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Statistics - an overview
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Outline of lectures
Part I - the basics:
- Estimators
- Probability Density Functions
- ChiSquare & p-values
- Calibration
- Simpson’s Paradox

Part II - the necessities:
- Likelihood fitting
- Hypothesis testing
- Systematic uncertainties

Part III - the cool:
- Setting limits
- Look Elsewhere Effect
- The art of plotting
- The Fisher discriminant
- sPlots & sWeights
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Part I - the missing:
- What is probability? Axioms!
- Bayes Theorem & Jeffrey Priors
- Proof of Central Limit Theorem
- Significant digits
- Uncertainty on uncertainties

Part II - the complicated:
- Proof of Minimum Variance Bound
- Fisher Information
- Systematic uncertainty types
- Nuisance parameters

Part III - the wierd:
- Details of Feldman-Cousins
- Time series
- …and surely lots more!



Why Statistics?
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Why uncertainties?
In physics there are various elements of uncertainty:

● Theory is not deterministic
       Examples: Quantum effects & chaos
● Random measurement errors
       Fluctuations are present even without quantum effects! 
● Things we could know in principle but don’t…
       e.g. from limitations in cost, time, etc.

We can quantify the uncertainty using PROBABILITY

Armed with the realisation of limitations, we can make better 
calculations/experiments and informed conclusions.

9



Example: Speed of Gravity

vgravity = 2.89⇥ 108 m/s

That would tell you...
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Imagine that you measured the speed of gravity, and got the following result:



Example: Speed of Gravity

vgravity = 2.89⇥ 108 m/s

That would tell you...

Nothing!!!
Because you have no idea of the uncertainty.
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Imagine that you measured the speed of gravity, and got the following result:



Example: Speed of Gravity
Imagine that you measured the speed of gravity, and got the following result:

vgravity = 2.89⇥ 108 m/s

Depending on the uncertainty, you might foresee three very different conclusions:

vgravity = (2.89± 9.21)⇥ 108 m/s

vgravity = (2.89± 0.09)⇥ 108 m/s

vgravity = (2.89± 0.01)⇥ 108 m/s

Could be anything, 
even negative!

Consistent with c, 
and not much else!

Inconsistent with c: 
New Discovery!!!

(extreme) Conclusion:
Numbers without stated uncertainties are meaningless!
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Why precision?

F = G
mM

r2

How well do we know Newton’s Law of Gravity?
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Newton’s Law of Gravity

F = G
mM

r2
Range of validity?

Valid for all masses?

No other dependencies?

Force central?

Square Law?

How well do we know Newton’s Law of Gravity? Well, reasonably well, but...
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Newton’s Law of Gravity

F = G
mM

r2
Range of validity?

Valid for all masses?

No other dependencies?

Force central?

Square Law?

How well do we know Newton’s Law of Gravity? Well, reasonably well, but...

Seemingly... NO - not large ones!

Maybe not short ranges

Yes, from generel relativity

Being tested: 
Related to 
search for more 
dimensions

15

Why is G 
so small?



Why statistics in physics?
Experimental measurements are only SAMPLES of the reality,
they can never represent the entire set of possibilities, so
→ they are affected by uncertainties
→ results can be expressed as probabilities

Theoretical calculations are mostly APPROXIMATIONS
limited by finite resources to do the calculations or by
imprecise input parameters, so
→ they are also affected by uncertainties
→ predictions can also be expressed in terms of probability

Statistics gives the understanding of uncertainty 
and probability in relating data and theory!!!

16



Why statistics in physics?
Statistics is about hypothesis testing, quantifying the answer to the question 

“which theory matches the data best?”

Statistics is about collecting data 
and logically analysing it, not 
being fooled by coincidences 
and chance observations.

Statistics is about fitting trends 
in data, allowing for projections 
and predictions.

Statistics is about understanding  
data, and extracting the essential 
information from it in the most 
powerful way.

Is the Higgs a spin 0 or spin 2 particle? 17



Biases in statistics...
When ASKING people, one may introduce (deliberate?) biases:
• Wording 1: Pick a color: red or blue?
• Wording 2: Pick a color: blue or red?

One may also bias answers by giving (ir-)relevant information:
• Wording 1: Knowing that the population of the U.S. is 270 million, 
                        what is the population of Canada?
• Wording 2: Knowing that the population of Australia is 15 million,
                        what is the population of Canada?

Color Choice Red Blue

Wording 1 59 % 41 %

Wording 2 45 % 55 %
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Mark Twain:
"There are three kinds of lies:
lies, damned lies, and statistics."

My opinion:
“The only way to convey accurate
information is by statistics.”
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Mark Twain:
"There are three kinds of lies:
lies, damned lies, and statistics."

My opinion:
“The only way to convey accurate
information is by statistics.”

Hal Varian [Chief economist of Google]:
“I keep saying the sexy job in the next ten 
years will be statisticians.”

21
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Why statistics?

QCDHiggs LHCBSM Theory NeutrinosStatistics

ML
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Why statistics?

QCDHiggs LHCBSM Theory NeutrinosStatistics

ML

Because you will need it!
(and maybe even like it)



Central Limit Theorem
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Adding random numbers

If each of you chose a random number 
from your own favorit distribution*, 

and we added all these numbers, 
repeating this many times…

What would you expect?

* OK - to be nice to me, you agree to have similar RMSEs in these distributions! 25
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Central Limit Theorem:
The sum of N independent continuous random variables xi with means 
μi and variances σi

2 becomes a Gaussian random variable with mean 
μ = Σi μi and variance σ2 = Σi σi

2 in the limit that N approaches infinity.



Central Limit Theorem

The Central Limit Theorem holds under fairly general conditions, which means 
that the Gaussian distribution takes a central role in statistics...

The Gaussian is “the unit” of distributions!

Since measurements are often affected by many small effects,
uncertainties tend to be Gaussian (until otherwise proven!).

Statistical rules often require Gaussian uncertainties, and so
the central limit theorem is your new good friend..
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Central Limit Theorem

"The epistemological value of probability theory is based on the 
fact that chance phenomena, considered collectively and on a 
grand scale, create non-random regularity."

[Andrey Kolmogorov, Soviet mathematician, 1954]

"Nowadays, the central limit theorem is considered to be the 
unofficial sovereign of probability theory.”

[Henk Tijms, Dutch mathematician 2004]
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Central Limit Theorem:
The sum of N independent continuous random variables xi with means 
μi and variances σi

2 becomes a Gaussian random variable with mean 
μ = Σi μi and variance σ2 = Σi σi

2 in the limit that N approaches infinity.



Example of Central Limit Theorem
Take the sum of 100 uniform numbers!
Repeat 100000 times to see what distribution the sum has…

The result is a bell shaped curve, a so-called normal or Gaussian distribution.

   It turns out, that this is very general!!!
30



Now take the sum of just 10 uniform numbers!

