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Practical Statistics 
Part II - the necessities  

Likelihood fitting, Hypothesis testing, and Systematic uncertainties

“Statistics is merely a quantisation of common sense”
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Outline of lectures
Part I - the basics:
- Estimators
- Probability Density Functions
- ChiSquare & p-values
- Calibration
- Simpson’s Paradox

Part II - the necessities:
- Likelihood fitting
- Hypothesis testing
- Systematic uncertainties

Part III - the cool:
- Setting limits
- Look Elsewhere Effect
- The art of plotting
- The Fisher discriminant
- sPlots & sWeights
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Likelihood Principle
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Likelihood function

“I shall stick to the principle of likelihood…”
                                                               [Plato, in Timaeus]
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Likelihood function

Given a PDF f(x) with parameter(s) θ, what is the chance that with N 
observations, xi falls in the intervals [xi, xi + dxi]?

L(✓) =
Y

i

f(xi, ✓)dxi
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Given a set of measurements x, and parameter(s) θ, the likelihood function is defined 
as: 

The principle of maximum likelihood for parameter estimation consist of 
maximising the likelihood of parameter(s) (here θ) given some data (here x).
There is nothing strange about this - it is exactly the same we do for the ChiSquare!

The likelihood function plays a central role in statistics, as it can be shown to be:
• Consistent (converges to the right value).
• Asymptotically normal (converges with Gaussian errors).
• Efficient (reaches the Minimum Variance Bound (MVB, Cramer-Rao) for large N).

To some extend, this means that the likelihood function is “optimal”, that is, if it can 
be applied in practice.

Likelihood function

L(x1, x2, . . . , xN ; ✓) =
Y

i

p(xi, ✓)
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       Likelihood vs. Chi-Square
For computational reasons, it is often much easier to minimise the logarithm of 
the likelihood function:

In problems with Gaussian errors, it turns out that the log likelihood function 
boils down to the Chi-Square with a constant offset and a factor -2 in difference.

The likelihood function for fits comes in two versions:
• Binned likelihood (using Poisson) for histograms.
• Unbinned likelihood (using PDF) for single values.

The “trouble” with the likelihood is, that it is unlike the Chi-Square, there is NO
simple way to obtain a probability of obtaining certain likelihood value!

@ lnL
@✓

����
✓=✓̄

= 0
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See Barlow 5.6



ChiSquare
Recall, the ChiSquare is a sum over bins in a histogram:

N observed
i

N expected

i

i
9

�2(✓) =
NbinsX

i

✓
N observed

i �N expected

i

�(N observed
i )

◆2
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ChiSquare
Recall, the ChiSquare is a sum over bins in a histogram:

N observed
i

N expected

i

i
10

�2(✓) =
NbinsX

i

(N observed
i �N expected

i )2

N expected

i
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Binned Likelihood
The binned likelihood is a sum over bins in a histogram:

N observed
i

N expected

i

i

L(✓)binned =
NbinsY

i

Poisson(N expected

i , N observed
i )
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f(n,�) =
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Unbinned Likelihood
The binned likelihood is a sum over single measurements:

i

PDF(xobserved
i )

L(✓)unbinned =
Nmeas.Y

i

PDF(xobserved
i )
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Methods of fitting
In summary, there are four methods of fitting histograms with parameters θ, in 
order of increasing accuracy, but decreasing speed and convergence:

1. Minimise the (“Neyman”) Chi-Square: 
Problem: Breaks in empty bins (Nobs = 0). 
Note: Minuit disregards empty bins!

2. Minimise the (“Pearson”) Chi-Square: 
Minor problem: What range to include? 
Note on 1+2: Applies only to histograms. 
If errors are provided, these are used directly.

3. Minimise -2Ln(LLH) of each bin (Poisson): 
Note: This can be used for low statistics 
binned data, avoiding the Gaussian approx.

4. Drop binning and minimise the unbinned 
-2Ln(LLH) likelihood. 
Note: Sum runs over events not bins! 
Note: Fit parameters in PDF.

The unbinned likelihood is generally the best method in case of low statistics.
13
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Methods of fitting
The binned likelihood expression is as follows:

The middle term is simply the fitted content of all bins, which (along with the 
final term) is independent of the fit parameters θ, and can thus be dropped in the 
minimisation. 
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Notes on the likelihood
For a large sample, the likelihood is indeed 
unbiased and has the minimum variance - 
that is hard to beat! Also, the binned LLH 
approaches the unbinned version.

