.75

-0.70

—0.65

—0.60

X2 minimum + 1

X2 minimum
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Example of Chi-Square

Uncertainties need not always be symmetric (though that is usually better!)

T L L S R B B B B T 2 5F ; T T T =
o |
I |
4 | ¥<
- . . ! /
' 20F /]
1.000 ' /
[ i |
|
h |
| [ VI T 5 | €
- ! - - |
e Wn 13 Vx -3\\ |
= 0.995 Wi ’ N 5 !
- 1 <1 L \ [
|l 'I 0= %\ . * -
u I RN
| \\
0.990 r | N /
. - B | \ % /
J'.E) | . / -]
L . }(
|
. \,\ Y,
.
! . X
N . SERWEIVIWE 4
NPT B I P 1L uv.U O Ll L1 R o2 SAIPPEPEE B
/772 /775 /774 7775 /776 6.0 6.1 6.7 6.3 6.4
A [i] log €4

Asymmetric uncertainties are tricky to deal with (see later and /or Barlow).
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Example of Chi-Square

Fitting with multiple variables, one obtains a multi-dimensional parabola.

This is summarised in:
- Central fit values, p

~

- Covariance matrix, V

The diagonals of V are the
variance (= 02) of the fit
parameters.

The off-diagonals of V

are the co-variances (and
thus correlations) between
fit parameters.

You should always look at
these, as they reveal a lot
about your fit (see later).

Ax?

Xo

6.0 1

4.5

3.0 1

1.5

0.0

20 A

10 1

00 -

-10 1

-20 -

(Ag) = 1.440
Op, = 0.067

—éa -io O‘U lb 2‘0

6.0

4.5

1.5

0.0

profile x?2

parabolic approximation
1o contour

20 contour

fit minimum

(Xo) = 4.34
Oy, = 0.14

20

.16 00 1o 20
Xo
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Example of Chi-Square

Angular Scale [Degrees]
100 20 5 2 1 05 0.2

| I | | | | |
—— ACDM @,

® WMAP
L1 ARCHEOPS
O MAXIMA

A DASI

— B ACBAROS8

- ¥ VSA

O CBI

— ® BOOMO05

Ik

O
. ”Flttmg the Universe”

1 510 1 OO e 500 1 OOO 1500
eff

Ned Wright - 03 Mar 2008
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Notes on the ChiSquare method

“It was formerly the custom, and is still so in works on the
theory of observations, to derive the method of least squares
from certain theoretical considerations, the assumed normality
of the errors of the observations being one such.

It is however, more than doubtful whether the conditions for
the theoretical validity of the method are realised in statistical
practice, and the student would do well to regard the method
as recommended chiefly by its comparative simplicity and by
the fact that it has stood the test of experience”.

|G.U. Yule and M.G. Kendall 1958]
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Calibration



Calibration definition

"Operation that, under specified conditions, in a first step, establishes a relation
between the quantity values with measurement uncertainties provided by
measurement standards and corresponding indications with associated
measurement uncertainties (of the calibrated instrument or secondary standard)
and, in a second step, uses this information to establish a relation for obtaining a
measurement result from an indication.”

[International Bureau of Weights and Measures]
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Calibration definition

"Operation that, under specified conditions, in a first step, establishes a relation
between the quantity values with measurement uncertainties provided by
measurement standards and corresponding indications with associated
measurement uncertainties (of the calibrated instrument or secondary standard)
and, in a second step, uses this information to establish a relation for obtaining a
measurement result from an indication.”

[International Bureau of Weights and Measures]

Personally, I would shorten this to:

“Operation that, under specified conditions:

e Establishes a relation between the quantity of interest and associated information
e Uses this information to correct/improve the estimate of the quantity of interest.”

[Shortening of the above]

Let’s have a few examples...

15€



Calibration is many things!

Every field of science involves calibration of some kind.

