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Machine Learning: 
Diving Deep
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This is a very rich topic, with enough content for whole courses.

Jan Kieseler
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Outline and overview

Basic principles 
• What is a feed-forward NN really 
• Gradient descent and back propagation 
• The training 

Exploiting the structure 
• CNNs 
• Attention and transformers 
• Graph neural networks 

Examples for advanced applications in HEP 
• Low-level reconstruction 
• Anomaly detection 

A list of things that are important, but that I could not cover
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Lecture 1

Lecture 2
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What is a DNN really?

• All nodes of consecutive layers are connected with each other 
• Typically an ANN is called “deep” if it has >4 hidden layers 
• Referred to as Multi-Layer Perceptron, Feed-Forward NN
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Hidden layersInput layer Output layer
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What is a DNN really?

• One layer: h(k+1)(h(k)) = θ(ωkh(k) + bk)
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Hidden layersInput layer Output layer

Bias vector: dim(h(k+1))

Weight matrix 
dim(h(k+1)) × dim(h(k))

Activation function 
dim(h(k+1)) → dim(h(k+1))
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What is a DNN really?

• One layer:  

• Full DNN: 

h(l+1)(h(l)) = θ(ωkh(l) + bl)

y(x) = h(4)(h(3)(h(2)(h(1)(x))))
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Hidden layersInput layer Output layer
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Activation functions: adding non-linearities

• One layer:  

• Without non-linear activation: 
 

• There is a whole zoo: theoretically, the choice does not matter for hidden layers 
• For the output it does matter as it restricts / shapes the output distribution 

• In practice: vanishing/exploding gradients, initialisations, normalisation … 
• Suggestion: (s/r)elu 

h(k+1)(h(k)) = θ(ωkh(k) + bk)

y(x) = h(4)(h(3)(h(2)(h(1)(x)))) = ω̃x + b̃
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Back-of-the 
envelope exercise

∇ = 1

https://machinelearninggeek.com/activation-functions/ 

https://machinelearninggeek.com/activation-functions/
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DNNs: very powerful universal function approximators

7
“Out-of-distribution”

• Very simple NN: one hidden layer, one input, one output,  activation tanh
Φ(ω, x) = ω1 tanh(ω0x + b)

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP

3 x 1 matrix 3 vector1 x 3 matrix

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP
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Training

8https://medium.com/@tejovk311/optimization-challenges-in-deep-learning-a4b085d529b6

https://medium.com/@tejovk311/optimization-challenges-in-deep-learning-a4b085d529b6
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Parameter initialisation and preprocessing: super short

• Keep inputs, the expected outputs, and values within the network as 
much as possible close to distributions with mean = 0 and variance = 1
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Hidden layersInput layer Output layer
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Parameter initialisation and preprocessing: super short
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Hidden layersInput layer Output layer

Normalise Initialise weights 
‘the right way’

Keep truth 
normalised

Truth

• Each input uncorrelated, normal distributed ( ), linear (no) activation 
• Then the red node is normal distributed with variance N = Ninputs  

• Initialise  normal distributed, scaled by  : Glorot initialisation (keras standard) 

• The best initialisation is intertwined with the activation function used 
• They all aim for keeping the variance at 1

μ = 1, σ = 1

ω(1) 1/ N
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Loss (cost) function

• The loss function quantifies how well a model performs 

• E.g. text book linear regression: we know the ‘truth’ 
• Model:  

• Least-square method: 
 

 

• The mean squared error loss is a standard loss for regression tasks 

• It assumes a Gaussian distribution of the NN estimates (log(L)) 
• We want to map to the whole output range: linear output activation

Φ(ω, x) = ωax + ωb

min 1/N
N

∑
i

((Φ(ω, xi) − yi)2) = min MSE(Φ(ω, x), y)
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Mean squared error loss
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Classification loss: binary cross-entropy

• For binary classification, we have two options: cat or not cat 
 

• Probability for a single sample to be identified by the NN  
(Bernoulli process) 

 

• The likelihood for N processes factorises: 
 

• Take log: get binary cross entropy loss: 

 

➡The loss choice depends on the distribution you expect the network 
output to have 