However, for the likelihood, unlike for the 
Chi-Square, you get no goodness-of-fit 
measure to check it!
And for large samples, the approximation 
that bin count uncertainties are Gaussian is 
good.

For small statistics, the likelihood is not 
necessarily unbiased, but still fares much 
better than the ChiSquare! But be careful 
with small statistics. The way to avoid this 
problem is also simulation.
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Hypothesis Testing
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Hypothesis testing

17

Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?



Hypothesis testing
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Suppose in a beer tasting, that someone gets 9 our of 10 right.

Does that prove that the person can taste difference between beers?

NO!
What we can say is that the result is inconsistent (at some significance 
level) with the hypothesis that the person chooses at random.

This leaves us with the alternative hypotheses, that the person can taste 
the difference or have cheated (consciously or unconsciously).

In statistics one can never prove a hypothesis directly. However, one 
can set up alternative hypotheses and disprove these. That is how one 
works in statistics…

See Barlow Chapter 8, in particular 8.2.1 (p. 146)



Hypothesis testing
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Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent 
(called H0) and this is the hypothesis we want to test, compared to an “alternative” 
hypothesis, Guilty (called H1).

Innocence (“negative”) is initially assumed, and this hypothesis is only rejected, if 
enough evidence proves otherwise, i.e. that the probability of innocence is very small 
(“beyond reasonable doubt”).

Truly innocent
(H0 is true)

Truly guilty
(H1 is true)

Acquittal
(Accept H0)

Right decision
True Negative (TN)

Wrong decision
False Negative (FN)

Conviction
(Reject H0)

Wrong decision
False Positive (FP)

Right decision
True Positive (TP)



Hypothesis testing
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Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent 
(called H0) and this is the hypothesis we want to test, compared to an “alternative” 
hypothesis, Guilty (called H1).

Innocence (“negative”) is initially assumed, and this hypothesis is only rejected, if 
enough evidence proves otherwise, i.e. that the probability of innocence is very small 
(“beyond reasonable doubt”).

Truly innocent
(H0 is true)

Truly guilty
(H1 is true)

Acquittal
(Accept H0)

Right decision
True Negative (TN)

Wrong decision
False Negative (FN)

Conviction
(Reject H0)

Wrong decision
False Positive (FP)

Right decision
True Positive (TP)

The rate of type I/II errors are correlated, and one can only choose one of these!

Type I error, α

Type II error, β



Hypothesis terminology
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H0 = Null Hypothesis:
   Definition: The initial/simplest hypothesis. 
   Examples: Data is background, data follows simple model, particle is a pion.

H1 = Alternative Hypothesis:
   Definition: The alternative to the null hypothesis, possibly more advanced. 
   Examples: Data is background + signal, data does not follows simple model,
                      particle is an electron.

α = False Positive Rate (Significance):
   Definition: Probability to reject H0, even if it is true (aka. “False Positive”).
   Example: Finding guilty when innocent. Concluding no signal, even if there.
   Note: The signal selection efficiency = 1 - α

β = False Negative Rate (1 - Power):
   Definition: Probability to accept H0, even if it is false (aka. “False Negative”).
   Example: Acquitting, when guilty. Concluding signal, even if not there.
   Note: The misidentification probability = β
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Taking decisions

Null Hypothesis 
(expected distribution)

Alternative Hypothesis 
(expected distribution)

You are asked to take a decision: Given data - how to do that best?

Test statistic

Value observed
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The purpose of a test is to yield (calculable/predictable) 
distributions for the Null and Alternative hypotheses, 
which are as separated from each other as possible (in 
order to minimise α and β).

Taking decisions

Null Hypothesis 
(expected distribution)

Alternative Hypothesis 
(expected distribution)

You are asked to take a decision: Given data - how to do that best?

Test statistic

Value observed



Measuring separation
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Which of these four distributions are most separated?
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ROC curves
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ROC curves
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The Receiver Operating Characteristic curve or just ROC-curve is a
graphical plot of true positive rate (TPR) vs. false positive rate (FPR).

It is calculated as the integral of the two hypothesis distributions,
and is used to evaluate the performance of a test.