CMS 4.9 fb™ \s=7TeV
m - L] T T I T T ]' T T Ll I T T T R
c 30000 —
Ay ]
9 : TR Traw i
S 25000 |- ] % T caiio ]
2 § g W =-0.412+0.002
- [ ; raw i
D 20000 s G, = 0.499+ 0.001 _|
> B o - + |
Q - R M= 0.015+ 0.001 -
—~“— . o,
5 - S 2 G, = 0.438+0.001 -
~ 15000 i cal .
) B o E f .
2 B St .
€10000 |- [iide .
= [ Rl }
Z - R )
5000 [~ g -
0 B e R T
-2 0 2 4 6

Calibration of CMS calorimeter timing

ECAL Timing [ns]

Calibration target of Mars rover “Curiosity”

Fluoresence Intensity

400 -
350 4 .
30.0 . ¢
250 4 .
200 ¢ ) ,
+ Calibration of
15.0 )
o concentration to
10.0 - . .
¢ fluorescence intensity
504 o .
) (chemistry)
0.0 T T T \
0 5 10 15 20 25
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Calibration is many things!

Every field of science involves calibration of some kind.

CMS 4.9 fb™ \s=7TeV

m - 1] T T I T T 1] ]' T T 1 ]' T T L] 4
c 30000 —
9 : TR Traw i
S 25000 |- ] % 1 i -
% - _==, W =-0.412+0.002 | ]
g 20000 [ % G,y = 0.499 £ 0.001 |]
- 5 5" _ + -

Q - T uca"b =0.015+ 0.001 -
e g — ]
o) 15000 - S O b= 0.438 + 0.001 N
S - = o .
_8 - N : Calibration in this case is both -
R R o . . n

B T tion and improvement -

E 10000 - ﬁ 5 correc p B
= [ R }
Z - i ]
5000 [ fiideees .

0 “-:::“““:::: BT B

-2 0 2 4 6

Calibration of CMS calorimeter timing

ECAL Timing [ns]

Calibration target of Mars rover “Curiosity”

Fluoresence Intensity

400 -
350 4 .
30.0 . ¢
250 4 .
200 ¢ ) ,
+ Calibration of
15.0 )
o concentration to
10.0 - . .
¢ fluorescence intensity
504 o .
) (chemistry)
0.0 T T T \
0 5 10 15 20 25
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General considerations

Though calibration spans widely, there are a few general considerations:
% Using control sample/group:

e Purpose: To ensure that there is not some (inherent) bias.

e Aim: A good control sample is large and looks “exactly” like signal.

e Example: People without “signal” disease spanning same age/lifestyles.
% Considering result for already well determined quantity:

e Purpose: To ensure that there is not some (inherent) bias.

e Aim: A good control measurement is “easy” and well measured.

e Example: Unbiased momentum resolution using particle resonances (Z).
% Determining relation to well measurable quantity:

e Purpose: Infer quantity in question from other sources/ measurements.

e Aim: If one can’t measure directly, perhaps it can be done indirectly.

e Example: Measuring flow of liquid in pipe using microphone (noise!).

Each field of science have their own “tricks of the trade”, and sometimes
breakthroughs and Nobel Prizes are made through calibration (length scales
in the Universe, search for the ether, accurate carbon 14 dating, etc.).
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Example: Carbon 14 dating

Carbon 14 dating used (and uses) samples
of known age (from historical sources) to
calibrate the scale and uncertainties.

Tree rings have played a central role!

INTCAL13 calibration curve

Radiocarbon age (**C years BP)

Calendar age (cal years BP)

Activity ratio (AJAo)
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I T
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Example: Differential GPS

& &GPS Satellite% ;f
GPS \ % GPS
Reciever < Reciever

" -
+
-
-

VHF Data
Broadcas
[=} 4
GPS N __4e |

Reciever e,

GPS by itself is not accurate enough for planes, but
by correcting GPS position using results at known
places, required accuracy can be obtained.

VHF Data
Broadcast

S

~G !
GPS
Reciever 164




Example calibration

Imagine a variable, X, which has a peak in its spectrum, but which depends on
another variable, Y. Variations in Y “smears out” the peak in X, and we would
therefore like to calibrate for this.

Frequency

Hist_Calib
800 Entries 50000
- Mean 99.9
- RMS 53.79
7001 ¥2 / ndf 264.2 /166
C Prob 1.876e-06
600|— Norm(sig) 3059 = 182.3
- Mean(peak) 100.6 = 0.8
500— Width(peak) 14.73 + 0.77
- Norm(bkg) 231.1+1.6
400—
- ||| |
300— I ! | b
NPT A IPTRNL P ¥ g b B o L L h
200 _—i{ﬂiﬂi I TR ! (U i,
5"" i
100— !
0 : 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
0 20 40 60 80 100 120 140 160 180 200

X as measured
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Example calibration

Imagine a variable, X, which has a peak in its spectrum, but which depends on

another variable, Y. Variations in Y “smears out” the peak in X, and we would
therefore like to calibrate for this.

