Lecture 3: Mixing \& \& in the B-system
Tixing of wesous:
(1) Def. wesou by Quork coltent $\left\{\begin{array}{l}\bar{B}^{+}=4 \bar{b} \\ B_{s}^{a}=d \bar{b} \\ D_{s}^{+}=c \bar{d} \\ D^{=}=c \bar{b}\end{array}\right.$

$$
\begin{aligned}
& B_{s}=(\overline{b s}) \quad \bar{B}_{s}=(b \bar{s}) \\
& \text { ve expectation fou time evditiou }
\end{aligned}\left\{\begin{array}{l}
D^{ \pm}=c \bar{d} \\
D_{0}=c \bar{d}
\end{array}\right.
$$

[$B_{s}(t)=B_{s}(0) \cdot \underbrace{e^{-i M_{s} t}}_{\text {Hiass }} \underbrace{e^{-\frac{1}{2} \Gamma_{s} t}}_{\text {dlecourvalent. }}$

$$
\text { ih } \partial t\binom{B_{s}}{\bar{B}_{s}}=\left(\begin{array}{cc}
M_{-\frac{1}{2} \Gamma_{s}} & Q^{\prime} \\
\rho_{5} & \Gamma_{s}-\frac{1}{2} \Gamma_{s}
\end{array}\right)
$$

(3) weak interaction: $\int B_{s} \longleftrightarrow \bar{B}_{s}$

$M_{12}=$ off-shell part of box-diagriom: both yicity
 uic

Ey: $C-C$
Γ_{12}

(4) Moot geneval form of 2×2 mixilug matrix

$$
\left(\begin{array}{ll}
\mu_{11}-\frac{i}{2} \Gamma_{11} & r_{12}-\frac{1}{2} \Gamma_{12} \\
r_{21}-\frac{i}{2} \Gamma_{21} & r_{22}-\frac{1}{2} \Gamma_{22}
\end{array}\right) \quad \begin{array}{ll}
\frac{C P T}{} \\
\mu_{11}=r_{22} \\
\Gamma_{11}=\Gamma_{22} \\
r_{21}=r_{12}^{*} \\
& \\
\Gamma_{21}=\Gamma_{12}^{*}
\end{array}
$$

hou-diagoual
$\Leftrightarrow B_{S}, \bar{B}_{s}$ ave no mass eigeustates
\Rightarrow diagoualise Natrix
(*)

$$
\begin{aligned}
& B_{S I H}=p B_{s}+q \bar{B}_{s} \\
& B_{S I L}=p B_{s}-q \overline{B_{s}}
\end{aligned}
$$

Heavy

Mass eigenstrade

$$
\Rightarrow \underset{\text { ratrix }}{\operatorname{diagcual}}\left(\begin{array}{cc}
M_{s, H}-\frac{i}{2} \Gamma_{s, H} & 0 \\
0 & \Gamma_{s, u}-\frac{i}{2} \Gamma_{s, L}
\end{array}\right)
$$

Physical dbsevvables:

$$
\begin{aligned}
& \Delta \Pi_{s}=\Pi_{s i H}-\Gamma_{s i L}=\Delta \Pi_{s}\left(\Gamma_{12}, \frac{\downarrow}{\Gamma_{12}}\right) \\
& \Delta \Gamma_{s}=\Gamma_{s i H}-\Gamma_{\text {sih }}=\Delta \Gamma_{s}\left(\Pi_{12}, \Gamma_{12}\right)
\end{aligned}
$$

- in the B-system: $\left|\Gamma_{12}\right| \ll\left|J_{12}\right|$
- Taylor expansion in $\left(\frac{512}{\Gamma 12}\right) \simeq 5 \cdot 10^{-3}$
in chaviling

$$
i \Gamma_{12}\left(\simeq\left|\Gamma_{12}\right|\right.
$$

$$
\begin{gathered}
\Delta \mu_{s}=2 \int \mu_{12}{ }^{3} l+\theta\left(\left|\frac{\Pi_{22}}{\pi_{12}}\right|^{2}\right) \\
\Delta \Gamma_{s}=2 \int \Gamma_{12}^{3} l \cos \left(\phi_{12}^{s}\right)+\sigma\left(\left|\frac{\Pi_{2}}{\pi_{12}}\right|^{2}\right) \\
\phi_{12}^{s}=\arg \left(-\frac{\pi_{13}}{\Gamma_{12}^{3}}\right) \simeq \frac{1}{250}
\end{gathered}
$$