Dividing data, it can also detect overtraining!

http://en.wikipedia.org/wiki/Graph_of_a_function
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Where to select?
The ROC curve does not tell you where to make your selection. You 
have to figure that out. In searches for signal (S) in background (B), 
optimising S/sqrt(B) or S/sqrt(S+B) is often used.
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Which metric to use?
There are a ton of metrics in hypothesis testing, see below. However, 
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC), 
which is simply an integral of the ROC curve (thus 1 is perfect score). 
This is often used in Machine Learning to optimise performance (loss).

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Example of ROC curves in use
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Simple case



Basic steps - distributions

trk 6= `X

�R < 0.4
pT > 1000MeV

ptrk
T / p`T
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Basic steps - ROC curves

trk 6= `X

�R < 0.4
pT > 1000MeV

ptrk
T / p`T

Area of interest in the following!
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Overall improvement
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Testing procedure 
& 

Typical statistical tests
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Testing procedure
1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive the test statistic distribution under null and alternative hypothesis.
     In standard cases, these are well known (Poisson, Gaussian, Student’s t, etc.)
6. Select a significance level (α), that is a probability threshold below which null
     hypothesis will be rejected (typically from 5% (biology) and down (physics)).
7. Compute from (otherwise blinded) observations/data value of test statistic t.
8. From t calculate probability of observation under null hypothesis (p-value).
9. Reject null hypothesis for alternative if p-value is below significance level.
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Testing procedure
1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive the test statistic distribution under null and alternative hypothesis.
     In standard cases, these are well known (Poisson, Gaussian, Student’s t, etc.)
6. Select a significance level (α), that is a probability threshold below which null
     hypothesis will be rejected (typically from 5% (biology) and down (physics)).
7. Compute from (otherwise blinded) observations/data value of test statistic t.
8. From t calculate probability of observation under null hypothesis (p-value).
9. Reject null hypothesis for alternative if p-value is below significance level.
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1. State hypothesis.
2. Set the criteria for a decision.

3. Compute the test statistic.
4. Make a decision.



Hypothesis testing philosophy
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In hypothesis testing, you can never prove a hypothesis.

You can accept a hypothesis, but this does not exclude 
accepting other hypothesis.

However, you can reject a hypothesis on the basis that it’s 
probability of being correct (p-value) is too small.

Thus, in hypothesis testing, the line of reasoning is to state a 
hypothesis opposite of what you want to show, and then try 

to reject this hypothesis.

See Barlow 8.2.1 (p. 146)



The spin of the newly discovered “Higgs-like” particle (spin 0 or 2?):

Example of hypothesis test

40

PDF of spin 2 
hypothesis

Test statistic (Likelihood ratio [Decay angles])

PDF of spin 0 
hypothesis



The likelihood ratio test
While a single likelihood value says little, the likelihood ratio between two 
competing hypothesis can be compared (same offset constant/factor!).

As with the likelihood, one often takes the logarithm and multiplies by -2 to match 
the Chi-Square, thus the test statistic D becomes:

If the two hypothesis are simple (i.e. no free parameters) then the Neyman-Pearson 
Lemma states (loosely) that this is the best possible test one can make.

If the alternative model is not simple but nested (i.e. contains the null hypothesis), 
then Wilk’s Theorem states that this ratio approximately behaves like a Chi-Square 
distribution with Ndof = Ndof(alternative) - Ndof(null).

If errors are Gaussian (e.g. high statistics histograms) then this goes for Chi-Square 
differences also.

41
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D =� 2 ln

✓
likelihood for null model, H0

likelihood for alternative model, H1

◆

=� 2 lnL(null model, H0) + 2 lnL(alternative model, H1)



While the likelihood ratio is in principle both simple to write up and powerful:

…it turns out that determining the expected distribution of the likelihood ratio is 
often very hard.
To know the two likelihoods one might use a Monte Carlo simulation, representing 
the distribution by an n-dimensional histogram (since our observable, x, can have n 
dimensions). But if we have M bins in each dimension, then we have to determine 
Mn numbers, which might be too much.

However, a convenient result (Wilk’s Theorem) states that as the sample size 
approaches infinity, the test statistic D will be χ2-distributed with Ndof equal to 
the difference in dimensionality of the Null and the Alternative (nested) 
hypothesis.
Alternatively, one can choose a simpler (and usually fully acceptable test)…

Wilk’s Theorem

42
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Common statistics tests
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Common statistical tests
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 2.99).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

• Wald-Wolfowitz runs test is a binary check for independence.
• Fisher’s exact test calculates p-value for contingency tables.
• F-test compares two sample variances to see, if grouping is useful.