Hist_Calib Hist_xy
~. 800 Entries 50000 s 1 - Entries 50000
2 - Mean 99.9 I Mean x 100.1
S F RMS 53.79 2 0.9 Meany  0.499
g 700" %2 I ndf 2642/166 | ¢ 1 AMSx 4475
= Prob 1.876e-06 | u 08 1 -" 0.208
600|— Norm(sig) 3059 = 182.3 > =
- Mean(peak) 100.6 = 0.8 07
500— Width(peak) 14.73 + 0.77 06 25
- Norm(bkg) 231.1+1.6 ' =
- g
400[— 0.5 20
- |
300(— “ | 0.4 15
= |'|” A by, 0.3
200 | i
et iy, 028 0
H |l|
1001 5
0 :I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I I I I

o

| |
160
X as measured

1 1 1 1 I 1 1 1
160 180 200
X as measured

20 40 60 80 100 120 140 180

We therefore plot X as a function of Y, and notice a (in this case clear) correlation
between Y and X. From this we can deduce how much the peak is shifted as a
function of Y, and hence correct for it.

Xcalib — Xmeas + ?2?
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Example calibration

Imagine a variable, X, which has a peak in its spectrum, but which depends on
another variable, Y. Variations in Y “smears out” the peak in X, and we would
therefore like to calibrate for this.

Hist_Calib
> 800 Entries 50000
§ - Mean 99.9
3 = RMS 53.79
§ 7001 ¥2 / ndf 264.2 /166
C Prob 1.876e-06
600|— Norm(sig) 3059 = 182.3
- Mean(peak) 100.6 = 0.8
500— Width(peak) 14.73 + 0.77
- Norm(bkg) 231.1+1.6
400—
: Wl
300— " i
C I Y 1l I I
200 i i
ﬁi"‘lll t i
i ty
100f— !
:I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I I I I

o

20 40 60 80 100

120

140

160

1 I 1 1 1
180 200

X as measured

Y as measured

Hist_xy
1 Entries 50000
Mean x 100.1
0.9 Mean y 0.499
' | RMS x 44.75
0.8 u 0.288
| ' 30

| |
160
X as measured

180

We therefore plot X as a function of Y, and notice a (in this case clear) correlation
between Y and X. From this we can deduce how much the peak is shifted as a
function of Y, and hence correct for it. A simple inspection yields:

Xcalib — Xmeas - 4O(Y - 05)
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Frequency

Example calibration

Applying this yields a new and (much) improved resolution of the peak in X, as
would also be expected. At the same time, we can check, that now there is no
dependence of the calibrated value of X on Y.

400

Hist_Calib
800 Entries 50000 S — Entries 50000
- Mean 99.91 o | Mean x 100.2
260 = | RMS 56.36 § Mean y 0.5001
- 2 ndf 180.1 /166 2 02675
C Prob 0.2153 a =30
600— Norm(sig) 2559 + 73.7 >
- Mean(peak) 99.97 + 0.07
500[— Width(peak) ~ 2.071= 0.062 2
C Norm(bkg) 2352 1.2

300

200

100

||||||||I|§
=

1 I 1 1
120

1 I 1 1 1 I 1 1 1 I 1 1 1
140 160 180 200 160

Calculated Xcaiib Calculated Xcaiib
We thus conclude, that the calibration worked, and (of course) describe our
calibration in the paper we publish. Note that sometimes, one needs a “control
sample” for which the correct value is known through other sources.

Xcalib — Xmeas - 4O(Y - 05)

v b b by by
. 80 100

o
N
o
N
o
[e2]
=)
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Frequency

Example calibration

Q: How can we “obtain” a line at say X=100 to be used for calibration?