31

Example of Central Limit Theorem



Now take the sum of just 5 uniform numbers!
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Example of Central Limit Theorem



Now take the sum of just 3 uniform numbers!
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Example of Central Limit Theorem



This time we will try with a much more “nasty” function. Take the sum of
100 exponential numbers! Repeat 100000 times to see the sum’s distribution…

It doesn’t matter what shape the input PDF has, as long as it has finite mean 
and width, which all numbers from the real world has! Sum quickly becomes:

Gaussian!!!
It turns out, that this fact saves us from much trouble: Makes statistics “easy”! 34

Example of Central Limit Theorem



Example of Central Limit Theorem
Looking at z-coordinate of tracks at vertex from proton collisions in CERNs
LHC accelerator by the ATLAS detector, this is what you get:
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It is useful to know just a few of the
most common Gaussian integrals:

The Gaussian distribution
Range Inside Outside

± 1� 68 % 32 %

± 2� 95 % 5 %

± 3� 99.7 % 0.3 %

± 5� 99.99995 % 0.00005 %

36



Summary

The Central Limit Theorem
...is your good friend because it…

ensures that uncertainties tend to be Gaussian
…which are the easiest to work with!

37



Estimators
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Defining the mean
There are several ways of defining “a typical” value from a dataset:
a) Arithmetic mean   b) Mode (most probably)   c) Median (half below, half above)
d) Geometric mean   e) Harmonic mean               f) Truncated mean (robustness)

39



It turns out, that the best estimator for the mean is (as you all know):

Mean and Width

µ̂ =
1

N

X

i

xi = x̄

The second (central) moment of the data is called the variance, defined as:

Note the “hat”, which means “estimator”. It is sometimes dropped...
40

V̂ =
1

N

X

i

(xi � µ)2
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It turns out, that the best estimator for the mean is (as you all know):

Mean and Width

µ̂ =
1

N

X

i

xi = x̄

�̂ =

s
1

N

X

i

(xi � µ)2

Note the “hat”, which means “estimator”. It is sometimes dropped...
41

For the standard deviation (Std), a.k.a. width or RMSE, it is:



It turns out, that the best estimator for the mean is (as you all know):

Mean and Width

µ̂ =
1

N

X

i

xi = x̄

Note the “hat”, which means “estimator”. It is sometimes dropped...
42

ŝ =

s
1

N � 1

X

i

(xi � x̄)2

For the standard deviation (Std), a.k.a. width or RMSE, it is:



Why not “just” the naive SD?

43

Imagine taking 3 independent measurements, then estimating mean and SD:

X

x1 x2 x3
μtrue

σtrue



Why not “just” the naive SD?

44

Imagine taking 3 independent measurements, then estimating mean and SD:

Above, all went well, because measurements were nicely distributed on both 
sides of the mean, and spread out according to SD.

^

^

X

x1 x2 x3
μtrue

σtrue

μest.

σest.



Why not “just” the naive SD?
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Imagine taking 3 independent measurements, then estimating mean and SD:

Above, all went well, because measurements were nicely distributed on both 
sides of the mean, and spread out according to SD.

^

^

X

x1 x2 x3
μtrue

σtrue

μest.

σest.

X

x1 x2x3
μtrue

σtrue

μest.

σest.

^

^

However, now the mean is off and the Std way off (terribly so!).
If we had used the true mean in the formula, it would have been less of a problem.



How incorrect is the naive SD?
Such questions can most easily be answered by a small simulation…
Produce N=3 numbers from a unit Gaussian, and calculate the SD estimate: 

46

RMS estimate
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 = 0.72)µ RMS naive estimate (

 = 0.99) µ RMS correct estimate (

Distribution of RMS estimates on three unit Gaussian numbers

N = 3

So, the “naive” SD underestimates the uncertainty significantly…



Such questions can most easily be answered by a small simulation…
Produce N=5 numbers from a unit Gaussian, and calculate the SD estimate: 

47

Here, the “naive” SD underestimates the uncertainty a bit...

N = 5

How incorrect is the naive SD?



SD and Gaussian σ relation
When a distribution is Gaussian, the Std. corresponds to the Gaussian width σ:
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Mean and Width
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Mean and Width

�̂µ = �̂/
p
N
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Example:
Cavendish Experiment

(measurement of Earth’s density)
N = 29

mu = 5.42
sigma = 0.333

sigma(mu) = 0.06
Earth density = 5.42 ± 0.06

Mean and Width

�̂µ = �̂/
p
N
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What is the uncertainty on the mean? And how quickly does it improve with
more data?

Example:
Cavendish Experiment

(measurement of Earth’s density)
N = 29

mu = 5.42
sigma = 0.333

sigma(mu) = 0.06
Earth density = 5.42 ± 0.06

Mean and Width

�̂µ = �̂/
p
NPlease, commit

to memory now!
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Weighted Mean
What if we are given data, which has different uncertainties?
How to average these, and what is the uncertainty on the average?

Can be understood intuitively, if two persons combine 1 vs. 4 measurements

µ̂ =

P
xi/�2

iP
1/�2

i

�̂µ =

s
1P
1/�2

i

For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:
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µ̂ =
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�̂µ =

s
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1/�2

i

For measurements with varying uncertainty, there is no meaningful SD!
The uncertainty on the mean is:
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Note that when doing a weighted mean,
one should check if the measurements
agree with each other!
This can be done with a ChiSquare test.



Resolution using InterQuantile Range
A useful measure of resolution is the InterQuantile Range (IQR), as this is not
affected by long tails.

55

Q1 Q3

IQR measures statistical dispersion,
calculated as the difference

IQR = Q3 - Q1 

The InterQuantile Efficiency (IQE) is 
defined as:

IQE = IQR / 1.349 
The factor 1.349 = 2 Φ-1(0.75) 
ensures that IQR = 1 for a unit 
Gaussian.

Lower Quantile Upper Quantile



Skewness and Kurtosis
Higher moments reveal something about a distributions asymmetry and tails:

 =
1
N

P
i(xi � x̄)4

( 1
N

P
i(xi � x̄)2)2

� 3

� =
1
N

P
i(xi � x̄)3

( 1
N

P
i(xi � x̄)2)3/2
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Correlation

57

Are there any correlations here?



Correlation
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Are there any correlations here?

www.guessthecorrelation.com

http://www.guessthecorrelation.com


Correlation
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Correlation
Recall the definition of the Variance, V:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2

60



Correlation
Recall the definition of the Variance, V:

Likewise, one defines the Covariance, Vxy:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2

Vxy =
1

N

nX

i

(xi � µx)(yi � µy) = E[(xi � µx)(yi � µy)]
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Correlation
Recall the definition of the Variance, V:

Likewise, one defines the Covariance, Vxy:

“Normalising” by the widths, gives Pearson’s (linear) correlation 
coefficient:

V = �2 =
1

N

nX

i

(xi � µ)2 = E[(x� µ)2] = E[x2]� µ2

Vxy =
1

N

nX

i

(xi � µx)(yi � µy) = E[(xi � µx)(yi � µy)]

⇢xy =
Vxy

�x�y

�1 < ⇢xy < 1

�(⇢) '
r

1

n
(1� ⇢2)2 +O(n�2)
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Correlation Matrix
The correlation matrix Vxy explicitly looks as:

Vxy =

2

6664

�2
1 �2

12 . . . �2
1N

�2
21 �2

22 . . . �2
2N

...
...

