Higgs and Beyond

ESHEP 2023
Grenaa, Denmark

Lecture 1/4

Christophe Grojean
DESY (Hamburg)
Humboldt University (Berlin)
(christophe.grojean@desy.de)

Your work, as students, is to question

all what you are listening during the lectures...

Citius, Altius, Fortius

How high can a human jump with a pole?

link

Citius, Altius, Fortius

How high can a human jump with a pole?
Physics (energy conservation) tells us that longer poles don't help!

$$
\Delta h=\frac{v^{2}}{2 g} \text { footspeed: 44.72km/h } \begin{gathered}
\text { (Usain Bolt, Berlin, August } 2009, \text { between } 60 \mathrm{~m} \text { and } 80 \mathrm{~m}) \\
\Delta h=7.62 \mathrm{~m}
\end{gathered}
$$

Over the years, we have learnt a few other conservation laws that tell us what an athlete/a particle can do or cannot do.

- Remarkable breakthrough in the understanding of Nature: forces among particles are associated to symmetries
- conservation of $\mathrm{E} \rightarrow$ invariance by (time)-translation
- electro-magnetic forces \rightarrow (local) invariance by phase rotation of particle wavefunctions
The Standard Model of Particle Physics
Lorentz symmetry + internal $\operatorname{SU}(3) \times \operatorname{SU}(2) \times U(1)$ symmetry

Role(s) of Symmetry

- Selection Rules -

- hydrogen atom: energy levels depends on n, but not on I, nor m (invariance under rotations as well as another symmetry that leaves the Runge-Lenz vector invariant)
- electric charge conservation: $\mathrm{e}^{+} \mathrm{e}^{-} \xrightarrow{\checkmark} \gamma$ but $\mathrm{e}^{+} \gamma \xrightarrow{\not{X}} \mathrm{e}$ -

— Dynamical Principle -

Demanding that theory describing SM particles is invariant under some (local) symmetries requires the existence of interactions among these particles. And these interactions have a particular structure.
— High Energy Physics -
Particle physics is not about discovering particles or measuring their interactions. It is about understanding the fundamental laws of nature.

Some numerical values used in these lectures.

Fundamental constants

$$
\begin{gathered}
c \sim 3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \\
\hbar \sim 10^{-34} \mathrm{~J} . \mathrm{s} \\
e \sim 1.6 \times 10^{-19} \mathrm{C} \\
G_{N} \sim 6.67 \times 10^{-11} \mathrm{~N} . \mathrm{kg}^{-2} . \mathrm{m}^{2} \\
k_{B} \sim 1.38 \times 10^{-23} \mathrm{~J} . \mathrm{K}^{-1}
\end{gathered}
$$

Natural units

$$
1 \mathrm{eV}=\left(6.6 \times 10^{-16} \mathrm{~s}\right)^{-1} \quad 1 \mathrm{eV}=\left(2.0 \times 10^{-7} \mathrm{~m}\right)^{-1} \quad 1 \mathrm{eV}=1.8 \times 10^{-36} \mathrm{~kg} \quad 1 \mathrm{eV}=1.2 \times 10^{4} \mathrm{~K}
$$

Mass spectrum

$$
\begin{gathered}
m_{p}=938 \mathrm{MeV} \quad m_{n}=939 \mathrm{MeV} \quad m_{\pi^{ \pm}}=139 \mathrm{MeV} \quad m_{\pi^{0}}=134 \mathrm{MeV} \quad m_{K^{ \pm}}=494 \mathrm{MeV} \quad m_{K^{0}}=498 \mathrm{MeV} \\
m_{e}=511 \mathrm{keV} \quad m_{\mu}=106 \mathrm{MeV} \quad m_{\tau}=1.8 \mathrm{GeV} \\
m_{u}=2.3 \mathrm{MeV} \quad m_{d}=4.8 \mathrm{MeV} \quad m_{c}=1.3 \mathrm{GeV} \quad m_{s}=100 \mathrm{MeV} \quad m_{t}=173 \mathrm{GeV} \quad m_{b}=4.2 \mathrm{GeV}
\end{gathered}
$$

Astrophysics

$$
\begin{gathered}
M_{\odot}=2 \times 10^{30} \mathrm{~kg} \quad M_{\oplus}=6.0 \times 10^{24} \mathrm{~kg} \quad M_{\circ}=7.3 \times 10^{22} \mathrm{~kg} \\
\left\langle d_{\odot-\oplus}\right\rangle=1.5 \times 10^{8} \mathrm{~km} \quad\left\langle d_{\oplus-\odot}\right\rangle=3.8 \times 10^{5} \mathrm{~km} \\
\left\langle T_{\odot}^{\text {surface }}\right\rangle=5778 \mathrm{~K}
\end{gathered}
$$

Outline

- Lecture \#1

- Symmetries, Fields, Lagrangians
o From Fermi theory to the Standard Model
- Chirality and mass problem
-Lecture \#2
- Spontaneous symmetry breaking, aka Higgs mechanism
- Particles masses, unitarity and the Higgs boson
o Higgs phenomenology (decay and production at colliders)
o Higgs quantum potential (vacuum (meta)stability, naturalness)
o Hierarchy problem
- Lecture \#3
- Supersymmetry
- Composite Higgs
o Extra dimensions

- Lecture \#4

- Connections particle physics-cosmology
- Quantum gravity: landscape vs swampland - BSM searches beyond colliders

Symmetries, Fields @Lagrangians

Lorentz Transformations

Galilean transformations

$$
\left(\begin{array}{c}
t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
t^{\prime}=t \\
x^{\prime}=-\beta_{0} c t+x \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right) \text { with } \quad \beta_{0}=\frac{v_{0}}{c}
$$

Consider two observers
in relative motion with a constant speed v_{0} along the x-axis they use their own systems of coordinates (t, x, y, z) and ($\left.t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$
in particular
the speed can be arbitrarily large.