➡Map to 0-1 → output activation: sigmoid

̂y =: Φ(ω, x)

P( ̂y, y) = ̂yy(1 − ̂y)1−y

ΠN
l=1( ̂y(l))y(l)(1 − ̂y(l))(1−y(l))

N

∑
l

(y(l) log( ̂y(l)) + (1 − y(l)) log(1 − ̂y(l)))
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1/(1 + e−x)

Sigmoid
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How do we train: gradient descent

• Well established, robust numerical minimisation procedure: 
 

 

• Update  until 

ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, x), y)

ω L (Φ(ω(k), x), y) − L (Φ(ω(k+1), x), y) < ϵ
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https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Learning rate

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
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Stochastic gradient descent and momentum

• Stochastic gradient descent is gradient descent on (mini) batches instead 
of the full data set 

 

• Reduces computational burden: makes training feasible 
• Introduces extra noise that can actually help 

• Add a momentum/velocity that averages the general directions in 
parameter space 
 

 
 

➡The basis for most common optimisers that are in use

ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, x), y) → ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, {x}k), {y}k)

v(k) = αv(k−1) − η∇ω(k)L
ω(k+1) = ω(k) + v(k)

14

GD SGD

Goodfellow et al. (2016)



Jan Kieseler

Momentum in action
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The above and many more details (great page) 
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-
momentum-adagrad-rmsprop-adam-f898b102325c 

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
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Getting the gradients: back propagation

• For each (mini) batch, we calculate a loss value numerically 
• Simple “network”:  , Loss  
• Use chain rule; gradient for : 

Φ(ω, x) = θ (ωx) L = (Φ − y)2

ω
∂L
∂ω

ω(k),x(k)

=
∂θ
∂ω

ω(k),x(k)

∂L
∂θ

ω(k),x(k)

= ((x)
ω(k),x(k)

⋅ (θ − y)
ω(k),x(k))
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https://alexcpn.github.io/html/NN/ml/8_backpropogation_full/ 

This could be the  
output of a previous layer: 

x = h(l−1)• Can be extended to arbitrary depth 
• The weight gradients for layer  depend on all layers closer to the loss in 

this simple manner, but not on layers  
• Each operation is simple (fast to calculate) 
• Can (has to) use intermediate results in hidden layers 

(that’s why training takes much more GPU memory than inference) 

• Gradient calculations happen transparently in modern ML frameworks! 
(auto-differentiation)

l
l − m, m > 0

https://alexcpn.github.io/html/NN/ml/8_backpropogation_full/
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Learning rates

• There is no universally best learning rate - always needs to be adjusted 
• Rule of thumb:  

• More parameters ↔ lower learning rate 
• Smaller batches ↔ lower learning rate
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Quick interlude: overfitting / overtraining

• More data per weight: 
• Simpler network 
• More data 

• Lower learning rate 
• Regularisation (weight regularisation, Dropout) *
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https://medium.com/analytics-vidhya/the-perfect-fit-for-a-dnn-596954c9ea39

Training loss

Statistically independent validation 
sample: “validation loss”

https://medium.com/analytics-vidhya/the-perfect-fit-for-a-dnn-596954c9ea39
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Datasets

• The NN will learn from but also to represent the dataset  
(lossy compression) 

• Strictly separate: training, test, validation 

• K-fold cross-validation can be very useful if we want to exploit the whole 
sample

19

2-fold cross validation
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What is different in HEP?

• For most tasks, we have a lot of labelled data at our fingertips: simulation 

• Many techniques to deal with small amounts of data … 
• The best initialisation / activation function combination 
• Regularisation techniques 
• Data augmentation 

• … are often not worth the effort for standard tasks in HEP 

• So while the internet is full of great resources on ML, keep the above in mind 

• When used in analyses, make sure inputs and their correlations are well 
modelled 

• * There are also methods to dig deeper into how inputs relate to outputs, e.g. 
Layer-wise relevance propagation or Taylor expansions [arxiv:1803.08782, 
arXiv:1604.00825, …]