. . .
...

�2
N �2

N2 . . . �2
NN

3

7775
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The variance of variables can be found along the diagonal,
while the (symmetric) off-diagonal terms show the co-variances. 
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Correlation and Information 
Correlations influence
results in complex ways!

They need to be taken into
account, for example in
Error Propagation!

Correlations may contain
a significant amount of
information.

We will consider this more
when we play with
multivariate analysis.
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Rank correlations
Sometimes, variables are perfectly correlated, just not linearly:

In this case the Pearson
correlation is not the best
measure.

Rank correlation compares
the ranking between the
two sets, and therefore gets
a good measure of the
correlation (see figure).

The two main cases of rank
correlations are:
• Spearman’s rho
• Kendall’s tau
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Rank correlations
An additional advantage is,
that the rank correlation is
less sensitive to outliers:

The two rank correlations are
special cases of a more general
rank correlation.

Typically, Spearman’s rank
correlation is used.

The definition is:

where ri and si is the rank of the i’th element. 67

⇢ = 1� 6
X

i

(ri � si)
2/(n3 � n)
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Note how ALL of the bottom distributions have ρ = 0, despite obvious correlations!

Correlation
Correlations in 2D are in the Gaussian case the “degree of ovalness”! 
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Non-linear correlations
Non-linear correlations (associations) are harder to measure, but possible:
• Maximal Information Coefficient (MIC), see reference and Wikipedia on MIC.
• Mutual Information (MI), linked to entropy, see Wikipedia on MI and SKLearn.
• Distance Correlation (DC) between paired vectors, see Wikipedia on DC.

69 Original paper: "Detecting Novel Associations in Large Data Sets” (2011). Science 334 (6062): 1518–1524.

https://en.wikipedia.org/wiki/Maximal_information_coefficient
https://en.wikipedia.org/wiki/Mutual_information
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
https://en.wikipedia.org/wiki/Distance_correlation


Correlation Vs. Causation 
“Com hoc ergo propter hoc” 

(with this, therefore because of this)
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Correlation Vs. Causation 
“Com hoc ergo propter hoc” 

(with this, therefore because of this)
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Digression on correlations

72

Why do correlations play a fundamental role?
1. It is the fundamental relation between variables.
2. Possible independent variables give you handles (see below).
3. The degree of simplicity/linearity tells you what methods to use.
4. Correlation with variable of interest is often key.

Imagine, that you find two sets of PID variables, which are uncorrelated. 
In this case, you can produce two independent ways to identify signal, 
giving you a method for measuring performance, cross checking results, 
and producing enriched samples of each type.
The two methods can of course be combined (with Likelihood or ML).



PDFs
Probability Density Functions
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Probability Density Functions
A Probability Density Function (PDF) f(x) describes the probability of 
an outcome x:
probability to observe x in the interval [x, x+dx] = f(x) dx

PDFs are required to be normalised:

The expectation value (aka. mean) and the variance (i.e. standard 
deviation squared) are then defined as follows:

Z

S
f(x)dx = 1

µ =

Z 1

�1
xf(x)dx

�2 =

Z 1

�1
(x� µ)2f(x)dx
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Probability Density Functions
Example:
Consider a uniform distribution:

µ =

Z 1

�1
xf(x)dx =

Z 1

0
xdx = [

1

2
x2]10 =

1

2

f(x) =

⇢
1 x 2 [0, 1]
0 else

Calculating the mean and variance:

�2 =

Z 1

�1
(x� µ)2f(x)dx =

Z 1

0
(x� 1

2
)2dx =

[
1

3
x3 � 1

2
x2 +

1

4
x]10 =

1

3
� 1

2
+

1

4
=

1

12
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List of statistical testsCumulative distributions functions
Completely basic to every PDF is the 
cumulative distribution function, CDF, 
defined as:

In words, this means that it is the 
probability of getting x, or something 
below that value.

The CDF is used in many ways, and we 
will meet it again soon, when we 
discuss hypothesis testing.

Gaussian PDF

Gaussian CDF
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List of statistical testsCumulative distributions functions
Completely basic to every PDF is the 
cumulative distribution function, CDF, 
defined as:

In words, this means that it is the 
probability of getting x, or something 
below that value.

The CDF is used in many ways, and we 
will meet it again soon, when we 
discuss hypothesis testing.

Exponential CDF

Exponential PDF
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The number of PDFs is infinite, and nearly so is the list of known ones:

And surely more!
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Probability Density Functions



The number of PDFs is infinite, and nearly so is the list of known ones:

And surely more!
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Probability Density Functions

https://docs.scipy.org/doc/scipy/reference/stats.html

https://docs.scipy.org/doc/scipy/reference/stats.html


The number of PDFs is infinite, and nearly so is the list of known ones:

And surely more!

80

Probability Density Functions

"Essentially, all models are wrong,
but some are useful”

[George E. P. Box, British Statistician, 1919-2013]



Probability Density Functions
An almost complete list of those we will deal with in this course is:
• Gaussian (aka. Normal)
• Poisson
• Binomial (and also Multinomial)
• Students t-distribution
• Uniform
• ChiSquare
• Exponential
• Error function (integral of Gaussian)

You should already know most of these, and the rest will be explained.

81

Binomial Poisson ChiSquare

See Barlow chap.3
and Cowan chap.2



Given N trials each with p chance of 
success, how many successes n 
should you expect in total?

This distribution is… Binomial, with
Mean = Np

Variance = Np(1-p)

This means, that the error on a 
fraction f = n/N is:

�(f) =

r
f(1�f)

N

f(n;N, p) =
N !

n!(N�n)!
pn(1�p)N�n
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Binomial, Poisson, Gaussian



f(n;N, p) =
N !

n!(N�n)!
pn(1�p)N�n

83

Binomial, Poisson, Gaussian

The binomial distribution was first introduced by 
Jacob Bernoulli in 1713 (posthumously).

The binomial distribution basically consists of two 
elements: The binomial coefficient (green) and the 
probabilities of exactly n such events (blue).

Even though a system has many outcomes, it is 
typically possible to refer to either “success” of 
“failure”.

Assume the probability to have COVID19 is 1%. In a 
sample of 50 people the chance to have 1 or more 
infected is: 1-p(0) = 1 - 0.9950 = 0.60



Binomial, Poisson, Gaussian
Requirements to be Binomial:
• Fixed number of trials, N
• Independent trials.
• Only two outcomes (success/failure).
• Constant probability of success/failure.

