Dark Matter

Data and Candidates

Mads Toudal Frandsen

2023 European School of High-Energy Physics

 $p(r) \sim \frac{1}{r^2}$ at larger

Particle physics candidates for -DM particle - sterile neutrino - axion - WIMP

Recap

M. Shaposhnikovs lecture

Recap

Is this inferred DM density consistent with particle DM?

SDU

Isothermal sphere

Self-gravitating isothermal sphere of ideal gas:

$$\frac{\mathrm{d}p}{\mathrm{d}r} = \frac{k_{\mathrm{B}}T}{m}\frac{\mathrm{d}\rho}{\mathrm{d}r} = -\rho\frac{\mathrm{d}\Phi}{\mathrm{d}r} = -\rho\frac{GM(r)}{r^2},$$

Solution for density

$$\rho(r) = \frac{\sigma^2}{2\pi G r^2}.$$

This solution describes the **singular isothermal sphere**. The mass interior to radius r, the circular speed and the gravitational potential are (eqs. 2.60, 2.61, and 2.62)

$$M(r) = \frac{2\sigma^2 r}{G}$$
; $v_c(r) = \sqrt{2}\sigma$; $\Phi(r) = 2\sigma^2 \ln(r) + \text{constant}$, (4.104)

(Binney & Tremaine; Galactic Dynamics)

Simple(st) particle model of DM halo yields

$$p(r) \sim \frac{1}{r^2}$$
 at larger

SDU 🎓

Missing mass problem

Galactic scales Rotation curves of stars and gas (Freeman '70, Bosma '78, Rubin et al '78)

Cluster Scales Galaxy velocity dispersions, Cluster mergers (Zwicky '33, Clowe et al '06)

Cosmological scales CMB and LSS

(Davis et al '82, Peebles '82)

Missing gravity problem

Galactic scales Rotation curves of stars and gas (Freeman '70, Bosma '78, Rubin et al '78)

Cosmological scales CMB and LSS

(Davis et al '82, Peebles '82)

Many types of observational techniques and systems at each scale E.g. for rotation curves

175 late-type spirals and irregulars.

Stellar mass range 5 dex, surface brightnesses 4 dex, range of gas fractions

(From McGaugh, KITP DM workshop '18)

SDU

PACTS 2018

Correlation found between baryonic acceleration and total acceleration in ~ 2700 data points from 175 galaxies from the SPARC database

(McGaugh, Lelli & Schombert '16)

SDU 🍝

PACTS 2018

Correlation found between baryonic acceleration and total acceleration in ~ 2700 data points from 175 galaxies from the SPARC database

PACTS 2018

(McGaugh, Lelli & Schombert '16)

SDU 4

Correlation found between baryonic acceleration and total acceleration in ~ 2700 data points from 175 galaxies from the SPARC database

CP3 Origins Cosmology & Particle Physics

PACTS 2018

Modified Newtonian Dynamics

Newtonian acceleration modified below $g_0 \sim 1.2 \times 10^{-10} \text{ m/s}^2$ to account for flat rotation curves

(Milgrom '83 Bekenstein & Milgrom '85)

PACTS 2018

2) MOND modified inertia fit.

1) Correlation between baryonic acceleration and total acceleration

g2-space cuve shows

3) (Simplest) approximation to MOND modified gravity fit.

SPARC Individual galaxies

Highlighted galaxies don't follow Radial Acceleration Relation at smallest radii

Result of baryonic complexities at small radii?

PACTS 2018

Universality vs Diversity

NFW scaling of radial DM density profiles from dwarf galaxies to galaxy clusters DM only cosmological N-body simulations. No baryons $\rho_{\text{NFW}}(r) = \frac{\rho_{0,\text{NFW}}}{\frac{r}{r_s}(1+\frac{r}{r_s})^2}$

(Navarro, Frenk & White '95)

MOND/RAR[:] Total acceleration in circular motion correlates with that from baryons At galactic scales

(Tully & Fisher '77; McGaugh '11)

Cusp/Core

Flat or cored DM profiles in dwarf and Low Surface Brightness galaxies $\rho_{ISO}(r) = \frac{\rho_{0,ISO}}{1 + (\frac{r}{r_c})^2}$ (Moore '94; Flores & Primack '94)

Missing Sattelites & Too-big-to-fail

Too many sattelites that are too dense and massive are predicted

(Moore, Quinn, Governato, Stadel & Lake '99; Klypin, Kravtsov, Valenzuela & Prada '99; Boylan-Kolchin, Bullock, Kaplinghat '11)