20
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Time for questions

21

Learning rate

Gradients

Momentum

Losses

Expressivity

Normalisation

30’
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CNNs

22
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Counting parameters

• Typical small MLPs: about 10k - 100k 
• ChatGPT4: 1.5 Trillion? 
• More free parameters → more expressivity

23

Hidden layersInput layer Output layer

  7 x 8 + 8 x 9  +  9 x 9  + 9 x 8  + 8 x 5 = 321Nω =
        8    +     9     +     9     +    8     +  0 = 34  Nb ≥
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More parameters → more resources

• More parameters: 
• More training data 
• More resources to evaluate 
• Even more resources to train

24

MNIST [L. Deng, IEEE 2012] 
60k images

Common Crawl

~10k-100k parameters 
Trains in minutes on your laptop 
Uses ~10 Wh of electricity

~1.5Trillion parameters 
Trained 6 month 
$100M for compute, roughly 10 000 MWh

↔

↔Not an MLP!

Only estimates, no official 
numbers



Jan Kieseler

Structure matters

• Architecture needs to fit the desired output ✓ 
• Architecture needs to fit the input data 

25
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Main building blocks of architectures

• MLP / Feed forward ✓ 

• CNNs 

• RNNs 

• Attention 

• GNNs

26

Next time
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Convolutional Neural Networks

27

Image-like data

40’
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CNNs are everywhere and at the core of computer vision

28

• Self-driving cars 
• Surveillance 
• Skin cancer 

detection 
• … 
• Particle physics
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Structure counts

• Is this an image of a cat? 

• Typical (phone) cameras 10-50 MP 
• How many parameters does the first layer have?

29

?

Cat node

O(300) parameters

• In this example: 80 - 400 million parameters in first layer 

• Also, this architecture will not perform well
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Structure counts

• What if the cat moved? 

• Present entirely different input to the DNN 

• This complexity cannot be captured by as little as 8 nodes 
• Lack of expressivity 

• Solution: exploit the structure of the data

30
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Introducing filters

• Create a cat-face 
filter (no ML here) 

• Slide it over the image 

• Take maximum of all cat scores: 
image cat score 

• We found the cat

31

Very cat-like: 
Score = 1

Not at all cat-like 
Score = 0
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Cats come in different shapes

• Many different very complex filters 
are needed 

• Can be solved by 
• Learning filters from examples 
• Abstraction

32

Not a cat

Not a cat
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Learning the filters

• Learn (approximations of)  different shapes 
• Represent them by  (combinations of) output nodes

33

Each color 
highlights a single 
shared param.
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A CNN kernel: step by step

• Inputs  

• For one channel: 

x

yj = θ (
Nk

∑
i

ωi xI( j,i) − T)

34

Activation function
Learnable weights: 
Relative position to j

Learnable bias

Index m of the pixel on the i-th place 
in the neighbourhood of j

(  )Nk (  )Nk

1 2 3
6 7 8
11 12 13

+2 for full row
+2 for full row

I(7,i) = { }
conditions at the edges → wait a few slides

Kernel size
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Multiple output channels

• Inputs  

• For Nc output channels ( ) 

x

α

yjα = θ (
Nk

∑
i

ωiα xI( j,i) − Tα)

35

The weights are still shared 
and depend only on relative 
position w.r.t. pixel j 
(and )α

(  )Nk (  )Nk
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Multiple input channels

• Inputs  

• For NF input channels/features 

 

• This is a complete convolutional 
layer

x

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

36

One kernel ≙ one dense MLP layer

(          )Nk (          )Nk Still strictly relative
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Example

• No activation 
• No bias 
• One input 
• One output 

yj =
Nk

∑
i

ωi xI( j,i)

37

1 0 1
0 1 0
1 0 1

Kernel
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Time for some (more) questions

38

Parameters

Filter

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

Kernel

Channels

Bias

Neighbourhood

60’
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Longer side note: where is the convolution?