If number of possible outcomes is more than two ⇒ Multinomial distribution.

Examples of Binomial experiments:
• Tossing a coin 20 times counting number of tails.
• Asking 200 people if they watch sports on TV.
• Rolling a die to see if a 6 appear (Multinomial for all outcomes!).
• Asking 100 die-hards from Enhedslisten, if they would vote
    for Konservative at the next election!

Examples which aren’t Binomial experiments:
• Rolling a die until a 6 appears (not fixed number of trials).
• Drawing 5 cards for a poker hand (no replacement ⇒ not independent) 84



Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial approaches a Poisson: (see 
Barlow 3.3.1)

In reality, the approximation
is already quite good at e.g.
N=50 and p=0.1.

The Poisson distribution only
has one parameter, namely λ.
Mean = λ
Variance = λ

So the error on a number is...

...the square root of that number!
85

f(n,�) =
�n

n!
e��



Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial approaches a Poisson:

In reality, the approximation
is already quite good at e.g.
N=50 and p=0.1.

The Poisson distribution only
has one parameter, namely λ.
Mean = λ
Variance = λ

So the error on a number is...

...the square root of that number!
86

f(n,�) =
�n

n!
e�The error on a 

(Poisson) number...
is the square root 
of that number!!!



Binomial, Poisson, Gaussian
If N → ∞ and p → 0, but Np → λ then a Binomial approaches a Poisson:

In reality, the approximation
is already quite good at e.g.
N=50 and p=0.1.

The Poisson distribution only
has one parameter, namely λ.
Mean = λ
Variance = λ

So the error on a number is...

...the square root of that number!
87

f(n,�) =
�n

n!
e�The error on a 

(Poisson) number...
is the square root 
of that number!!!

A very useful case of this is the error to assign a bin in a histogram,
if there is reasonable statistics (Ni > 5-20) in each bin.



Note: The sum of two Poissons with λa and λb is a new Poisson with λ = λa + λb.
(See Barlow pages 33-34 for proof)
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The error on a 
(Poisson) number...
is the square root 
of that number!!!



Binomial, Poisson, Gaussian

89

The Poisson distribution has the advantage that neither the number of trials N 
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance, 
area, volume, etc.



Binomial, Poisson, Gaussian

90

The Poisson distribution has the advantage that neither the number of trials N 
nor the probability of succes p has to be known - just their product.

A typical use is when dealing with rates in a given interval of time, distance, 
area, volume, etc.

Example (real from 1898):
There were 122 deaths by horse kicks over 10 different
regiments, over 20 years. What is the predicted number
of deaths in a specific regiment and year?

First we estimate the mean value:

This means that the probability that 0 will die is given by:



Quick Quiz
You need to know the efficiency of your PID system for positrons.

Find 1000 data events where two electron candidates have a combined 
mass of 91.2 GeV (Z0) and the negative candidate is identified as an 
electron (“Tag-and-probe” technique).

In 900 events the positive candidate is also identified as an electron.
In 100 events it is not. Efficiency is 90%, but what about the uncertainty?

Colleague A says sqrt(900) = 30, thus 90.0 ± 3.0 %
Colleague B says sqrt(100) = 10, thus 90.0 ± 1.0 % 

Which is right? 
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Quick Quiz
You need to know the efficiency of your PID system for positrons.

Find 1000 data events where two electron candidates have a combined 
mass of 91.2 GeV (Z0) and the negative candidate is identified as an 
electron (“Tag-and-probe” technique).

In 900 events the positive candidate is also identified as an electron.
In 100 events it is not. Efficiency is 90%, but what about the uncertainty?

Colleague A says sqrt(900) = 30, thus 90.0 ± 3.0 %
Colleague B says sqrt(100) = 10, thus 90.0 ± 1.0 % 

Which is right? Neither!
This is not a Poisson but a Binomial (N = 1000 trials, p = 0.9 of success)
Uncertainty is sqrt(N*p*(1-p)) = 9.49, thus 90.0 ± 0.9 %

From previous page: �(f) =

r
f(1�f)

N 92



Binomial, Poisson, Gaussian
If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!

93All fields encounter the Gaussian, and for this reason, its scale has many names!

For proof, see
Barlow p.40



Binomial, Poisson, Gaussian
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If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!



Binomial, Poisson, Gaussian
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However, note that the TAILS are not quite the same!!!
This is the very reason for the difference between Chi2 and (binned) likelihood!

If λ→∞, the Poisson becomes a Gaussian…                          ...and λ > 20 is enough!



Binomial, Poisson, Gaussian

“If the Greeks had known it, they would have deified it. It reigns with serenity and in complete 
self-effacement amids the wildest confusion. The more huge the mob and the greater the 
apparent anarchy, the more perfect is its sway. It is the supreme Law of Unreason. 
Whenever a large sample of chaotic elements are taken in hand and marshalled in the order 
of their magnitude, an unsuspected and most beautiful form of regularity proves to be latent 
all along.” [Karl Pearson]

“If the Greeks had known it, they would have deified it.”
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Range Inside Outside

± 1� 68 % 32 %

± 2� 95 % 5 %

± 3� 99.7 % 0.3 %

± 5� 99.99995 % 0.00005 %

The Gaussian defines
the way we consider
uncertainties.
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Binomial, Poisson, Gaussian



List of statistical testsStudent’s t-distribution
Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the 
mean μ and width σ well - we only know estimates of them! This changes the 
PDF to: <latexit sha1_base64="wRXu34fYwVdBa5jWzBaIEozwSMY="></latexit>

p(x | ⌫, µ̂, �̂2) =
�( ⌫+1

2 )

�( ⌫2 )
p
⇡⌫�̂2

 
1 +

1

⌫

✓
x� µ̂

�̂

◆2!� ⌫+1
2

⌫ = NDoF = n� 1
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List of statistical testsStudent’s t-distribution
Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the 
mean μ and width σ well - we only know estimates of them! This changes the 
PDF to: <latexit sha1_base64="wRXu34fYwVdBa5jWzBaIEozwSMY="></latexit>

p(x | ⌫, µ̂, �̂2) =
�( ⌫+1

2 )

�( ⌫2 )
p
⇡⌫�̂2

 
1 +

1

⌫

✓
x� µ̂

�̂

◆2!� ⌫+1
2

⌫ = NDoF = n� 1

“Discovered” by William Gosset, student’s t-distribution takes into account the 
lacking knowledge of the mean and variance (as is the case for small samples).
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List of statistical testsStudent’s t-distribution
Given only a small (n obs.) sample (still assumed Gaussian), we don’t know the 
mean μ and width σ well - we only know estimates of them! This changes the 
PDF to: <latexit sha1_base64="wRXu34fYwVdBa5jWzBaIEozwSMY="></latexit>

p(x | ⌫, µ̂, �̂2) =
�( ⌫+1

2 )

�( ⌫2 )
p
⇡⌫�̂2

 
1 +

1

⌫

✓
x� µ̂

�̂

◆2!� ⌫+1
2

⌫ = NDoF = n� 1

“Discovered” by William Gosset, student’s t-distribution takes into account the 
lacking knowledge of the mean and variance (as is the case for small samples).