A: This you have to think AHEAD of time, i.e. when planning the experiment.
It might be as simple as sticking a radioactive source down, or shining light
on the instrument, or sending particles through it, but you have to consider

| this. Otherwise, you might have a 1.000.000$ instrument of unknown working!
’“” 2 ndf 180.1/166 A
Prob 0.2153
600 Norm(sig) 2559 + 73.7
Mean(peak) 99.97 = 0.07
500 Width(peak) 2.071+0.062
Norm(bkg) 235.2+1.2
400
300
200
100
00I I I2|0I I I4|0I I I6|0I I I8|0I I I1(|)0I I I12|0I I I14|10I I I1(|50I I I18|0I I I200 P - 160 - 180

Calculated Xcaiib Calculated Xcaiib
We thus conclude, that the calibration worked, and (of course) describe our
calibration in the paper we publish. Note that sometimes, one needs a “control
sample” for which the correct value is known through other sources.

Xcalib — Xmeas - 4O(Y - 05)
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Simpson’s Paradox

(Really: Simpson’s “apparent” Paradox)
(if time allows)

17C



Case: Berkeley admission

In 1973, University of California, Berkeley,
were considering which of their applicants
got admitted.

As can be seen below, there is seemingly a
bias against women, as a smaller fraction of
women are admitted.

Is that really the case, or is there more to the
data than first glance reveals?
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Case: Berkeley admission

In 1973, University of California, Berkeley,
were considering which of their applicants
got admitted.

As can be seen below, there is seemingly a
bias against women, as a smaller fraction of
women are admitted.

Is that really the case, or is there more to the
data than first glance reveals?

Sex Bias in Graduate Admissions:
Data from Berkeley

Measuring bias is harder than is usually assumed,
and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O’Connell
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Case: Berkeley admission

In 1973, University of California, Berkeley,
were considering which of their applicants
got admitted.

As can be seen below, there is seemingly a
bias against women, as a smaller fraction of
women are admitted.

Is that really the case, or is there more to the
data than first glance reveals?

Sex Bias in Graduate Admissions:
Data from Berkeley

Measuring bias is harder than is usually assumed,
and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O’Connell

Table 1. Decisions on applications to Graduate Division for fall 1973, by sex of applicant—
naive aggregation. Expected frequencies.are calculated from the marginal totals of the observed
frequencies under the assumptions (1 and 2) given in the text. N = 12,763, »* = 110.8,

df.=1, P =0 (18).

Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Men 3738 4704 3460.7 4981.3 277.3 — 277.3
Women 1494 2827 1771.3 2549.7 — 27173 277.3
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Case: Berkeley admission

In 1973, University of California, Berkeley,
were considering which of their applicants
got admitted.

As can be seen below, there is seemingly a
bias against women, as a smaller fraction of
women are admitted.

Is that really the case, or is there more to the
data than first glance reveals?

Sex Bias in Graduate Admissions:
Data from Berkeley

Measuring bias is harder than is usually assumed,
and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O’Connell

Table 1. Decisions on applications to Graduate Division for fall 1973, by sex of applicant—
naive aggregation. Expected frequencies.are calculated from the marginal totals of the observed
frequencies under the assumptions (1 and 2) given in the text. N = 12,763, »* = 110.8,

df.=1, P =0 (18).

Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Men 3738 4704 3737/ (3738+4704) = 44.3% | 271.3 — 277.3
Women 1494 2827 1494 | (1494+2827) = 34.6% — 277.3 277.3
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Case: Berkeley admission

In 1973, University of California, Berkeley,
were considering which of their applicants
got admitted.

As can be seen below, there is seemingly a
bias against women, as a smaller fraction of

Sex Bias in Graduate Admissions:
Data from Berkeley

Measuring bias is harder than is usually assumed,
and the evidence is sometimes contrary to expectation.

women a

s et As already noted, we are aware of the
datathan| hitfalls ahead in this naive approach,
but we intend to stumble into every

table 1. f ONE Of them for didactic reasons. plicant—
naive aggrbmmmmmmmmf observed

frequencies under the assumptions (1 and 2) given in the text. N = 12,763, »* = 110.8,

df.=1, P=0 (18).

hel, J. W. O’Connell

B0/Bickel-Berkeley.pdf

Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Men 3738 4704 3737/ (3738+4704) = 44.3% | 271.3 — 277.3
Women 1494 2827 1494 | (1494+2827) = 34.6% — 277.3 277.3
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Case: Berkeley admission