• Convolution:  

 

• Discrete: 

( f * g)(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

39

• CNN:  

 yj =
Nk

∑
i

ωi xI( j,i)

’n-m’ hidden here
https://en.wikipedia.org/wiki/Convolution [accessed 13.7.23]

https://en.wikipedia.org/wiki/Convolution
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Re-shuffle symbols

40

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

Index m of the pixel on the i-th place 
in the neighbourhood of jyj =

Nk

∑
i

ωi xm=I( j,i)

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

Switch perspective

The i-th place for a pixel with index m 
in the neighbourhood of j  

If not in neighbourhood: extend kernel  
such that  ω = 0

✓

Pixels  
in image

=
Np

∑
m=1

ωi=I−1( j,m)xm

Simple replacement as x[m] = xm

✓
yj =

Np

∑
m=1

x[m] ωi=I−1( j,m)
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It is a convolution

41

* technically, depending on the definition, this could implement a convolution or cross correlation, possibly implementing a sign flip w.r.t. 
convolution. In practice this does not matter since  are learnable and can re-absorb the flip. A detailed explanation can be found here: 
https://ai.stackexchange.com/questions/21999/do-convolutional-neural-networks-perform-convolution-or-cross-correlation 

ωi

( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

✓

✓

✓

Define   * 

    ↔   

• A convolutional neural network layer is indeed equivalent to a convolution

ω̃[ j − m] = ωI−1( j,m)

yj =
Np

∑
m=1

x[m] ω̃[ j − m] ( f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

This is index j!

 

 can be rephrased as a distance index

yj =
Np

∑
m=1

x[m] ωI−1( j,m)

I−1( j, m)

https://ai.stackexchange.com/questions/21999/do-convolutional-neural-networks-perform-convolution-or-cross-correlation
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Translational equivariance as direct consequence

• Convolutions and translation 
commute 

• Shift + convolution is the same 
as convolution + shift 

• This is referred to translation 
equivariance 
(not invariance)

42

https://en.wikipedia.org/wiki/Convolution

Credit: Maurice Weiler

https://en.wikipedia.org/wiki/Convolution
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Conditions at the edges

• For a 3 x 3 kernel, the image size will be 
reduced by 2 pixels on top and bottom 

• For a 5 x 5 kernel? 

• If this is not desired (zero) padding the 
image can help

43

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2 

arxiv:1603.07285

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2
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Cats (still) come in different shapes

• Many different very complex filters 
are needed 

• Can be solved by 
• Learning filters from examples 
• Abstraction

44

Not a cat

Not a cat

✓
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Breaking up the problem into smaller parts

 

• This is one complete 
convolutional layer with 

 

• Counting weights: 
how many do we have? 

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

α ϵ {1, . . . , NC}

45

One kernel ≙ one dense MLP layer

(          )Nk (          )Nk

• With , kernels must not be too big 
• Smaller kernels cannot capture a whole cat 

• Break down problem: abstraction and pooling

Nk ≈ H ⊗ W

NC ⋅ NF ⋅ Nk
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Abstraction and pooling

• Use smaller kernels to capture individual features 
• Summarise (pool) the filter outputs of several neighbouring pixels 

• Take maximum (max pooling) 
• Take average/sum (average pooling) 
• Reshape tensor 

• Go in bigger steps ‘skipping’ pixels: strides
46

Cat face filter

Nose filter

Eye filter

Fe
we

r ‘
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Pooling

• Max pooling: which filter has triggered the largest output? 
• Is this more of an eye or a nose in that patch 

• Reshaping: re-organise the information without removal of information 
• Not used so much, in particular for classification

47

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/ 

reshape (2,2,9,4) (7,3,6,1)

(8,5,3,1) (2,4,2,6)

Why?

70’

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
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Strides

• The stride is the amount the filter ‘moves’ at each step

48

arxiv:1603.07285

Stride 1, padding Stride 2Stride 1, no padding
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The notion of the receptive field

• For a given pixel, from how far away could it have accumulated 
information 

• Central concept when designing neural networks in general 

• Easily accessible for CNNs 

• Needs to be big enough to capture the object

49

80’
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Our CNN toolbox

• CNN kernel 
• Learns filters 

 
 
 
 

• Strides + Pooling 
• Build summaries 

 
 
 
 

• Stack CNN layers 
• Abstraction

50

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

Fe
we

r ‘
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Example: LeNet (1998)