<latexit sha1_base64="nr6APItzFfgy8gD0WH0u2jChAJc=">AAACD3icbZDLSsNAFIYnXmu9RV26GSyKG0siRd0IRTcuK9gLNKVMppN26EwSZk7EEvIGbnwVNy4UcevWnW/jtM1CW38Y+PjPOZw5vx8LrsFxvq2FxaXlldXCWnF9Y3Nr297ZbegoUZTVaSQi1fKJZoKHrA4cBGvFihHpC9b0h9fjevOeKc2j8A5GMetI0g95wCkBY3XtI8CX2AsUoekDPsHegEDqySTL0ilq3pcky7p2ySk7E+F5cHMooVy1rv3l9SKaSBYCFUTrtuvE0EmJAk4Fy4peollM6JD0WdtgSCTTnXRyT4YPjdPDQaTMCwFP3N8TKZFaj6RvOiWBgZ6tjc3/au0EgotOysM4ARbS6aIgERgiPA4H97hiFMTIAKGKm79iOiAmHDARFk0I7uzJ89A4Lbtn5cptpVS9yuMooH10gI6Ri85RFd2gGqojih7RM3pFb9aT9WK9Wx/T1gUrn9lDf2R9/gAMkZy7</latexit>

t =
x� µ̂

�̂

When mean and width are poorly known, estimating it from sample gives:

z =
x� µ

�
Gaussian: Student’s:
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List of statistical testsDistribution Overview

101From: A. Damodaran

I like the following overview of the most common PDFs, though it is far from 
perfect. However, it shows what makes the essential differences between PDFs.

Distributional Choices/Identification



List of statistical testsDistribution 
Relationship

102

The different PDFs are 
related.

As can be seen, essentially 
all PDFs “converges”
towards the Gaussian 
(normal) distribution.
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The different PDFs are 
related.

As can be seen, essentially 
all PDFs “converges”
towards the Gaussian 
(normal) distribution.

Don’t worry about 
knowing them all…. 
Through a long life in 
statistics, I have still yet to 
encounter all of these in 
use!
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The different PDFs are 
related.

As can be seen, essentially 
all PDFs “converges”
towards the Gaussian 
(normal) distribution.

Don’t worry about 
knowing them all…. 
Through a long life in 
statistics, I have still yet to 
encounter all of these in 
use!



List of statistical testsDistribution Overview
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A perhaps simpler overview.



The ChiSquare
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The discovery of Ceres 
Dwarf planet and the largest astroid (r=487km)
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The discovery of Ceres 
Dwarf planet and the largest astroid (r=487km)

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet 
until 11th of February. He published the positions, but due to Ceres being behind the sun, it would be out 
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it 
was recovered on the 31st of December 1801 by von Zach and H. Olbers.
The young man’s name was Carl Friedrich Gauss, and the method he used/invented for this was…
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The discovery of Ceres 
Dwarf planet and the largest astroid (r=487km)

On the 1st of January 1801 Giuseppe Piazzi discovered “new light” and could follow this comet/planet 
until 11th of February. He published the positions, but due to Ceres being behind the sun, it would be out 
of sight until the following winter. Following the calculations of a 24 year old mathematician/physicist, it 
was recovered on the 31st of December 1801 by von Zach and H. Olbers.
The young man’s name was Carl Friedrich Gauss, and the method he used/invented for this was…

...method of least squares!
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Method of Least Squares
The problem at hand is determining the curve that best fitted data:

Originally, uncertainties were not included (not “invented” yet!)
110

The “best fit” is found by minimising the sum of the squares…



Method of Least Squares
The method of least squares is a standard approach to the approximate 
solution of overdetermined systems, i.e. sets of equations in which 
there are more equations than unknowns.

“Least squares” means that the overall
solution minimises the sum of the squares
of the errors made in solving every single
equation.

The most important application is in data fitting. The best fit in the 
least-squares sense minimises the sum of squared residuals, a residual 
being the difference between an observed value and the fitted value 
provided by a model.
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Method of Least Squares
The problem at hand is determining the curve that best fitted data:

Originally, uncertainties were not included (not “invented” yet!)
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Method of Least Squares
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? 
113
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Illustration of Least Squares' Method



Method of Least Squares
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? And how good is it?!?
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Illustration of Least Squares' Method

 LS =  4.8
 LS =  8.1
 LS =  6.2
 LS =  7.6



Method of Least Squares
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? And how good is it?!?
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Illustration of Least Squares' Method

 LS = 10.4
 LS = 10.4
 LS = 10.6
 LS = 10.2



Chi-Square method
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? 
116
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Defining the Chi-Square
Problem Statement: Given N data points (x,y,σy), adjust the parameter(s)
                                    θ of a model, such that it fits data best.

The best way to do this, given uncertainties σi on yi is by minimising:

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting 
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

�2(✓) =
NX

i

(yi � f(xi, ✓))2

�2
i
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Chi-Square method
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? 
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Chi-Square method
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? The Chi2 quantifies this! 
119
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Illustration of ChiSquare Method

= 62.1, Ndof=42) = 0.0242χ Prob(
= 50.3, Ndof=42) = 0.1792χ Prob(
= 39.2, Ndof=42) = 0.5952χ Prob(
= 65.7, Ndof=42) = 0.0112χ Prob(



Chi-Square method
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? The Chi2 quantifies this! 
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= 62.1, Ndof=42) = 0.0242χ Prob(
= 50.3, Ndof=42) = 0.1792χ Prob(
= 39.2, Ndof=42) = 0.5952χ Prob(
= 65.7, Ndof=42) = 0.0112χ Prob(

Best 
Model



Chi-Square method
Look at the figure below, and determine which curve fits best...

Well, what do you define as “best”? The Chi2 quantifies this! 
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Illustration of ChiSquare Method

= 62.1, Ndof=42) = 0.0242χ Prob(
= 50.3, Ndof=42) = 0.1792χ Prob(
= 39.2, Ndof=42) = 0.5952χ Prob(
= 65.7, Ndof=42) = 0.0112χ Prob(

Best 
Model

Not bad 
either!



Chi-Square method
Look at the figure below, and determine which curve fits best...

What about now with larger errors?
122

x
1− 0 1 2 3 4

y

3−

2−

1−

0

1

2

3

4

 Sine function + constant

 Two 2. deg. polynomia

 3. deg. polynomium

 4. deg. polynomium - qubic term

Illustration of ChiSquare Method



Chi-Square method
Look at the figure below, and determine which curve fits best...

