
Jan Kieseler

Machine Learning:

Diving Deep

1

This is a very rich topic, with enough content for whole courses.

Jan Kieseler

Jan Kieseler

Outline and overview

Basic principles

• What is a feed-forward NN really

• Gradient descent and back propagation

• The training

Exploiting the structure

• CNNs

• Attention and transformers

• Graph neural networks

Examples for advanced applications in HEP

• Low-level reconstruction

• Anomaly detection

A list of things that are important, but that I could not cover

2

Lecture 1

Lecture 2

Jan Kieseler

What is a DNN really?

• All nodes of consecutive layers are connected with each other

• Typically an ANN is called “deep” if it has >4 hidden layers

• Referred to as Multi-Layer Perceptron, Feed-Forward NN

3

Hidden layersInput layer Output layer

Jan Kieseler

What is a DNN really?

• One layer: h(k+1)(h(k)) = θ(ωkh(k) + bk)

4

Hidden layersInput layer Output layer

Bias vector: dim(h(k+1))

Weight matrix 
dim(h(k+1)) × dim(h(k))

Activation function 
dim(h(k+1)) → dim(h(k+1))

Jan Kieseler

What is a DNN really?

• One layer:

• Full DNN:

h(l+1)(h(l)) = θ(ωkh(l) + bl)

y(x) = h(4)(h(3)(h(2)(h(1)(x))))

5

Hidden layersInput layer Output layer

Jan Kieseler

Activation functions: adding non-linearities

• One layer:

• Without non-linear activation: 

• There is a whole zoo: theoretically, the choice does not matter for hidden layers

• For the output it does matter as it restricts / shapes the output distribution

• In practice: vanishing/exploding gradients, initialisations, normalisation …

• Suggestion: (s/r)elu

h(k+1)(h(k)) = θ(ωkh(k) + bk)

y(x) = h(4)(h(3)(h(2)(h(1)(x)))) = ω̃x + b̃

6

Back-of-the

envelope exercise

∇ = 1

https://machinelearninggeek.com/activation-functions/

https://machinelearninggeek.com/activation-functions/

Jan Kieseler

DNNs: very powerful universal function approximators

7
“Out-of-distribution”

• Very simple NN: one hidden layer, one input, one output, activation tanh
Φ(ω, x) = ω1 tanh(ω0x + b)

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP

3 x 1 matrix 3 vector1 x 3 matrix

https://notebook.community/kit-cel/lecture-examples/mloc/ch3_Deep_Learning/pytorch/function_approximation_with_MLP

Jan Kieseler

Training

8https://medium.com/@tejovk311/optimization-challenges-in-deep-learning-a4b085d529b6

https://medium.com/@tejovk311/optimization-challenges-in-deep-learning-a4b085d529b6

Jan Kieseler

Parameter initialisation and preprocessing: super short

• Keep inputs, the expected outputs, and values within the network as
much as possible close to distributions with mean = 0 and variance = 1

9

Hidden layersInput layer Output layer

Jan Kieseler

Parameter initialisation and preprocessing: super short

10

Hidden layersInput layer Output layer

Normalise Initialise weights 
‘the right way’

Keep truth

normalised

Truth

• Each input uncorrelated, normal distributed (), linear (no) activation

• Then the red node is normal distributed with variance N = Ninputs

• Initialise normal distributed, scaled by : Glorot initialisation (keras standard)

• The best initialisation is intertwined with the activation function used

• They all aim for keeping the variance at 1

μ = 1, σ = 1

ω(1) 1/ N

Jan Kieseler

Loss (cost) function

• The loss function quantifies how well a model performs

• E.g. text book linear regression: we know the ‘truth’

• Model:

• Least-square method: 
 

• The mean squared error loss is a standard loss for regression tasks

• It assumes a Gaussian distribution of the NN estimates (log(L))

• We want to map to the whole output range: linear output activation

Φ(ω, x) = ωax + ωb

min 1/N
N

∑
i

((Φ(ω, xi) − yi)2) = min MSE(Φ(ω, x), y)

11

Mean squared error loss

Jan Kieseler

Classification loss: binary cross-entropy

• For binary classification, we have two options: cat or not cat 
 

• Probability for a single sample to be identified by the NN  
(Bernoulli process) 

• The likelihood for N processes factorises: 

• Take log: get binary cross entropy loss: 

➡The loss choice depends on the distribution you expect the network
output to have