SDU 🎓

Universality vs Diversity

Baryonic physics Discrepancies arise from comparing to DM-only simulations

(J. Read talk ZPW19)

DM (self-) interactions Small scales are high DM density and DM interaction rates

Gravity

Discrepancies arise assuming Newtonian gravity

Adiabatic contraction Supernova feedback AGN

Velocity dependence Long rage, short range

With or without DM Modified NewtonianDynamics Modified Gravity

SDU 4

MOND and DM geometry in g2-space

Geometric Classification

Mond Modified Inertia MOND Modified Gravity DM Pseudo-Isothermal DM Navarro-Frenk-White

Models	Reference radii	Curve segments	Curve Area ^{a}
MOND-MI	$r_{\rm tot} = r_{\rm bar}$	$\mathcal{C}^+ = \mathcal{C}^-$	$\mathcal{A}(\mathcal{C})=0$
MOND-MG	$r_{\rm tot} > r_{\rm bar}$	$\mathcal{C}^+ > \mathcal{C}^-$	$\mathcal{A}(\mathcal{C}) > 0$
DM-ISO	$r_{ m tot} > r_{ m bar}$	$\mathcal{C}^+ > \mathcal{C}^-$	$\mathcal{A}(\mathcal{C}) > 0$
DM-NFW	$r_{ m tot} < r_{ m bar}$	$\mathcal{C}^+ \! < \! \mathcal{C}^-$	Curves open

PACTS 2018

THE ASTROPHYSICAL JOURNAL

OPEN ACCESS

Breakdown of the Newton–Einstein Standard Gravity at Low Acceleration in Internal Dynamics of Wide Binary Stars

Kyu-Hyun Chae¹ 🝺

Published 2023 July 24 • © 2023. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 952, Number 2

Citation Kyu-Hyun Chae 2023 ApJ 952 128

DOI 10.3847/1538-4357/ace101

MOND keeps sparking some interest but hard to reconcile MOND with observations on all scales

Missing mass problem

Galactic scales Rotation curves of stars and gas (Freeman '70, Bosma '78, Rubin et al '78)

Cosmological scales CMB and LSS

(Davis et al '82, Peebles '82)

Back to particle DM

To summarise, what we know about DM particles - lifetime T > Tunivers Need theory input! Relatively light particles must be neutral and very weakly interacting DM should be sufficiently cold - fermions should be heavier than ~ 500 eV bosons should be heavier than $\sim 10^{-22}$ M. Shaposhnikovs lecture

19

Particle DM

- Particle physics candidates for DM particle - sterile neutrino - axion - WIMP M. Shaposhnikovs lecture

Particle DM strategies/classifications

- Generalize SM `DM candidates`:
- Generalize the SM neutrino relic see Shaposhnikovs lecture
- Generalize the SM baryonic relic (neutron) Composite DM
- Clasify by the origin of the DM relic density:
- SM neutrino relic thermal freeze-out (WIMP)
- SM baryonic relic (neutron) asymmetry (Composite DM)

Baryonic relic density

- Proton stability (longevity) due to a U(1) symmetry
- Proton mass from **strong dynamics** (and Higgs)
- Proton relic density from some **asymmetry**

 Neutron lightest table baryon for zero current quark masses.
 Self-interactions from strong dynamics

2 flavor massless QCD $SU(2)_L \times SU(2)_R \times U(1)_B$ $\rightarrow SU(2)_V \times U(1)_B$

Particle DM strategies/classifications

>DM as byproduct(?) from solving other SM problems...

Axions - Particle physics candidates for DM partiele - stepile neutrino Shaposhnikov lecture - axion Strong CP problem Q 1 13 SDU & About SDU 🜔 Our Global Goals Program Library Search Dansk erc SDU 🍲 SDU > About SDU > Departments and Centres Department of Physics, Chemistry and Pharmacy **AL**PS ALPS Gamasay Space Telescop Physicists to search for traces of dark matter in new experiment

The strong CP problem

- Theory of strong force (QCD) predicts electric dipole moment of the neutron with strength θ ∈ [-π,π]
- Violates P and T symmetry
- Calculation: $|d_n| \approx 2.4 \times 10^{-16} \theta e \text{ cm}$
- Measurement [Abel et al. 2020]: $|d_n| < 1.8 \times 10^{-26} e \text{ cm}$
- $\Rightarrow |\theta| < 0.8 \times 10^{-10}$

d ▲▲μ

Slide credit: Ben Safdi & Axel Lindner

[Peccei & Quinn 1977; Weinberg 1978; Wilczek 1978]