What about now with larger errors?
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= 41.7, Ndof=42) = 0.4832χ Prob(
= 41.5, Ndof=42) = 0.4922χ Prob(



Chi-Square method
Look at the figure below, and determine which curve fits best...

What about now with larger errors?
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 4. deg. polynomium - qubic term

Illustration of ChiSquare Method

= 40.9, Ndof=42) = 0.5202χ Prob(
= 42.6, Ndof=42) = 0.4462χ Prob(
= 41.7, Ndof=42) = 0.4832χ Prob(
= 41.5, Ndof=42) = 0.4922χ Prob(

With larger errors 
all models fit the 

data well.



Chi-Square method
Look at the figure below, and determine which curve fits best...

What does smaller errors do?
125
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Chi-Square method
Look at the figure below, and determine which curve fits best...

What does smaller errors do?
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Illustration of ChiSquare Method

= 84.5, Ndof=42) = 0.0002χ Prob(
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= 33.1, Ndof=42) = 0.8352χ Prob(
= 72.3, Ndof=42) = 0.0032χ Prob(



Chi-Square method
Look at the figure below, and determine which curve fits best...

What does smaller errors do?
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 Sine function + constant

 Two 2. deg. polynomia

 3. deg. polynomium

 4. deg. polynomium - qubic term

Illustration of ChiSquare Method

= 84.5, Ndof=42) = 0.0002χ Prob(
= 65.8, Ndof=42) = 0.0112χ Prob(
= 33.1, Ndof=42) = 0.8352χ Prob(
= 72.3, Ndof=42) = 0.0032χ Prob(

With smaller errors 
there is only ONE model 

that fits the data well.



Defining the Chi-Square
Problem Statement: Given N data points (x,y,σy), adjust the parameter(s)
                                    θ of a model, such that it fits data best.

The best way to do this, given uncertainties σi on yi is by minimising:

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting 
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

�2(✓) =
NX

i

(yi � f(xi, ✓))2

�2
i

128



Defining the Chi-Square
Problem Statement: Given N data points (x,y,σy), adjust the parameter(s)
                                    θ of a model, such that it fits data best.

The best way to do this, given uncertainties σi on yi is by minimising:

The power of this method is hard to overstate!
Not only does it provide a simple, elegant and unique way of fitting 
data, but more importantly it provides a goodness-of-fit measure.

This is the Chi-Square test!

�2(✓) =
NX

i

(yi � f(xi, ✓))2

�2
i
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Note that when doing a weighted mean,
one should check if the measurements
agree with each other!
This can be done with a ChiSquare test.
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Weighted mean & ChiSquare
The weighted mean is actually an analytical ChiSquare minimisation to a 
constant. The result is the same, and one can then calculate Prob(𝜒2, Ndof).

Example:
Data (from pendulum experiment) could be four length measurement (in mm):
               d : [17.8 ± 0.5, 18.1 ± 0.3, 17.7 ± 0.5, 17.7 ± 0.2]

The output from the above data is (many digits for checks only):
      Mean                   =  17.8098 mm
      Error on mean   =  0.15057 mm
      ChiSquare          =  1.28574
      Ndof                   =  3
      Probability         = 0.7325213

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or 
similarly, which could be biased by an angled view. Then we would be fooling 
ourselves. We will discuss such “systematic uncertainties” more!
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Weighted mean & ChiSquare
The weighted mean is actually an analytical ChiSquare minimisation to a 
constant. The result is the same, and one can then calculate Prob(𝜒2, Ndof).

Example:
Data (from pendulum experiment) could be four length measurement (in mm):
               d : [17.8 ± 0.5, 18.1 ± 0.3, 17.7 ± 0.5, 17.7 ± 0.2]

The output from the above data is (many digits for checks only):
      Mean                   =  17.8098 mm
      Error on mean   =  0.15057 mm
      ChiSquare          =  1.28574
      Ndof                   =  3
      Probability         = 0.7325213

NOTE: This seems a very nice (and precise) result, and it may very well be.
BUT, it might also be, that we all four estimated it from the same photo or 
similarly, which could be biased by an angled view. Then we would be fooling 
ourselves. We will discuss such “systematic uncertainties” more!

d = (17.81 ± 0.15) mm
p(𝜒2=1.3, Ndof=3) = 0.73



Why the ChiSquare is great
…but not its magic
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Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Illustration of Number of Degrees of Freedom

Linear: p1



Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Illustration of Number of Degrees of Freedom

This can only be done
in one (unique) way:

Ndof = 0!

Linear: p1



Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Illustration of Number of Degrees of Freedom

This can only be done
in one (unique) way:

Ndof = 0!

Linear: p1

Exponential



Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Illustration of Number of Degrees of Freedom

Now there is one
point “too many”:

Ndof = 1
Exponential

Linear: p1



Number of degrees-of-freedom
How to find/calculate the Number of degrees-of-freedom (Ndof) in a fit?
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Illustration of Number of Degrees of Freedom

Of course for pol2 the
solution is still unique:

Ndof = 0

Exponential

Linear: p1

Parabolic: p2



Number of degrees-of-freedom
The number of degrees-of-freedom, Ndof, can be calculated as the 
number of points in the fit minus the number of parameters in the fit 
function:

139

Ndof = Ndata points �Nfit variables

x
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= 30.22χ 

Illustration of Number of Degrees of Freedom
With 39 points

and 3 parameters:

Ndof = 36
Parabolic: p2



The Chi-Square distribution and test
The Chi-Square distribution for Ndof degrees of freedom is the distribution of 
the sum of the squares of Ndof normally distributed random variables.

The Chi-Square test consists of comparing the Chi-Square value obtained from 
a fit with the PDF of expected Chi-Square values. This allows the calculation of 
the probability of observing something with the same Chi-Square value or 
higher...

1

2
k
2 �

�
k
2

� x
k
2�1e�

x
2

Rule of thumb: Chi-Square should roughly match Ndof 
140



Chi-square distribution(s)

...and cumulated.

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...

what is the probability of getting this
Chi-square value or something worse,

assuming this is the correct fit function!

Example:
A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof = k = 5) at 7.1)...  

Chi-Square probability calculation
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Chi-square distribution(s)

...and cumulated.

Given a Chi-square value and a
number of degrees of freedom (Ndof),
one can obtain a “goodness-of-fit”.

It is known, what Chi-square values to
expect given the Ndof. One can therefore
compare to this (Chi-square) distribution,
and see...

what is the probability of getting this
Chi-square value or something worse,

assuming this is the correct fit function!