➡Map to 0-1 → output activation: sigmoid

̂y =: Φ(ω, x)

P(̂y, y) = ̂yy(1 − ̂y)1−y

ΠN
l=1(̂y(l))y(l)(1 − ̂y(l))(1−y(l))

N

∑
l

(y(l) log(̂y(l)) + (1 − y(l)) log(1 − ̂y(l)))

12

1/(1 + e−x)

Sigmoid

Jan Kieseler

How do we train: gradient descent

• Well established, robust numerical minimisation procedure: 
 

• Update until

ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, x), y)

ω L (Φ(ω(k), x), y) − L (Φ(ω(k+1), x), y) < ϵ

13
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Learning rate

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Jan Kieseler

Stochastic gradient descent and momentum

• Stochastic gradient descent is gradient descent on (mini) batches instead
of the full data set 

• Reduces computational burden: makes training feasible

• Introduces extra noise that can actually help

• Add a momentum/velocity that averages the general directions in
parameter space 
 

 

➡The basis for most common optimisers that are in use

ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, x), y) → ω(k+1) = ω(k) − η∇ω(k)L (Φ(ω, {x}k), {y}k)

v(k) = αv(k−1) − η∇ω(k)L
ω(k+1) = ω(k) + v(k)

14

GD SGD

Goodfellow et al. (2016)

Jan Kieseler

Momentum in action

15

The above and many more details (great page)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-
momentum-adagrad-rmsprop-adam-f898b102325c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Jan Kieseler

Getting the gradients: back propagation

• For each (mini) batch, we calculate a loss value numerically

• Simple “network”: , Loss

• Use chain rule; gradient for : 

Φ(ω, x) = θ (ωx) L = (Φ − y)2

ω
∂L
∂ω

ω(k),x(k)

=
∂θ
∂ω

ω(k),x(k)

∂L
∂θ

ω(k),x(k)

= ((x)
ω(k),x(k)

⋅ (θ − y)
ω(k),x(k))

16

https://alexcpn.github.io/html/NN/ml/8_backpropogation_full/

This could be the  
output of a previous layer:

x = h(l−1)• Can be extended to arbitrary depth

• The weight gradients for layer depend on all layers closer to the loss in

this simple manner, but not on layers

• Each operation is simple (fast to calculate)

• Can (has to) use intermediate results in hidden layers 

(that’s why training takes much more GPU memory than inference)

• Gradient calculations happen transparently in modern ML frameworks! 
(auto-differentiation)

l
l − m, m > 0

https://alexcpn.github.io/html/NN/ml/8_backpropogation_full/

Jan Kieseler

Learning rates

• There is no universally best learning rate - always needs to be adjusted

• Rule of thumb:

• More parameters ↔︎ lower learning rate

• Smaller batches ↔︎ lower learning rate

17

Jan Kieseler

Quick interlude: overfitting / overtraining

• More data per weight:

• Simpler network

• More data

• Lower learning rate

• Regularisation (weight regularisation, Dropout) *

18

https://medium.com/analytics-vidhya/the-perfect-fit-for-a-dnn-596954c9ea39

Training loss

Statistically independent validation 
sample: “validation loss”

https://medium.com/analytics-vidhya/the-perfect-fit-for-a-dnn-596954c9ea39

Jan Kieseler

Datasets

• The NN will learn from but also to represent the dataset  
(lossy compression)

• Strictly separate: training, test, validation

• K-fold cross-validation can be very useful if we want to exploit the whole
sample

19

2-fold cross validation

Jan Kieseler

What is different in HEP?

• For most tasks, we have a lot of labelled data at our fingertips: simulation

• Many techniques to deal with small amounts of data …

• The best initialisation / activation function combination

• Regularisation techniques

• Data augmentation

• … are often not worth the effort for standard tasks in HEP

• So while the internet is full of great resources on ML, keep the above in mind

• When used in analyses, make sure inputs and their correlations are well
modelled

• * There are also methods to dig deeper into how inputs relate to outputs, e.g.
Layer-wise relevance propagation or Taylor expansions [arxiv:1803.08782,
arXiv:1604.00825, …]

20

Jan Kieseler

Time for questions

21

Learning rate

Gradients

Momentum

Losses

Expressivity

Normalisation

30’

Jan Kieseler

CNNs

22

Jan Kieseler

Counting parameters

• Typical small MLPs: about 10k - 100k

• ChatGPT4: 1.5 Trillion?