Tince evelütion:

$$
\begin{aligned}
& \text { Mass eigeustates }\left|B_{s}, H(t)\right\rangle=e^{-\left(i M_{H}^{s}+\frac{1}{2} \Gamma_{t^{3}}^{3}\right) \cdot t}\left(B_{s, H}(0)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow g+(t)=e^{-i / B_{s} t} e^{-\frac{\Gamma_{3} t}{2}}[\\
& \cos h \frac{\Delta r_{s} t}{4} \cdot \cos \frac{\Delta \pi_{s} t}{2} \\
& \left.-\sinh \frac{\Delta r_{s} t}{4} \cdot \sin \frac{\Delta m_{s} t}{2}\right] \\
& g-(t) \equiv \text { see e.a. } 1511.09466 \\
& r \sim \int_{P S}|<E| \xi \operatorname{let} A\left(B_{s}(t)>1^{2}\right. \\
& \text { namalisatica factor }
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma\left\langle\bar{B}_{s}(t) \rightarrow f\right)=N_{f} \quad\left|\hat{A}_{f}\right|^{2} \frac{1+\left|\lambda_{f}\right|^{2}}{2} e^{-\Gamma_{s} t} \\
& \left\{\cosh \frac{\Delta \Gamma_{s} t}{2}-\frac{1-\left|\lambda_{f}\right|^{2}}{1+\mid \lambda f l^{2}} \cos \Delta M_{s} t\right. \\
& \left.-\sinh \frac{\Delta \Gamma_{s} t}{2} \frac{2 \operatorname{Re}\left(\lambda_{f}\right)}{1+1 \lambda_{f} l^{2}}+\frac{2 \operatorname{In}^{(}(\lambda f)}{1+|\lambda f|^{2}} \sin \Delta M_{s} t\right\} \\
& \left(1+\frac{a_{f}^{s}}{s}\right)
\end{aligned}
$$

$$
\left\langle A f=\langle f| \text { Meft } \mid B_{s}\right\rangle
$$

: Jabix element for decay (winght be supee complicatiof

$$
\bar{A}_{f}=\langle f| \mathscr{W}_{\text {enf }}\left|\bar{B}_{s}\right\rangle
$$

$$
\lambda f=\frac{q}{p} \frac{\mathscr{A f}}{A f} \quad i \quad \text { afs } \quad=\operatorname{In} \frac{5,2}{\pi 12} \quad 2 \cdot 10^{-5}
$$

flavair specific decays

- $B \rightarrow f$
$3-5$
- $\lambda_{t}=0$

$$
\bar{B}_{3} \rightarrow D_{3}^{+} \pi^{-}
$$

$$
B_{3} \rightarrow D_{3}^{-} \pi^{t}
$$

How to measure ΔM ?

How to calculate ΔM ?
$\sqrt{12}$

$$
\lambda_{u}=V_{u b} V_{u s}^{*}
$$

$$
\begin{aligned}
\lambda_{12} & =\lambda_{u} F(u, u)+\lambda_{u} \lambda_{c} F(u, c)+\lambda_{u} \lambda_{t} F(u, t) \\
& +\lambda_{c} \lambda_{u} F(c, u)+\lambda_{c} f(c, c)+\lambda_{c} \lambda_{t} F(c, t) \\
& +\lambda_{c} \lambda_{u} F(, u)+\lambda_{t} \lambda_{c} F(t, c)+\lambda_{\lambda}^{2} F(t, t)
\end{aligned}
$$

CKIT: $\lambda u=V_{4}^{*}$ Vub $\sim \lambda^{\text {wolfensteil }}$

$$
\begin{aligned}
& \lambda_{c}=V_{c s}^{*} V_{c b} \sim \lambda^{2} \\
& \lambda_{t}=V_{t s}^{*} V_{t b} \sim \lambda^{2}
\end{aligned}
$$

Vokn is witaly $\Rightarrow \lambda_{u}+\lambda_{c}+\lambda_{t}=0$

$$
\begin{aligned}
& \lambda_{c}=-\lambda_{u}-\lambda_{t} \\
& \Rightarrow M_{12}=\lambda_{u}^{2}[F(c, c)-2 F(u, c)+F(u, u)]_{1} \\
&+2 \lambda_{u} \lambda t[F(c, c)-F(u, c)+F(u, t)-F(c, t)]_{2} \\
&+\lambda_{t}^{2}[F(c, c)-2 F(c, t)+F(t, t)]_{3}
\end{aligned}
$$

Chn \downarrow
leadua

- if $\omega_{4}=\omega_{c}=\omega_{t} \Rightarrow[\ldots]_{3}=[\ldots]_{2}=[\ldots]_{3} 0$ G1 M-wechauisur
Slashicw Illiopoulos raiaui
- Loop-integvatricu

$$
F(p, a)=f_{0}+f\left(x_{q}, x_{p}\right)
$$

$$
\begin{aligned}
& \text { aucels } \\
& \text { caucels } \\
& x_{u}=\frac{m u^{2}}{\pi u^{2}} \simeq 0 \\
& x_{c}=\frac{m c^{2}}{\Pi \omega^{2}} \approx 2.5 \cdot 10^{-4} \simeq 0 \\
& x t=\frac{\omega+t^{2}}{\Omega \omega L^{2}} 24.5 \\
& \Rightarrow \Gamma_{12}=\lambda_{u}^{2} \cdot 0+2 \lambda_{u} \lambda_{t} \cdot 0 \\
& +\lambda t^{2}[\underbrace{f(0,0)-2 f(0, x t)+f(x, x+)}]
\end{aligned}
$$