Example:
A fit gave the Chi-square 7.1 with 5 dof.
The chance of getting this Chi-square or
worse is... (reading the pink bottom curve
(Ndof = k = 5) at 7.1)...  1 - 0.78 = 22%

Chi-Square probability calculation
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Chi-Square probability calculation
In the table below, one can get a quick estimate for low Ndof.
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Chi-Square probability calculation
In the table below, one can get a quick estimate for low Ndof.
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Python: 
chi2_prob = stats.chi2.sf(chi2_value, NDOF) 

sf (survival function) = 1 - CDF



Chi-Square probability interpretation
The Chi-Square probability can roughly be interpreted as follows:
• If χ2 / Ndof ≃ 1 or more precisely if 0.01 < p(χ2,Ndof) < 0.99,
    then all is good.
• If χ2 / Ndof ≫ 1 or more precisely if p(χ2,Ndof) < 0.01, 
    then your fit is probably bad! Four potential reasons: 
    Hypothesis/model wrong, data is faulty, errors too small or unlucky!
• If χ2 / Ndof ≪ 1 or more precisely if 0.99 < p(χ2,Ndof),
    then your fit is TOO good! Two potential reasons:
    Overestimated uncertainties or lucky!

If the statistics behind the plot is VERY high (great than 106), then you
might have a hard time finding a model, which truly describes all the 
features in the plot (as now tiny effects become visible), and one hardly 
ever gets a good Chi-Square probability. However, in this case, one 
should not worry too much, unless very high precision is wanted.
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Chi-Square probability interpretation
The Chi-Square probability can roughly be interpreted as follows:
• If χ2 / Ndof ≃ 1 or more precisely if 0.01 < p(χ2,Ndof) < 0.99,
    then all is good.
• If χ2 / Ndof ≫ 1 or more precisely if p(χ2,Ndof) < 0.01, 
    then your fit is probably bad! Four potential reasons: 
    Hypothesis/model wrong, data is faulty, errors too small or unlucky!
• If χ2 / Ndof ≪ 1 or more precisely if 0.99 < p(χ2,Ndof),
    then your fit is TOO good! Two potential reasons:
    Overestimated uncertainties or lucky!

If the statistics behind the plot is VERY high (great than 106), then you
might have a hard time finding a model, which truly describes all the 
features in the plot (as now tiny effects become visible), and one hardly 
ever gets a good Chi-Square probability. However, in this case, one 
should not worry too much, unless very high precision is wanted.
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Note: One should only use χ2 ~ Ndof as a
rule-of-thumb, and be cautious anyway:

Prob(χ2=3.0, Ndof=2) = 0.223
Prob(χ2=300.0, Ndof=200) = 0.000006

Always calculate and consider the probability!



If the data is binned (i.e. put into a histogram), then Pearson’s Chi-square applies:

The formula (based on Poisson statistics) is:

Chi-Square for binned data

�
2 =

X

i 2 bin

(Oi � Ei)2

Ei
147



While Pearson’s Chi-square test is quite useful, it has some limitations, especially
when some bins have low statistics.

The expected cell count (Ei) should not be too low. Some require 5 or more, and 
others require 10 or more. A common rule is 5 or more in 80% of bins, but no cells 
with zero expected count. When this assumption is not met, Yates’s Correction 
can be applied.

One alternative is to divide by Oi when Oi is not 0 (ROOT/Minuit).

Another alternative is the likelihood
fit, which does not suffer under
low statistics.

Yet, another alternative is the G-test,
which is more robust at low
statistics. However, I’ve never
seen it in use.

Chi-Square for binned data

�
2 =

X

i 2 bin

(Oi � Ei)2

Ei

G = 2
X

i 2 bin

Oi ln(Oi/Ei)
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The fact that there are several minima makes fitting difficult/uncertain!
Always give good starting values!!!

Example of Chi-Square
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Why the ChiSquare is (near) magic
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The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.

Example of Chi-Square
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χ2 minimum

χ2 minimum + 1



The uncertainty on a parameter is found where the Chi2
has increased by 1 from the minimum.

Example of Chi-Square
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χ2 minimum

χ2 minimum + 1

Please commit to memory!



Uncertainties need not always be symmetric (though that is usually better!)

Example of Chi-Square
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Asymmetric uncertainties are tricky to deal with (see later and/or Barlow).



Fitting with multiple variables, one obtains a multi-dimensional parabola.

This is summarised in:
- Central fit values, μ
- Covariance matrix, V

The diagonals of V are the
variance (= σ2) of the fit
parameters.
The off-diagonals of V
are the co-variances (and
thus correlations) between
fit parameters.

You should always look at
these, as they reveal a lot
about your fit (see later).

Example of Chi-Square

154

ˆ
ˆ
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Example of Chi-Square

“Fitting the Universe”



Notes on the ChiSquare method

“It was formerly the custom, and is still so in works on the
theory of observations, to derive the method of least squares

from certain theoretical considerations, the assumed normality
of the errors of the observations being one such.

It is however, more than doubtful whether the conditions for
the theoretical validity of the method are realised in statistical
practice, and the student would do well to regard the method
as recommended chiefly by its comparative simplicity and by

the fact that it has stood the test of experience”.

[G.U. Yule and M.G. Kendall 1958]
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Calibration
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Calibration definition
"Operation that, under specified conditions, in a first step, establishes a relation 
between the quantity values with measurement uncertainties provided by 
measurement standards and corresponding indications with associated 
measurement uncertainties (of the calibrated instrument or secondary standard) 
and, in a second step, uses this information to establish a relation for obtaining a 
measurement result from an indication.”

[International Bureau of Weights and Measures]

158



Calibration definition
"Operation that, under specified conditions, in a first step, establishes a relation 
between the quantity values with measurement uncertainties provided by 
measurement standards and corresponding indications with associated 
measurement uncertainties (of the calibrated instrument or secondary standard) 
and, in a second step, uses this information to establish a relation for obtaining a 
measurement result from an indication.”

[International Bureau of Weights and Measures]

Personally, I would shorten this to:

“Operation that, under specified conditions:
• Establishes a relation between the quantity of interest and associated information
• Uses this information to correct/improve the estimate of the quantity of interest.”

[Shortening of the above]

Let’s have a few examples…
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Calibration is many things!
Every field of science involves calibration of some kind.

160
Calibration of CMS calorimeter timing

Calibration target of Mars rover “Curiosity”

Calibration of 
concentration to 
fluorescence intensity 
(chemistry)



Calibration is many things!
Every field of science involves calibration of some kind.

161
Calibration of CMS calorimeter timing

Calibration target of Mars rover “Curiosity”

Calibration of 
concentration to 
fluorescence intensity 
(chemistry)

Calibration in this case is both
correction and improvement



General considerations
Though calibration spans widely, there are a few general considerations:
★ Using control sample/group:

•  Purpose: To ensure that there is not some (inherent) bias.
•  Aim: A good control sample is large and looks “exactly” like signal.
•  Example: People without “signal” disease spanning same age/lifestyles.

★ Considering result for already well determined quantity:
•  Purpose: To ensure that there is not some (inherent) bias.
•  Aim: A good control measurement is “easy” and well measured.
•  Example: Unbiased momentum resolution using particle resonances (Z).