Bickel et al. goes on to analyse the data further with several interesting findings:

sex. Our computations, therefore, ex- = Out of 85 departments with relevant
cept where otherwise noted, will be  data afew seemtoshow abias... in
based on the remainine 85. For | both directions, and mostly agains
g 4 men!!! What!
start let us identify those of the 85
with bias sufficiently large to occur by | This seems counter intuitive to what
chance less than five times in a hun- = We found to begin with. Where did
dred. There prove to be | four |such i;:éfj dogi? women less than
departments. The deficit in the number
of women admitted to these four (un-
der the assumptions for -calculating
expected frequencies as given above)
is 26. Looking further, we find| six
departments biased in the opposite di-
rection, at the same probability levels;
these account for a deficit of 64 men.
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Case: Berkeley admission

Bickel et al. goes on to analyse the data further with several interesting findings:

sex. Our computations, therefore, ex-

cept where otherwise noted, will be
based on the remaining 85. For a

start let us identify those of the 85
with bias sufficiently large to occur by
chance less than five times in a hun-
dred. There prove to be | four |such
departments. The deficit in the number
of women admitted to these four (un-
der the assumptions for -calculating
expected frequencies as given above)

is 26. Looking further, we find| six

departments biased in the opposite di-
rection, at the same probability levels;
these account for a deficit of 64 men.

Out of 85 departments with relevant
data*, a few seem to show a bias... in

both directions, and mostly agains
men!!! What!

This seems counter intuitive to what
we found to begin with. Where did
the bias of 277 women less than
expected go?

“Here you should ALWAYS ask,
what this involves!

In this case, 16 departments either
had no women applying, or did not
deny any students admission.
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Case: Berkeley admission

In order to illustrate the point, Bickel et al. gives a hypothetical (and fun!) case:

Table 2. Admissions data by sex of applicant for two hypothetical departments. For total,
x:=35171,df. =1, P=0.19 (one-tailed).
Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Department of machismatics
Men 200 200 200 200 0 0
Women 100 100 100 100 0 0
Department of social warfare
Men 50 100 50 100 0 0
Women 150 300 150 300 0 0
Totals
Men 250 300 229.2 320.8 20.8 — 20.8
Women 250 400 270.8 379.2 — 20.8 20.8

The two (very hypothetical) departments are clearly very fair regarding gender, but still a
difference appears between the overall resulting observation and expectation.

178



Case: Berkeley admission

The “apparent conclusion” (Berkeley discriminates against applications from women) is a
result of Simpson’s Paradox (my text):
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reverses, when considering subgroups”. o _© D
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Case: Berkeley admission

The “apparent conclusion” (Berkeley discriminates against applications from women) is a

result of Simpson’s Paradox (my text):

100

“Effect for group, which disappears or
reverses, when considering subgroups”.
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It is effects such as this, which makes
statistics difficult, yet at the same time
very important.
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different degree. The proportion of
women applicants tends to be high in
departments that are hard to get into
and low in those that are easy to get
into. Moreover this phenomenon is
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Fig. 1. Proportion of applicants that are women plotted aga?nst proportion of ?ppli-
cants admitted, in 85 departments. Size of box indicates relative number of applicants
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Simpson’s Paradox explained

The reason for the apparent paradox
arise when frequency data is unduly
given causal interpretations.

The figure on the right illustrates the
“paradox” nicely.

The situation can be illustrated with 2D
vectors, as shown below.

A succes rate p/q (successes / attempts)
can be represented by vectors with a slope.
Higher slope = higher succes rate.

But though B1 is steeper than L1, and B2 is
steeper than L2, then B1+B1 is not as steep
as L1+L2.
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Summary



Summary

. The Central Limit Theorem is you (new?) friend, as it explains why you
should expect Gaussian uncertainties.

. Estimators are given formulae that you should know in order to obtain
(unbiased and efficient) estimates from data.

. PDFs are in some sense our “model building blocks”. Most originate from
given processes (that you should know), and should be used accordingly.

. The ChiSquare is THE way to perform fits, if uncertainties are Gaussian, as
it provides a crucial goodness-of-fit measure.

. Calibration is central part of experimental physics, and requires foresight,
insight, and experimental planning.

. Always consider different types/ classes separately, as this augments
efficiency, and saves you from Simpson’s (apparent) paradox.
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