Inami - Lim functicu

$$
s\left(x_{t}\right)
$$

$$
\left[s(x)=\frac{4 x-11 x^{2}+x^{3}}{4(1-x)^{2}}-\frac{3 x \ln x}{2(1-x)^{2}}\right]
$$

The full 5π value of 5i2 veads':

$$
M_{L 2} \sim\left\langle B_{s}^{0}\left(\overline{\xi \xi} \backslash \overline{\beta_{s}^{0}}\right\rangle\right.
$$

$$
\begin{aligned}
& \left\langle B_{s}^{\circ}\left((5 b)_{v-A}(5 b) v-A \backslash \bar{B}_{s}^{0}\right\rangle\right. \\
& =\frac{8}{3}+B_{s}^{2} B B_{s} \pi B_{s}^{2} \\
& \left\{\begin{array}{l}
\left.\sum^{u}\left\langle B_{s}(s b) v-A \mid u\right\rangle\langle u l| \bar{j} b\right) v-A\left|\overline{\beta_{s}}\right\rangle \\
=\frac{\left.B\left\langle\beta_{s}\right|(\bar{s} b) v-t|0\rangle\langle 0|(\bar{s} b) v-A \mid \overline{B_{s}}\right)}{f_{s} P B_{B}^{\mu}} \\
f_{B_{s} P} P_{B}^{u}
\end{array}\right. \\
& K \equiv f_{3 s}^{2} \Omega_{B_{s}}^{2} B
\end{aligned}
$$

Lattice, suius vīles

$$
B-1 \sim 0.02 \pm 0 . e 2
$$

$$
\begin{aligned}
& \Delta T_{s}^{\text {Thedy }}=\left(18.4 \begin{array}{r}
\pm 0.7 \\
-1.2
\end{array}\right) p s^{1} \\
& \qquad 1909.1108^{7} \\
& \Delta M_{s} E \times p=(17.7 \ldots .)
\end{aligned}
$$

B-amomalies

$$
b \rightarrow 3 \mu^{+} \mu^{-}
$$

$$
\frac{\sqrt[2]{3 z_{y}}}{}
$$

$$
\begin{array}{r}
3 \\
4
\end{array}
$$

Help｜Advanc

High Energy Physics－Phenomenology

［Submitted on 18 Dec 2017 （v1），last revised 15 May 2018 （this version，v2）］
One constraint to kill them all？
Luca Di Luzio，Matthew Kirk，Alexander Lenz
Many new physics models that explain the intriguing anomalies in the b－quark flavour sector are severely constrained by B_{s}－mixing，for which the Standard Model prediction and experiment agreed well until recently． The most recent FLAG average of lattice results for the non－perturbative matrix elements points，however，in the direction of a small discrepancy in this observable．Using up－to－date inputs from standard sources such as PDG，FLAG and one of the two leading CKM fitting groups to determine $\Delta M_{s}^{\mathrm{SM}}$ ，we find a severe reduction of the allowed parameter space of Z^{\prime} and leptoquark models explaining the B－anomalies．Remarkably，in the former case the upper bound on the Z^{\prime} mass approaches dangerously close to the energy scales already probed by the LHC．We finally identify some model building directions in order to alleviate the tension with B_{s}－mixing．

Comments：$\quad 12$ pages， 5 figures．To appear in PRD，matches the published version up to the title
Subjects：High Energy Physics－Phenomenology（hep－ph）

From：＜prd＠aps．org＞
Subject：DP11848 Di Luzio
Date： 8 February 2018 at 17：08：14 GMT
To：＜luca．di－luzio＠durham．ac．uk＞
Reply－To：＜prd＠aps．org．＞
Re：DP11848
One constraint to kill them all？
by Luca Di Luzio，Matthew Kirk，and Alexander Lenz
Dear Dr．Di Luzio，
Please suggest another title for the above paper that reflects more
accurately the content of your manuscript and which facilitates information retrieval．We ask for a physically more informative titlo
without reference to violence．
Yours sincerely，

Updated B_{s}－mixing constraints on new physics models for $b \rightarrow s \ell^{+} \ell^{-}$anomalies
Luca Di Luzio（Durham U．，IPPP），Matthew Kirk（Durham U．，IPPP），Alexander Lenz（Durham U．，IPPP）（Dec 18， 2017）
Published in：Phys．Rev．D 97 （2018）9， 095035 • e－Print： 1712.06572 ［hep－ph］
N pdf © DOI 巨 cite
$\rightleftharpoons 116$ citations