44

z =
x̄� µ0

�(x̄)

z =
x̄1 � x̄2p
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From z- to p-value
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 2.99).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

The step from z-value to
p-value consists of taking
the integral of a Gaussian:

You ask yourself: “What is
the probability of getting
this result or worse?”,
and find the p-value from
the integral of “this result”
i.e. your z-value and “out”
i.e. “worse”.
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Student’s t-distribution
Discovered by William Gosset (who signed “student”), student’s t-distribution takes 
into account lacking knowledge of the variance.

When variance is unknown, estimating it from sample gives additional error:

z =
x� µ

�
t =

x� µ

�̂

Gaussian: Student’s:
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Simple tests (Z- or T-tests)
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 3.00).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

Things to consider:
• Variance known (Z-test) vs. Variance unknown (T-test).
      Rule-of-thumb: If N > 10-20 or σ known then Z-test, else T-test.

• One-sided vs. two-sided test.
      Rule-of-thumb: If you want to test
      for difference, then use two-sided.
      If you care about specific direction
      of difference, use one-sided.
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Chi-squared test

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

Without any further introduction...

If the p-value is small, the hypothesis is unlikely...
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Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

The Kolmogorov test measures the maximal distance between the integrals of
two distributions and gives a probability of being from the same distribution.

49



Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

The Kolmogorov test measures the maximal distance between the integrals of
two distributions and gives a probability of being from the same distribution.
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The “slight math magic” of the K-S test
is the ability to convert the maximal
distance, d, and N into a p-value.



Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

“A Kolmogorov–Smirnov test shows that the probability that the two distributions are not drawn randomly from 
the same parent population is greater than 99.96%; that is, the two distributions differ by more than 3.5σ”. 
[Quote from figure caption] 51

Nature 486, 375–377 (21 June 2012)

Comparison of host-star 
metallicities for small 
and large planets



Kolmogorov-Smirnov test
• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

“A Kolmogorov–Smirnov test shows that the probability that the two distributions are not drawn randomly from 
the same parent population is greater than 99.96%; that is, the two distributions differ by more than 3.5σ”. 
[Quote from figure caption] 52

Nature 486, 375–377 (21 June 2012)

Comparison of host-star 
metallicities for small 
and large planets

Note: 
The KS-test requires/assumes, 
that the underlying distribution 
is continuous.



Kuiper test
Is a similar test, but it is more specialised in that it is good to detect SHIFTS
in distributions (as it uses the maximal signed distance in integrals). 
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Common statistical tests
• One-sample test compares sample (e.g. mean) to known value:
      Example: Comparing sample to known constant (μexp = 2.91 ± 0.01 vs. c = 3.00).

• Two-sample test compares two samples (e.g. means).
      Example: Comparing sample to control (μexp = 4.1 ± 0.6 vs. μcontrol = 0.7 ± 0.4).

• Paired test compares paired member difference (to control important variables).
      Example: Testing environment influence on twins to control genetic bias (μdiff = 0.81 ± 0.29 vs. 0).

• Chi-squared test evaluates adequacy of model compared to data.
      Example: Model fitted to (possibly binned) data, yielding p-value = Prob(χ2 = 45.9, Ndof = 36) = 0.125

• Kolmogorov-Smirnov test compares if two distributions are compatible.
      Example: Compatibility between function and sample or between two samples, yielding p-value = 0.87

• Wald-Wolfowitz runs test is a binary check for independence.
• Fisher’s exact test calculates p-value for contingency tables.
• F-test compares two sample variances to see, if grouping is useful.

These tests you should know by heart!

Those below are for general education,

and you should just know about them

(and the last one is not curriculum).
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Which test to use?
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In principle all statistical tests can be used on every problem, but they are not all equally 
powerful, and some might also be biased (low stat.) or otherwise unfit.
Finally, they may not all be equally easy to implement!

One figure of merit could be the Power of a Test*, defined as (1 − β), complement of the 
false negative rate, β.

This is thus the test's probability of correctly rejecting the null hypothesis.

Example:
This is a powerful test: Thus, since the result is negative, we can confidently say that the 
null hypothesis is not rejected (e.g. the patient does not have the condition).