The strong CP problem

- Theory of strong force (QCD) predicts electric dipole moment of the neutron with strength θ ∈ [-π,π]
- Violates P and T symmetry
- Calculation: $|d_n| \approx 2.4 \times 10^{-16} \theta e \text{ cm}$
- Measurement [Abel et al. 2020]: $|d_n| < 1.8 \times 10^{-26} e \text{ cm}$

Axion solves the strong CP problem

 $\theta \rightarrow a / f_a$ with scalar field a and scale f_a

Potential V(a) generated by QCD, axion acquires mass

 $m_a pprox 10^{-9} \,\mathrm{eV}\left(rac{10^{16} \mathrm{GeV}}{f_a}
ight)$

SDU

[<u>Peccei</u> & Quinn 1977; Weinberg 1978; Wilczek 1978]

Axions as cold dark matter Through misalignment mechanism

10

- Overdamped in early Universe as long as $3H \gg m_a$, field frozen at its initial value a_I
- Once $3H \sim m_a$ field will start to oscillate; happens at $t = t_{osc}$ or equivalently $T = T_{osc}$
- Oscillations have properties of cold dark matter

 $\ddot{a} + 3H(t)\dot{a} + m_a^2(t)a = 0$

[See e.g. this PhD thesis, Marsh 1510.07633, Arias et al. 1201.590

Particle DM strategies/classifications

>DM as byproduct(?) from solving other SM problems...

WIMP DM

SDU 🎓

WIMP DM

SDU

THE WIMP MIRACLE

Jonathan Feng University of California, Irvine

•Assume a new (heavy) particle X is initially in thermal equilibrium

•Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

$$\left\{ \begin{array}{c} m_{\chi} \sim m_{\text{weak}} \sim 100 \text{ GeV} \\ g_{\chi} \sim g_{\text{weak}} \sim 0.6 \end{array} \right\} \Omega_{\chi} \sim 0.1$$

CIFAR, Mont Tremblant 7 March 2009

Particle DM strategies/classifications

>DM as byproduct(?) from solving other SM problems...

Particle DM strategies/classifications

>DM as byproduct(?) from solving other SM problems...

Baryonic relic density

- Proton stability (longevity) due to a U(1) symmetry
- Proton mass from **strong dynamics** (and Higgs)
- Proton relic density from some **asymmetry**

 Neutron lightest table baryon for zero current quark masses.
 Self-interactions from strong dynamics 2 flavor massless QCD $SU(2)_L \times SU(2)_R \times U(1)_B$ $\rightarrow SU(2)_V \times U(1)_B$

 $\Omega_{\rm DM}/\Omega_{\rm B}\sim 5$

- 4d Gauge-Yukawa model with fermions and strong interactions
- May also (partially) break EW symmetry $\langle Q^I Q^J \rangle \sim f^3 E_Q^{IJ}$

$$\mathcal{L} = \mathcal{L}_{\rm SD} + \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm SD+SM}$$

CD breaks EW: e.g TC, CH

 $\mathcal{O}_{\rm CD} \sim QQ$

 $\mathcal{L} = \mathcal{L}_{\rm SD} + \mathcal{L}_{\rm SM} + \boldsymbol{\mathcal{L}}_{\rm SD+SM}$

 $\begin{array}{ll} \text{CD induces EW breaking:} & \mathcal{O}_{\rm CD+SM} \sim QHQ \\ \text{e.g. PCH,} & \mathcal{O}_{\rm CD+SM} \sim QQH^{\dagger}H \end{array}$

 $\mathcal{L} = \mathcal{L}_{\rm SD} + \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm SD+SM}$

SM breaks EW: e.g. SIDM (Spergel & Steinhardt)

 $\mathcal{O}_{\rm SM} \sim H^{\dagger} H$

- 4d Gauge-Yukawa model with fermions and strong interactions
- May also (partially) break EW symmetry

 $egin{aligned} \mathcal{L} &= \mathcal{L}_{\mathrm{CD}} + \mathcal{L}_{\mathrm{CD+SM}} + \mathcal{L}_{\mathrm{SM}} \ \mathcal{L} &= \mathcal{L}_{\mathrm{CD}} + \mathcal{L}_{\mathrm{CD+SM}} + \mathcal{L}_{\mathrm{SM}} \end{aligned}$