- AF in the B-S6 stem:
$\Rightarrow 3$ differcut Kinds of es
(1) fs in mixiug -
cousider: - flavour specific decay

$$
\begin{aligned}
& \text { acp }:=\frac{\Gamma\left(\bar{B}_{s}(t) \rightarrow f\right)-5\left(B_{s}(t) \rightarrow \bar{f}\right)}{t} \\
& \begin{array}{l}
\text { all ureve } \Delta n \\
\text { puturbative }
\end{array}=\text { afs }=\operatorname{Im} \frac{512}{512}=2 \cdot 10^{-5} \\
& \begin{array}{l}
\text { quantities } \\
\text { calued (} A_{C}=\bar{A}_{\epsilon} \text {) }
\end{array} \\
& \text { or valish }\left(\lambda_{f}=0\right) \\
& 57
\end{aligned}
$$

Exp. looked for, but no yet measbved

$$
a_{f s}^{E \times P}=(-60 \pm 280) \cdot 10^{-5}
$$

 Histouch - \& was discoveved in the k-system in 1964

- as a tiliz effect O (\%)
- 1272 kdayashi, Taskawä é lí Veks
- 1977 discaveule of 8-quauk
\Longrightarrow Expect \&f of the ouder of 50% in B decay
\Rightarrow Build dodicated expeniments to create as many B^{\prime} 's as possible and measüve OP i. the adel plated mede $3 d \rightarrow \lambda / 4 \mathrm{k}$
B-factores $\rightarrow S L A C$,les Rabal
$\longrightarrow k E K$, Japan Belle

$$
\begin{aligned}
& \text { (2) }:=\frac{\Gamma\left(B_{d}(t) \rightarrow f\right)-\Gamma\left(B_{d}(t) \rightarrow \bar{f}\right)}{+} \\
& B_{d} \rightarrow 3 K k k_{s} \\
& \operatorname{Bod} \underset{\mathrm{~b}}{\underset{\sim}{c}} \underset{\substack{c}}{\substack{s}} \\
& A f=a \cdot e^{i \varphi} \cdot e^{i v} \\
& \frac{q}{P}=1+O(a f s) c P \\
& \text { P. } \Longrightarrow \bar{A} \bar{f}=a e^{i \varphi} e^{-i \theta}=\bar{A} f \\
& \Rightarrow \lambda f=\frac{a \bar{A} t}{P A_{f}}=\frac{a e^{i \varphi} e^{-i \theta}}{a e^{i \varphi} e^{+i \hat{\theta}}}=e^{-2 ; \omega}
\end{aligned}
$$ caucelled

2001
Exp $=50^{\circ}$ e
\Rightarrow luge ch
-s Dobel plize for kobacusli rask awa

But: E 2ud decey amputwole Y

Peuguin

$$
\begin{aligned}
& \Rightarrow \lambda t=\frac{A \bar{f}}{A f}=\frac{a e^{i \varphi} e^{i N}+b e^{i \varphi^{\prime}} e^{i N^{\prime}}}{a e^{i \varphi} e^{-i N_{+} b e^{i \varphi^{\prime}} e^{-i N}} \sim e^{-2 i \omega}\left(1+\frac{b}{a} \ldots\right)} \\
& \Rightarrow a_{c}^{3} \beta=\sin 2 \beta\left(1+\frac{b}{a} \ldots\right)
\end{aligned}
$$

\rightarrow peuguin pellütien estimated to be $\pm 1^{\circ}$
(3) Divect C9:

$$
a^{3}{ }^{3} p=\frac{5(B \rightarrow s t)-\Gamma(\bar{B} \rightarrow \bar{f})}{-11-11}
$$

alse for chavged B-wesous
assulue: $A_{f}=a e^{i \varphi} e^{i N}+b e^{i \varphi^{\prime}} e^{i \mathcal{N}^{\prime}}$

$$
\Rightarrow a^{33} p \sim \frac{b}{a} \sin \left(\varphi-\varphi^{\prime}\right) \sin \left(\theta-0^{\prime}\right)
$$

Rewarles'
(i) Divect C $\$$ requiles at least 2 two differend decay tepolegies with different streua pleases \& differen' weak pleceses
e.g. $\bar{B}_{3} \rightarrow D_{3}^{+} \pi^{-}$

Las ouly 1 decay tepology

$$
\left.\Rightarrow \begin{array}{rl}
\operatorname{acc}^{3} p\left(\bar{B}_{2} \rightarrow \rho_{3}^{+} \pi\right.
\end{array}\right)^{s \pi /}=0
$$

(i) acp is divectly proportional to the wev-pert. vatic b/a
\Rightarrow very complicaled to wake precise predicticus? (except $b=0$ (1))