• More free parameters → more expressivity

23

Hidden layersInput layer Output layer

 7 x 8 + 8 x 9 + 9 x 9 + 9 x 8 + 8 x 5 = 321Nω =
 8 + 9 + 9 + 8 + 0 = 34 Nb ≥

Jan Kieseler

More parameters → more resources

• More parameters:

• More training data

• More resources to evaluate

• Even more resources to train

24

MNIST [L. Deng, IEEE 2012]

60k images

Common Crawl

~10k-100k parameters

Trains in minutes on your laptop

Uses ~10 Wh of electricity

~1.5Trillion parameters

Trained 6 month

$100M for compute, roughly 10 000 MWh

↔︎

↔︎Not an MLP!

Only estimates, no official 
numbers

Jan Kieseler

Structure matters

• Architecture needs to fit the desired output ✓

• Architecture needs to fit the input data

25

Jan Kieseler

Main building blocks of architectures

• MLP / Feed forward ✓

• CNNs

• RNNs

• Attention

• GNNs

26

Next time

Jan Kieseler

Convolutional Neural Networks

27

Image-like data

40’

Jan Kieseler

CNNs are everywhere and at the core of computer vision

28

• Self-driving cars

• Surveillance

• Skin cancer

detection

• …

• Particle physics

Jan Kieseler

Structure counts

• Is this an image of a cat?

• Typical (phone) cameras 10-50 MP

• How many parameters does the first layer have?

29

?

Cat node

O(300) parameters

• In this example: 80 - 400 million parameters in first layer

• Also, this architecture will not perform well

Jan Kieseler

Structure counts

• What if the cat moved?

• Present entirely different input to the DNN

• This complexity cannot be captured by as little as 8 nodes

• Lack of expressivity

• Solution: exploit the structure of the data

30

Jan Kieseler

Introducing filters

• Create a cat-face 
filter (no ML here)

• Slide it over the image

• Take maximum of all cat scores:
image cat score

• We found the cat

31

Very cat-like:

Score = 1

Not at all cat-like

Score = 0

Jan Kieseler

Cats come in different shapes

• Many different very complex filters
are needed

• Can be solved by

• Learning filters from examples

• Abstraction

32

Not a cat

Not a cat

Jan Kieseler

Learning the filters

• Learn (approximations of) different shapes

• Represent them by (combinations of) output nodes

33

Each color
highlights a single
shared param.

Jan Kieseler

A CNN kernel: step by step

• Inputs

• For one channel:

x

yj = θ (
Nk

∑
i

ωi xI(j,i) − T)

34

Activation function
Learnable weights:

Relative position to j

Learnable bias

Index m of the pixel on the i-th place 
in the neighbourhood of j

()Nk ()Nk

1 2 3
6 7 8
11 12 13

+2 for full row
+2 for full row

I(7,i) = { }
conditions at the edges → wait a few slides

Kernel size

Jan Kieseler

Multiple output channels

• Inputs

• For Nc output channels ()

x

α

yjα = θ (
Nk

∑
i

ωiα xI(j,i) − Tα)

35

The weights are still shared 
and depend only on relative 
position w.r.t. pixel j 
(and)α

()Nk ()Nk

Jan Kieseler

Multiple input channels

• Inputs

• For NF input channels/features

• This is a complete convolutional
layer

x

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI(j,i)β − Tα

36

One kernel ≙ one dense MLP layer

()Nk ()Nk Still strictly relative

Jan Kieseler

Example

• No activation

• No bias

• One input

• One output

yj =
Nk

∑
i

ωi xI(j,i)

37

1 0 1
0 1 0
1 0 1

Kernel

Jan Kieseler

Time for some (more) questions

38

Parameters

Filter

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI(j,i)β − Tα

Kernel

Channels

Bias

Neighbourhood

60’

Jan Kieseler

Longer side note: where is the convolution?