In medical science, it is typically important to have a powerful test (i.e. low β), while in 
criminal science it is a low type I error rate (i.e. low α), convicting innocents.
In the end, choosing a test comes down to experience, importance of power, ease of use, 
and even standards in the field of research in question.

* Power of a test is often termed sensitivity in biostatistics.



A different test to the Chi2 (and in fact a bit
orthogonal!) is the Wald-Wolfowitz runs test.

It measures the number of “runs”, defined as
sequences of same outcome (only two types).

Example:

If random, the mean and variance is known:

N = 12, N+ = 6, N- = 6 
µ = 7, σ = 1.76 

(7-3)/1.65 = 2.4 σ (~1%)

Note: The WW runs test requires N > 10-15 for the output to be approx. Gaussian!

Wald-Wolfowitz runs test
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Barlow, 8.3.2, page 153



When considering a contingency table (like below), one can calculate the
probability for the entries to be uncorrelated. This is Fisher’s exact test.

Simple way to test categorial data (Note: Barnard’s test is “possibly” stronger).

Fisher’s exact test

p =

✓
A+ C

A

◆✓
B +D

B

◆

✓
N

A+B

◆ =
(A+B)! (C +D)! (A+ C)! (B +D)!

A! B! C! D! N !

Row 1 Row 2 Row Sum
Column 1 A B A+B

Column 2 C D C+D

Column Sum A+C B+D N
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Consider data on men and women dieting or not. The data can be found in the below 
table:

Is there a correlation between dieting and gender?

The Chi-square test is not optimal, as there are (several) entries, that are very
low (< 5), but Fisher’s exact test gives the answer:

Fisher’s exact test - example

p =

✓
10
1

◆✓
14
11

◆
/

✓
24
12

◆
=

10! 14! 12! 12!

1! 9! 11! 3! 24!
' 0.00135
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To test for differences between
variances in two samples, one
uses the F-test:

F-test

Note that this is a two-sided
test. One is generally testing,
if the two variances are the
same.

59



Anderson-Darling Test
A “simple” and powerful test between cumulative data Fn and  distribution F is 
defined as:
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n

Z 1

�1
(Fn(x)� F (x))2 w(x) dF (x)
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A2 = n

Z 1

�1

(Fn(x)� F (x))2

F (x)(1� F (x))
dF (x)

<latexit sha1_base64="J9x6yEBtKhLXJz+qAIsJvHwy06U="></latexit>

Here, n is the number of elements in the sample and w(x) is a weighting function.

Choosing w(x) = F(x) (1-F(x)) yields the Anderson-Darling test statistic:

which has more emphasis on the tails than the above (w(x) = 1, i.e. Cramer-von Mises) 
test statistic. An alternative is Shapiro-Wilks test, see here for comparison.

The test is implemented in the Python Statistics package (stats), with tests for the 
Gaussian, Exponential, Logistic & Gumbel distributions.

https://www.nbi.dk/~petersen/Teaching/Stat2020/Power_Comparisons_of_Shapiro-Wilk_Kolmogorov-Smirn.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html


What value to decide at?
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How many sigmas?
The number of sigmas (or p-value) required to make a claim should perhaps vary,
according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).
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From: “Discovering the Significance of 5 sigma”, ArXiv: 1310.1284



How many sigmas?
The number of sigmas (or p-value) required to make a claim should perhaps vary,
according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).
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The more extraordinary the claim, the more extraordinary the evidence needed!



Systematic Uncertainties
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Systematic Uncertainties
Caution! This contains material some people may find offensive.

Even my close colleagues and I disagree on some of the following!
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Systematic uncertainties

“Everything is vague to a degree you do not realise 
  till you have tried to make it precise.” 

[Bertrand Russell, 1872-1970]
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Systematic uncertainties
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“Systematic effects is a general category which includes effects such as background, 
scanning efficiency, energy resolution, variation of counter efficiencies with beam 
position, and energy, dead time, etc. The uncertainty in the estimation of such a 
systematic effect is called a systematic error”

[Jay Orear, 1958]

Very importantly, a measurement error is not a mistake. Systematically measuring 
something wrong is a mistake, if not corrected for. It is the uncertainties associated 
with the correction, that is the systematic uncertainty.
For this reason, it is also better to use the word uncertainty than error.