CD breaks EW: e.g TC, CH

 $\mathcal{O}_{\rm CD} \sim QQ$

 $\begin{array}{ll} \text{CD induces EW breaking:} & \mathcal{O}_{\rm CD+SM} \sim QHQ \\ \text{e.g. PCH,} & \mathcal{O}_{\rm CD+SM} \sim QQH^{\dagger}H \end{array}$

 $\langle Q^I Q^J \rangle \sim f^3 E_O^{IJ}$

 $\mathcal{L} = \mathcal{L}_{\rm CD} + \mathcal{L}_{\rm CD+SM} + \mathcal{L}_{\rm SM}$

SM breaks EW: e.g. SIDM (Spergel & Steinhardt)

 $\mathcal{O}_{\rm SM} \sim H^{\dagger} H$

 $\text{UV:} \quad \mathcal{L}_{UV} = \bar{Q}\gamma^{\mu}D_{\mu}Q + \mathcal{L}_{SM-Higgs} + \delta\mathcal{L} \qquad \qquad \text{IR:} \quad \langle Q^{I}Q^{J}\rangle \sim f^{3}E_{Q}^{IJ}$

 $G_Q \supset SU(2) \times SU(2) \times U(1) \longrightarrow H_Q \supset SU(2) \times U(1)$

SM custodial symmetry DM symmetry

Framework: Composite Dynamics

UV:
$$\mathcal{L}_{UV} = \bar{Q}\gamma^{\mu}D_{\mu}Q + \mathcal{L}_{SM-Higgs} + \delta\mathcal{L}$$
 IR: $\langle Q^{I}Q^{J}\rangle \sim f^{3}E_{Q}^{IJ}$

 $G_Q \supset SU(2) \times SU(2) \times U(1) \longrightarrow H_Q \supset SU(2) \times U(1)$

SM custodial symmetry DM symmetry

$$\text{UV:} \quad \mathcal{L}_{UV} = \bar{Q}\gamma^{\mu}D_{\mu}Q + \mathcal{L}_{SM-Higgs} + \delta\mathcal{L} \qquad \qquad \text{IR:} \quad \langle Q^{I}Q^{J}\rangle \sim f^{3}E_{Q}^{IJ}$$

 $G_Q \supset SU(2) \times SU(2) \times U(1) \longrightarrow H_Q \supset SU(2) \times U(1)$

SM custodial symmetry DM symmetry

Cosmology & Particle Physics

SU(2) Composite Dynamics with 2 flavors

Framework: Composite Dynamics

$$\mathsf{UV:} \quad \mathcal{L}_{UV} = \bar{Q}\gamma^{\mu}D_{\mu}Q + \mathcal{L}_{SM-Higgs} + \delta\mathcal{L} \qquad \qquad \mathsf{IR:} \quad \langle Q^{I}Q^{J}\rangle \sim f^{3}E_{Q}^{IJ}$$

 $G_Q \supset SU(2) \times SU(2) \times U(1) \longrightarrow H_Q \supset SU(2) \times U(1)$

SM custodial symmetry DM symmetry

Example:

 $G_Q = SU(4)$

$$\rightarrow \qquad H_Q = Sp(4)$$

Which condensate					
Preserves/breaks EW					

	${ m SU}(2)_{ m TC}$	${ m SU}(2)_{ m W}$	$\mathrm{U}(1)_Y$	$- (U_{\rm L})^{-}$
(U_L,D_L)			0	$O - \begin{bmatrix} D_{\rm L} \\ \sim \end{bmatrix}$
$\widetilde{U}_{ m L}$		1	-1/2	$Q = \bigcup_{\substack{i \in U_L \\ i \in I}} U_L$
$\widetilde{D}_{ m L}$		1	+1/2	$\langle D_{\rm L} \rangle$

<u>CP3 Origins</u> Cosmology & Particle Physics

SU(2) Composite Dynamics with 2 flavors

Technicolor

- Technibaryon stability (longevity) due to a U(1) symmetry
- Technibaryon mass from new strong dynamics (and Higgs)
- Technibaryon relic density from baryon asymmetry
- Self-interactions from new strong dynamics (though not necessarily big enough to address cusp-core)

Observed Higgs physics not obviously consistent with TC!

Framework: Composite Higgs

SDU 🍝

Summary

- Composite Dynamics compelling framework for DM and EW U(1) stabilizing symmetries, dynamical symmetry breaking, naturalness, non-triviality, predictability (lattice)
- Vast space of models from 4d gauge-fermion-Yukawa theories
 CH limit yields pNGB Higgs with properties tunably close to the SM Higgs.
 Correlated with DM turning WIMPy (in studied model)
- Lattice and diverse experiments test underlying models