★ Determining relation to well measurable quantity:
•  Purpose: Infer quantity in question from other sources/measurements.
•  Aim: If one can’t measure directly, perhaps it can be done indirectly.
•  Example: Measuring flow of liquid in pipe using microphone (noise!).

Each field of science have their own “tricks of the trade”, and sometimes 
breakthroughs and Nobel Prizes are made through calibration (length scales 
in the Universe, search for the ether, accurate carbon 14 dating, etc.).
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Example: Carbon 14 dating
Carbon 14 dating used (and uses) samples
of known age (from historical sources) to
calibrate the scale and uncertainties.
Tree rings have played a central role!

163

Impact of 
nuclear tests!



Example: Differential GPS

GPS by itself is not accurate enough for planes, but 
by correcting GPS position using results at known 
places, required accuracy can be obtained. 164



Example calibration

165

Imagine a variable, X, which has a peak in its spectrum, but which depends on 
another variable, Y. Variations in Y “smears out” the peak in X, and we would 
therefore like to calibrate for this.

Entries  50000
Mean     99.9
RMS     53.79

 / ndf 2χ  264.2 / 166
Prob  06− 1.876e
Norm(sig)  182.3±  3059 
Mean(peak)  0.8± 100.6 
Width(peak)  0.77± 14.73 
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Imagine a variable, X, which has a peak in its spectrum, but which depends on 
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therefore like to calibrate for this.
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We therefore plot X as a function of Y, and notice a (in this case clear) correlation 
between Y and X. From this we can deduce how much the peak is shifted as a 
function of Y, and hence correct for it.

Xcalib = Xmeas + ???
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We therefore plot X as a function of Y, and notice a (in this case clear) correlation 
between Y and X. From this we can deduce how much the peak is shifted as a 
function of Y, and hence correct for it. A simple inspection yields:

Xcalib = Xmeas - 40(Y - 0.5)
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Applying this yields a new and (much) improved resolution of the peak in X, as 
would also be expected. At the same time, we can check, that now there is no 
dependence of the calibrated value of X on Y.

We thus conclude, that the calibration worked, and (of course) describe our 
calibration in the paper we publish. Note that sometimes, one needs a “control 
sample” for which the correct value is known through other sources.

Xcalib = Xmeas - 40(Y - 0.5)

Entries  50000
Mean    99.91
RMS     56.36

 / ndf 2χ  180.1 / 166
Prob   0.2153
Norm(sig)  73.7±  2559 
Mean(peak)  0.07± 99.97 
Width(peak)  0.062± 2.071 
Norm(bkg)  1.2± 235.2 

X as measured
0 20 40 60 80 100 120 140 160 180 200

Fr
eq

ue
nc

y

0

100

200

300

400

500

600

700

800 Entries  50000
Mean    99.91
RMS     56.36

 / ndf 2χ  180.1 / 166
Prob   0.2153
Norm(sig)  73.7±  2559 
Mean(peak)  0.07± 99.97 
Width(peak)  0.062± 2.071 
Norm(bkg)  1.2± 235.2 

Hist_Calib

X as measured
20 40 60 80 100 120 140 160 180

Y 
as

 m
ea

su
re

d
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Entries  50000
Mean x   100.2
Mean y  0.5001
RMS x   44.64
RMS y  0.2879

5

10

15

20

25

30

35

Entries  50000
Mean x   100.2
Mean y  0.5001
RMS x   44.64
RMS y  0.2879

Hist_xy

Calculated Xcalib Calculated Xcalib



Example calibration

169
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Q: How can we “obtain” a line at say X=100 to be used for calibration?
A: This you have to think AHEAD of time, i.e. when planning the experiment.
     It might be as simple as sticking a radioactive source down, or shining light
     on the instrument, or sending particles through it, but you have to consider
     this. Otherwise, you might have a 1.000.000$ instrument of unknown working!



Simpson’s Paradox
(Really: Simpson’s “apparent” Paradox)

(if time allows)
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Case: Berkeley admission
In 1973, University of California, Berkeley, 
were considering which of their applicants 
got admitted.
As can be seen below, there is seemingly a 
bias against women, as a smaller fraction of 
women are admitted.
Is that really the case, or is there more to the 
data than first glance reveals?
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3737 / (3738+4704) = 44.3% 
1494 / (1494+2827) = 34.6%
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Case: Berkeley admission
Bickel et al. goes on to analyse the data further with several interesting findings:
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Out of 85 departments with relevant 
data, a few seem to show a bias… in 
both directions, and mostly agains 
men!!! What!

This seems counter intuitive to what 
we found to begin with. Where did 
the bias of 277 women less than 
expected go?



Case: Berkeley admission
Bickel et al. goes on to analyse the data further with several interesting findings:

177

Out of 85 departments with relevant 
data*, a few seem to show a bias… in 
both directions, and mostly agains 
men!!! What!

This seems counter intuitive to what 
we found to begin with. Where did 
the bias of 277 women less than 
expected go?

*Here you should ALWAYS ask, 
what this involves!
In this case, 16 departments either 
had no women applying, or did not 
deny any students admission.



Case: Berkeley admission
In order to illustrate the point, Bickel et al. gives a hypothetical (and fun!) case:
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The two (very hypothetical) departments are clearly very fair regarding gender, but still a 
difference appears between the overall resulting observation and expectation.



Case: Berkeley admission
The “apparent conclusion” (Berkeley discriminates against applications from women) is a 
result of Simpson’s Paradox (my text): 

“Effect for group, which disappears or
reverses, when considering subgroups”.

It is effects such as this, which makes
statistics difficult, yet at the same time
very important.
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Simpson’s Paradox explained
The reason for the apparent paradox 
arise when frequency data is unduly 
given causal interpretations.

The figure on the right illustrates the 
“paradox” nicely.

The situation can be illustrated with 2D 
vectors, as shown below.
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A succes rate p/q (successes / attempts) 
can be represented by vectors with a slope. 
Higher slope = higher succes rate.

But though B1 is steeper than L1, and B2 is 
steeper than L2, then B1+B1 is not as steep 
as L1+L2.



Summary
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Summary
1. The Central Limit Theorem is you (new?) friend, as it explains why you 

should expect Gaussian uncertainties.

2. Estimators are given formulae that you should know in order to obtain 
(unbiased and efficient) estimates from data.

3. PDFs are in some sense our “model building blocks”. Most originate from 
given processes (that you should know), and should be used accordingly.

4. The ChiSquare is THE way to perform fits, if uncertainties are Gaussian, as 
it provides a crucial goodness-of-fit measure.

5. Calibration is central part of experimental physics, and requires foresight, 
insight, and experimental planning.

6. Always consider different types/classes separately, as this augments 
efficiency, and saves you from Simpson’s (apparent) paradox.