Systematic uncertainties
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“Systematic effects is a general category which includes effects such as background, 
scanning efficiency, energy resolution, variation of counter efficiencies with beam 
position, and energy, dead time, etc. The uncertainty in the estimation of such a 
systematic effect is called a systematic error”

[Jay Orear, 1958]

Very importantly, a measurement error is not a mistake. Systematically measuring 
something wrong is a mistake, if not corrected for. It is the uncertainties associated 
with the correction, that is the systematic uncertainty.
For this reason, it is also better to use the word uncertainty than error.

Example:
Measurements are taken with a steel ruler, the ruler was calibrated at 15℃, the 
measurements done at 22℃. This is a systematic bias and not only a systematic 
uncertainty! To neglect such an effect is a systematic mistake.
Effects can be corrected for! If we correct for effect, but corrections are not known 
exactly, then we have to introduce a systematic uncertainty (error propagation!).



How to find systematic errors?
Look for ANY effect that can have an influence on your results.

Divide your data in any way you can (space, period, condition, analysis, etc.).

Large statistical error 
Small systematic error

Small statistical error 
Large systematic error

Medium stat. error 
??? syst. error

Often, systematic errors are also studied using simulation. However, this requires
that the simulation is accurate! To check this, one studies known phenomena.
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Not precise, 
but accurate

Not accurate, 
but precise

Medium precise, 
Accurate???



Biased measurements

Those who forget good and evil and seek only the facts are more likely to achieve good,
than those who view the world through the distorting medium of their own desires. [Bertrand Russell]

Why does my experiment find a lower value than others?

It is questions like these, that makes you start looking for effects that could yield a 
higher value, leading to…

  Biases! 
When measuring a parameter for which
there are already expectations/predictions,
the result can be biased. Examples:
• Millikan’s oil-drop experiment.
• Epsilon prime (CERN vs. FNAL).
• Most politically influenced decisions!
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Neutron lifetime
measurement bias!



The charge of an electron
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We have learned a lot from experience about how to handle some of the ways we fool 
ourselves. One example: Millikan measured the charge on an electron by an experiment 
with falling oil drops, and got an answer which we now know not to be quite right. It's a 
little bit off because he had the incorrect value for the viscosity of air. It's interesting to 
look at the history of measurements of the charge of an electron, after Millikan. If you plot 
them as a function of time, you find that one is a little bit bigger than Millikan's, and the 
next one's a little bit bigger than that, and the next one's a little bit bigger than that, until 
finally they settle down to a number which is higher.

Why didn't they discover the new number was higher right away? It's a thing that scientists 
are ashamed of—this history—because it's apparent that people did things like this: When 
they got a number that was too high above Millikan's, they thought something must be 
wrong—and they would look for and find a reason why something might be wrong. 
When they got a number close to Millikan's value they didn't look so hard. And so they 
eliminated the numbers that were too far off, and did other things like that …

[Richard Feynmann]



> ./FitSin2beta 
Result is: sin(2beta) = x.xx +- 0.37 
Do you wish to unblind (y/n)?

To avoid experimenters biases, blinding
has been introduced.

This means that the computer adds a random
number to the result, which is not removed
before the analysis has been thoroughly
checked.

Example:

This was first introduced by the French Academy of Science (1784), and has since 
become standard procedure in most science and medical experiments.

In this way experimenters bias is removed, and the results become truly independent 
and unaffected by wishful thinking and “common belief”.

Blinding of results
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Emblem used by the BaBar experiment to label blinded analysis



Systematic Errors
Even with infinite statistics, the error on a result will never be zero!

Such “systematic uncertainties” have many origins, some of which are:
• Imperfect modeling/simulation
• Lacking understanding of experiment
• Uncertainty in parameters involved
• Uncertainty associated with corrections
• Theoretical uncertainties/limitations

While the statistical uncertainty is Gaussian and scales like            ,
the systematic uncertainties do not necessarily follow this rule.

When statistical uncertainty dominate, more data will improve precision. 
When systematic uncertainty dominate, more understanding will improve precision.

In these modern days of particle factories and huge data samples, 
systematic uncertainties play a significant role.