• Very early CNN  
(“the” CNN) 

• Shows typical features 
of also modern 
classification CNNs: 
(pooling, pixel dims → 
feature dims, …)

51

LeCun et al, Proceedings of the IEEE, 1998

MNIST dataset
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Unboxing: we can directly visualise the filters

52

A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

https://adamharley.com/nn_vis/cnn/2d.htmlTry yourself:

https://adamharley.com/nn_vis/cnn/2d.html
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CNNs are very powerful: fewer parameters

• CNNs break down the large number of input pixels with a much 
smaller number of parameters 

• Abstraction and pooling maintain 
expressivity

53
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CNNs are very powerful: effective training sample

• The filter weights are shared for all j 

• They are trained for every  : 

•  ‘see’ (sample size * number of pixels) training examples 

• There are (almost) always multiple benefits from using the structure of the data

yj

ω

54

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI( j,i)β − Tα

Millions
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Physics examples: jet tagging

• Identifying origin of a jet very useful for 
many analyses 

• Treat the jet deposits (e.g. in the 
calorimeter) as an image 

• Performance gain over high-level variables

55

Top Quark/gluon

arxiv:1803.00107 
(and many others)

Better
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Structure matters: CNNs are not just for images

• Interpret all reconstructed particles in 
the jet as individual ‘pixels’ in a 1D image 

• Pre-process using 1D ‘CNNs’ 
• Translation equivariance 
→ particle equivariance 

• Enabled to use all jet constituents 
for the first time 

• Enormous performance gain in 
particular at high momentum 

• Standard tagger in CMS 
• >>100 analyses 

 
 

56

arxiv:2008.10519

• Gain  up to decades more data taking for some analyses!≈
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Summary

• Feed-forward NN can be powerful classifiers and regressors 

• With great power comes great responsibility 
understand the inputs and their correlations and beware of out-of-
distribution effects 

• Understanding and utilising the structure of the data is key for advanced 
tasks 

• CNN architectures combine 
• translation equivariant feature detection 
• abstraction and pooling of information

57
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BACKUP

58
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What about uncertainties on NN?

• Some terminology from Machine Learning 

• This is a hot topic in machine learning

59

Aleatoric uncertainties

M
ac

hi
ne

 le
ar

ni
ng

P
hy

si
cs

Epistemic uncertainties

Inherent due to  
statistical variance

Due to insufficient knowledge 
of laboratory conditions

Statistical uncertainties Systematic uncertainties

≈ ≈
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Aleatoric uncertainties

• Random initialisation of weights and biases  

• Random choice of mini batches 

• Stochastic minimisation procedures 

• Random distinction of training, (test), and validation sample  

• The whole sample is sampled from the ground truth

60

Where are statistical processes 
in the MLP training?

• Reminder: a DNN training consists of 
dataset + architecture  + loss function + minimisation
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Estimation of aleatoric uncertainties: some teasers

61

Bayesian methods

 
• Learns probability 

distribution over possible 
neural networks 

• Won’t be covered here 
• Resources and tutorial 

e.g. [arxiv:2007.06823]

ω → p(ω | ̂y(x))

Deep Ensembles

• Initialise identical NNs 
with varying random 
seeds and check the 
distribution of 
outcomes 

• Obvious frequentist 
approach

Dropout

• Next slide

arXiv:1506.02142, >6k citations
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Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the 
network to create redundant 
representations 

• Dropout during inference/test time (MC) 
samples from these redundant (but all 
different!) representations 

• If dropout is placed before every MLP 
layer in the DNN, this sampling 
approximates a Bayesian FF NN → 
uncertainties can be estimated 

• Powerful and easy to use tool 
• Can also cover epistemic uncertainties

62

arXiv:1506.02142≈

Sample
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Epistemic uncertainties

• The model does not have enough degrees of freedom to map the 
ground truth  
→ underfitting 

• The model systematically maps specific, non-general properties of the 
training sample  
→ overfitting 

• Differences between training and test sample 
→ bias 

• Much as systematic uncertainties, epistemic uncertainties can be 
reduced on the basis of additional information

63