• Convolution:  

• Discrete: 

(f * g)(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ

(f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

39

• CNN:  

yj =
Nk

∑
i

ωi xI(j,i)

’n-m’ hidden here
https://en.wikipedia.org/wiki/Convolution [accessed 13.7.23]

https://en.wikipedia.org/wiki/Convolution

Jan Kieseler

Re-shuffle symbols

40

(f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

Index m of the pixel on the i-th place 
in the neighbourhood of jyj =

Nk

∑
i

ωi xm=I(j,i)

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

Switch perspective

The i-th place for a pixel with index m 
in the neighbourhood of j

If not in neighbourhood: extend kernel

such that ω = 0

✓

Pixels  
in image

=
Np

∑
m=1

ωi=I−1(j,m)xm

Simple replacement as x[m] = xm

✓
yj =

Np

∑
m=1

x[m] ωi=I−1(j,m)

Jan Kieseler

It is a convolution

41

* technically, depending on the definition, this could implement a convolution or cross correlation, possibly implementing a sign flip w.r.t.
convolution. In practice this does not matter since are learnable and can re-absorb the flip. A detailed explanation can be found here: 
https://ai.stackexchange.com/questions/21999/do-convolutional-neural-networks-perform-convolution-or-cross-correlation

ωi

(f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

✓

✓

✓

Define *

 ↔︎

• A convolutional neural network layer is indeed equivalent to a convolution

ω̃[j − m] = ωI−1(j,m)

yj =
Np

∑
m=1

x[m] ω̃[j − m] (f * g)[n] =
+∞

∑
m=−∞

f [m]g[n − m]

1 0 1
0 1 0
1 0 1

0
0
0

0
0
0

0 0 0

0 0 0 00

0 0

… …

…
…

This is index j!

 can be rephrased as a distance index

yj =
Np

∑
m=1

x[m] ωI−1(j,m)

I−1(j, m)

https://ai.stackexchange.com/questions/21999/do-convolutional-neural-networks-perform-convolution-or-cross-correlation

Jan Kieseler

Translational equivariance as direct consequence

• Convolutions and translation
commute

• Shift + convolution is the same
as convolution + shift

• This is referred to translation
equivariance 
(not invariance)

42

https://en.wikipedia.org/wiki/Convolution

Credit: Maurice Weiler

https://en.wikipedia.org/wiki/Convolution

Jan Kieseler

Conditions at the edges

• For a 3 x 3 kernel, the image size will be
reduced by 2 pixels on top and bottom

• For a 5 x 5 kernel?

• If this is not desired (zero) padding the
image can help

43

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2

arxiv:1603.07285

https://medium.com/analytics-vidhya/noise-removal-in-images-using-deep-learning-models-3972544372d2

Jan Kieseler

Cats (still) come in different shapes

• Many different very complex filters
are needed

• Can be solved by

• Learning filters from examples

• Abstraction

44

Not a cat

Not a cat

✓

Jan Kieseler

Breaking up the problem into smaller parts

• This is one complete
convolutional layer with 

• Counting weights: 
how many do we have? 

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI(j,i)β − Tα

α ϵ {1, . . . , NC}

45

One kernel ≙ one dense MLP layer

()Nk ()Nk

• With , kernels must not be too big

• Smaller kernels cannot capture a whole cat 

• Break down problem: abstraction and pooling

Nk ≈ H ⊗ W

NC ⋅ NF ⋅ Nk

Jan Kieseler

Abstraction and pooling

• Use smaller kernels to capture individual features

• Summarise (pool) the filter outputs of several neighbouring pixels

• Take maximum (max pooling)

• Take average/sum (average pooling)

• Reshape tensor

• Go in bigger steps ‘skipping’ pixels: strides
46

Cat face filter

Nose filter

Eye filter

Fe
we

r ‘
pi

xe
ls’

M

or
e

ab
st

ra
ct

io
n

Jan Kieseler

Pooling

• Max pooling: which filter has triggered the largest output?

• Is this more of an eye or a nose in that patch

• Reshaping: re-organise the information without removal of information

• Not used so much, in particular for classification

47

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

reshape (2,2,9,4) (7,3,6,1)

(8,5,3,1) (2,4,2,6)

Why?

70’

https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

Jan Kieseler

Strides

• The stride is the amount the filter ‘moves’ at each step

48

arxiv:1603.07285

Stride 1, padding Stride 2Stride 1, no padding

Jan Kieseler

The notion of the receptive field

• For a given pixel, from how far away could it have accumulated
information

• Central concept when designing neural networks in general

• Easily accessible for CNNs

• Needs to be big enough to capture the object

49

80’

Jan Kieseler

Our CNN toolbox

• CNN kernel

• Learns filters 

 
 
 
 

• Strides + Pooling

• Build summaries 

 
 
 
 

• Stack CNN layers

• Abstraction

50

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI(j,i)β − Tα

Fe
we

r ‘
pi

xe
ls’