The finding/calculation of systematic errors is hard work. 73



Systematic uncertainty examples
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Think of examples of systematic uncertainties on:
a. Track momentum
b. Cluster energy
c. Reconstruction efficiency
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Think of examples of systematic uncertainties on:
a. Track momentum: 

Determined as p = 0.3 B ρ, thus uncertainties come from the magnetic 
field strength (B) and curvature (ρ) uncertainties. Interactions with 
detector material could also be a source.

b. Cluster energy
c. Reconstruction efficiency

Systematic uncertainty 
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Think of examples of systematic uncertainties on:
a. Track momentum: 

Determined as p = 0.3 B ρ, thus uncertainties come from the magnetic 
field strength (B) and curvature (ρ) uncertainties. Interactions with 
detector material could also be a source.

b. Cluster energy: 
Simplest case E = αS + β, thus uncertainties come from calibration 
coefficients  α and β. As a calorimeter is more complex, this can be 
expanded to many variables, and also as a function of E and angles.

c. Reconstruction efficiency

Systematic uncertainty 
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Think of examples of systematic uncertainties on:
a. Track momentum: 

Determined as p = 0.3 B ρ, thus uncertainties come from the magnetic 
field strength (B) and curvature (ρ) uncertainties. Interactions with 
detector material could also be a source.

b. Cluster energy: 
Simplest case E = αS + β, thus uncertainties come from calibration 
coefficients  α and β. As a calorimeter is more complex, this can be 
expanded to many variables, and also as a function of E and angles.

c. Reconstruction efficiency 
Typically, ε = (Npass - Bkg1) / (Ntotal - Bkg2), where Bkgx are the 
background numbers. These of course carry uncertainties.

Systematic uncertainty 
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Think of examples of systematic uncertainties on:
a. Track momentum: 

Determined as p = 0.3 B ρ, thus uncertainties come from the magnetic 
field strength (B) and curvature (ρ) uncertainties. Interactions with 
detector material could also be a source.

b. Cluster energy: 
Simplest case E = αS + β, thus uncertainties come from calibration 
coefficients  α and β. As a calorimeter is more complex, this can be 
expanded to many variables, and also as a function of E and angles.

c. Reconstruction efficiency 
Typically, ε = (Npass - Bkg1) / (Ntotal - Bkg2), where Bkgx are the 
background numbers. These of course carry uncertainties.

Common for all cases are, that they can be written as “simple” formulae.
When this is no so (e.g. ML output), one can resort to using simulation to 
propagate the uncertainties.

Systematic uncertainty 



Cross check of data
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Classic check of systematic
errors, by dividing the data
according to:
• Period of data taking
• Direction of regulator
• Direction of B-field

If any of these showed an
inconsistency between the
subsamples, one would
know that this had an
impact on the result.

This type of cross checks is
at the heart of data analysis.

CERN, NA48, Direct CP violation in K0 system



Checking your analysis
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Do as many tests of your analysis as possible. You can’t prove that your 
analysis is correct, but the more tests and checks it passes, the more 
likely it is that your colleagues (and yourself!) will trust the result.

However, if the analysis passes a check, don’t include a possible (small) 
discrepancy as a systematic uncertainty!
1. It would penalise hard work and diligence
2. It is illogical (discrepancy is not significant!)
3. It inflates final error beyond its true size

However, re-check results, discuss with colleagues, vary all parameters 
and cuts, and be your own worst critic.

You may think that this is hard, but it carries great satisfaction and also 
peace of mind.



Example of systematic error
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One of the best “recent” examples is the case of 
physicists measuring neutrinos to travel faster 
than speed of light.

This would (if true) put the foundations of 
General Relativity in ruins - but be interesting!
After 6 months of intense studies, the researchers 
found two possible systematic errors:

•A link from a GPS receiver to the OPERA master 
clock was loose, which increased the delay 
through the fiber. 

•A clock on an electronic board ticked faster than 
its expected 10 MHz frequency, lengthening the 
reported flight-time of neutrinos, thereby 
somewhat reducing the seeming faster-than-
light effect.



Unchecked biases
No method of checking for biases or systematics errors is fool proof. Overconfidence 
that all dominant systematic errors are included can result in wrong results. 

Measuring the cosmic microwave background requires many subtractions of 
unwanted foregrounds. Missing a single systematic contribution ruins results. 

82

Credit: Planck & ESA



Evaluating systematic errors
Known sources:
• Error on factors in the analysis, energy calibration, efficiencies, corrections, ...
• Error on external input: theory error, error on temperature, masses, ...
Evaluate from varying conditions, and compute result for each. Error is RMSE.

For combining systematic uncertainties, the correlations (covariance matrix) is 
needed. Correlations typically come from common input (e.g. luminosity).

Unsuspected sources:
Repeating the analysis in different form helps to find such systematic effects.
• Use subset of data, or change selection of data used in analysis.
• Change histogram binning, change parameterisations, change fit techniques.
• Look for impossibilities.

If you do not a priori expect a systematic effect and if the deviation is not significant, 
then do not add this in the systematic uncertainties. If there is a deviation, try to 
understand, where the mistake is and fix it!

Only as a last resort include non-understood discrepancy as systematic error.
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Discrete systematic errors
Discrete uncertainties are special. They typically arise from model choice.

Situation depends on status of model. Sometimes one model is preferred, sometimes 
all models are equal (more or less). Imagine two models each yielding estimate μ.

With 1 preferred model and one other, quote μ1 ± |μ1 - μ2|

With 2 models of equal status, quote (μ1 + μ2)/2 ± |μ1 - μ2|/ sqrt(2)

With N models, quote μ ± sqrt( N / (N-1) ) * Std.

With 2 extreme models, quote (μ1 + μ2)/2 ± |μ1 - μ2|/ sqrt(12)

These are just rough estimates. Do not push them too hard.

If the difference is not small, you have a problem - which can be an opportunity 
to study model differences. 
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When all else fails
A sign of a systematic error (or bug), is that one can see in data, that “something” 
strange is going on.

It could be that a distribution between data and MC is very different, or that two 
data (e.g. control) channels disagree on the size of a systematic correction.

One should of course work
hard to understand the effect,
but occasionally one must
give up, and suffer a large
systematic uncertainty.

The example distribution
shown is one such case. It
looks as if some effect in data
is at play around 280 GeV.

But what and why not in MC?
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Cleaning data
Example of experimental error, which would be a disaster if not corrected for.
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Removing data points
An example could be in some of the Table Measurement exercise data…
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Entries  286
Mean    3.347
RMS    0.1903

 / ndf 2χ   1585 / 117
Prob       0
Constant  1.38± 18.96 
Mean      0.009± 3.354 
Sigma     0.0063± 0.1499 

Table length (m)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr
eq

ue
nc

y

0

20

40

60

80

100

120

140

160

180

Entries  286
Mean    3.347
RMS    0.1903

 / ndf 2χ   1585 / 117
Prob       0
Constant  1.38± 18.96 
Mean      0.009± 3.354 
Sigma     0.0063± 0.1499 

Lengths estimates by 30cm ruler

What!?!



Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Yes!



Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Yes!

Hmm…



Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Yes!

Hmm…

Yes!



Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Yes!

Hmm…

Yes!

YES!



Caution discarding data!
The following passage (p. 55 of Barlow) is an intersting read:
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Yes!

Hmm…

Yes!

YES!

You have to be the good judge!



Removing data points
One should always be careful about removing data points, yet at the same to be 
willing to do so, if very good arguments can be found:
• It is an error measurement.
• Measurement is improbable.

Removing improbable data points
is formalised in Chauvenet’s
Criterion, though many other
methods exists (Pierce, Grubbs,
etc.)

The idea is to assume that the distribution is Gaussian, and ask what the probability
of the farthest point is. If it is below some value (which is preferably to be 
determined ahead of applying the criterion), then the point is removed, and the 
criterion is reapplied until no more points should be removed.

However, ALWAYS keep a record of your original data, as it may contain more 
effects than you originally thought.

94



Summary
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Roger Barlow has six “commandments” to which I’ve added a seventh:
1. Thou shalt never say ‘systematic error’ when thou meanest ‘systematic effect’ or 

‘systematic mistake’.
2. Thou shalt know at all times whether what thou performest is a check for a 

mistake or an evaluation of an uncertainty.
3. Thou shalt keep thy signal region out of sight until thy analysis has passed all 

checks and evaluated all uncertainties.
4. Thou shalt not incorporate successful check results into thy total systematic error 

and make thereby a shield to hide thy dodgy result.
5. Thou shalt not incorporate failed check results unless thou art truly at thy wits’ 

end.
6. Thou shalt not add uncertainties on uncertainties in quadrature. If they are larger 

than chickenfeed thou shalt generate more Monte Carlo until they shrink to 
become so.

7. Thou shalt say what thou doest, and thou shalt be able to justify it out of thine 
own mouth; not the mouth of thy supervisor, nor thy colleague who did the 
analysis last time, nor thy local statistics guru, nor thy mate down the pub.  

Do these, and thou shalt flourish, and thine analysis likewise.