M

or
e

ab
st

ra
ct

io
n

Jan Kieseler

Example: LeNet (1998)

• Very early CNN  
(“the” CNN)

• Shows typical features
of also modern
classification CNNs: 
(pooling, pixel dims →
feature dims, …)

51

LeCun et al, Proceedings of the IEEE, 1998

MNIST dataset

Jan Kieseler

Unboxing: we can directly visualise the filters

52

A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

https://adamharley.com/nn_vis/cnn/2d.htmlTry yourself:

https://adamharley.com/nn_vis/cnn/2d.html

Jan Kieseler

CNNs are very powerful: fewer parameters

• CNNs break down the large number of input pixels with a much
smaller number of parameters

• Abstraction and pooling maintain 
expressivity

53

Jan Kieseler

CNNs are very powerful: effective training sample

• The filter weights are shared for all j

• They are trained for every :

• ‘see’ (sample size * number of pixels) training examples

• There are (almost) always multiple benefits from using the structure of the data

yj

ω

54

yjα = θ
NF

∑
β

Nk

∑
i

ωiαβ xI(j,i)β − Tα

Millions

Jan Kieseler

Physics examples: jet tagging

• Identifying origin of a jet very useful for
many analyses

• Treat the jet deposits (e.g. in the
calorimeter) as an image

• Performance gain over high-level variables

55

Top Quark/gluon

arxiv:1803.00107 
(and many others)

Better

Jan Kieseler

Structure matters: CNNs are not just for images

• Interpret all reconstructed particles in
the jet as individual ‘pixels’ in a 1D image

• Pre-process using 1D ‘CNNs’

• Translation equivariance 
→ particle equivariance

• Enabled to use all jet constituents
for the first time

• Enormous performance gain in
particular at high momentum

• Standard tagger in CMS

• >>100 analyses 

 
 

56

arxiv:2008.10519

• Gain up to decades more data taking for some analyses!≈

Jan Kieseler

Summary

• Feed-forward NN can be powerful classifiers and regressors

• With great power comes great responsibility 
understand the inputs and their correlations and beware of out-of-
distribution effects

• Understanding and utilising the structure of the data is key for advanced
tasks

• CNN architectures combine

• translation equivariant feature detection

• abstraction and pooling of information

57

Jan Kieseler

BACKUP

58

Jan Kieseler

What about uncertainties on NN?

• Some terminology from Machine Learning

• This is a hot topic in machine learning

59

Aleatoric uncertainties

M
ac

hi
ne

 le
ar

ni
ng

P
hy

si
cs

Epistemic uncertainties

Inherent due to  
statistical variance

Due to insufficient knowledge 
of laboratory conditions

Statistical uncertainties Systematic uncertainties

≈ ≈

Jan Kieseler

Aleatoric uncertainties

• Random initialisation of weights and biases

• Random choice of mini batches

• Stochastic minimisation procedures

• Random distinction of training, (test), and validation sample

• The whole sample is sampled from the ground truth

60

Where are statistical processes

in the MLP training?

• Reminder: a DNN training consists of 
dataset + architecture + loss function + minimisation

Jan Kieseler

Estimation of aleatoric uncertainties: some teasers

61

Bayesian methods

• Learns probability

distribution over possible
neural networks

• Won’t be covered here

• Resources and tutorial

e.g. [arxiv:2007.06823]

ω → p(ω | ̂y(x))

Deep Ensembles

• Initialise identical NNs
with varying random
seeds and check the
distribution of
outcomes

• Obvious frequentist
approach

Dropout

• Next slide

arXiv:1506.02142, >6k citations

Jan Kieseler

Dropout to estimate uncertainty

• Full proof too much for this lecture 

• Dropout during training time forces the
network to create redundant
representations 

• Dropout during inference/test time (MC)
samples from these redundant (but all
different!) representations 

• If dropout is placed before every MLP
layer in the DNN, this sampling
approximates a Bayesian FF NN →
uncertainties can be estimated 

• Powerful and easy to use tool

• Can also cover epistemic uncertainties

62

arXiv:1506.02142≈

Sample

Jan Kieseler

Epistemic uncertainties

• The model does not have enough degrees of freedom to map the
ground truth  
→ underfitting 

• The model systematically maps specific, non-general properties of the
training sample  
→ overfitting 

• Differences between training and test sample 
→ bias

• Much as systematic uncertainties, epistemic uncertainties can be
reduced on the basis of additional information

63