Lorentz transformations

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
c t^{\prime}=\gamma_{0}\left(c t-\beta_{0} x\right) \\
x^{\prime}=\gamma_{0}\left(-\beta_{0} c t+x\right) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right) \text { with } \begin{gathered}
\beta_{0}=\frac{v_{0}}{c} \\
\\
\gamma_{0}=\frac{1}{\sqrt{1-\beta_{0}^{2}}}
\end{gathered}
$$

Note: $\Delta^{2} \equiv(c t)^{2}-x^{2}-y^{2}-z^{2}=\left(c t^{\prime}\right)^{2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2} \equiv \Delta^{\prime 2}$
in particular

$$
v^{\prime}=\frac{v-v_{0}}{1-v \cdot v_{0} / c^{2}}
$$

The speed of light is the same for all observers:
if $\mathrm{v}=\mathrm{c}$ than $\mathrm{v}^{\prime}=\mathrm{c}$ too

Equations of Motion of Elementary Particles

Schrödinger Equation (1926): $\quad\left(i \hbar \frac{\partial}{\partial t}+\frac{\hbar^{2}}{2 m} \Delta-V\right) \Phi=0$

$$
E=\frac{p^{2}}{2 m}+V \quad \begin{gathered}
\text { classical } \leftrightarrow \text { quantum } \\
\text { correspondance }
\end{gathered} \quad E \rightarrow i \hbar \frac{\partial}{\partial t} \text { \& } p \rightarrow i \hbar \frac{\partial}{\partial x}
$$

Klein-Gordon Equation (1927): $\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \Phi=0$

Dirac Equation (1928):

$$
E= \begin{cases}+\sqrt{p^{2} c^{2}+m^{2} c^{4}} & \text { matter } \\ -\sqrt{p^{2} c^{2}+m^{2} c^{4}} & \text { antimatter }\end{cases}
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-\frac{m c}{\hbar}\right) \Psi=0
$$

$$
E=\vec{\alpha} \vec{p} c+\beta m c^{2}
$$

$$
\gamma^{0}=\beta, \gamma^{i}=\beta \alpha^{i},\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}
$$

positron (e^{+}) discovered by C. Anderson in 1932

Scalar Lagrangian

A (real) scalar field ϕ

is a real function of space-time coordinates that doesn't change under Lorentz transformations

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \\
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi(x)
\end{gathered}
$$

Lorentz invariant Lagrangian for scalar field?

- any potential $\mathrm{V}(\Phi)$ is automatically invariant
- kinetic term?

$$
\begin{aligned}
& \begin{array}{c}
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} \\
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi(x)
\end{array} \Rightarrow \partial_{\mu} \phi=\Lambda^{\nu}{ }_{\mu} \partial_{\nu}^{\prime} \phi^{\prime} \Rightarrow \partial_{\mu} \phi \partial^{\mu} \phi=\prod_{\eta^{\mu \nu} \Lambda^{\mu^{\prime}}{ }_{\mu} \Lambda^{\mu^{\prime} \nu^{\prime}}{ }_{\nu}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }_{\mu^{\prime}} \phi^{\prime} \partial^{\prime} \partial_{\nu^{\prime}}^{\prime}, \phi^{\prime}=\eta^{\mu^{\prime} \nu^{\prime}} \partial_{\mu^{\prime}}^{\prime} \phi^{\prime} \partial_{\nu^{\prime}}^{\prime} \phi^{\prime}} \\
& \mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)
\end{aligned}
$$

Eq. of motion: $\quad 0=\delta \mathcal{L}=\left(-\partial_{\mu} \partial^{\mu} \phi-\frac{\partial V}{\partial \phi}\right) \delta \phi \quad$ i.e.

$$
\square \phi=-V^{\prime}(\phi)
$$

Fermion Lagrangian

ψ 4-component Dirac spinor describes a spin-1/2 particle when quantised
$\gamma^{\mu}(\mu=0,1,2,3)$ are four 4×4 matrices

- Equation of motion:

$$
0=\delta \mathcal{L}=\psi^{\dagger} \gamma^{0}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \delta \psi \quad \text { Dirac equation } \quad\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

- Lorentz invariance: (see technical slides at the end of the lecture)

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=\left(\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu}\right) x^{\nu} \text { with } \omega_{\mu \nu}+\omega_{\nu \mu}=0 \\
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1_{4}+\frac{1}{8} \omega_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \psi(x)
\end{gathered}
$$

- Dirac algebra:

For this equation to be consistent with Einstein equation $\left(m^{2}=E^{2}-p^{2}\right)$ or Klein-Gordon eq., the γ^{μ} matrices have to obey the Clifford algebra

- Dirac matrices: One particular realisation of the Dirac algebra (not unique)

U(1) Gauge Symmetry — QED

Quantum ElectroDynamics : the phase of an electron is not physical and can be rotated away (internal symmetry, same transformation in all Dirac components)

$$
\psi \rightarrow e^{i \theta} \psi
$$

If the phrase transformation is local, i.e., depends on space-time coordinate, then

$$
\partial_{\mu} \psi \rightarrow e^{i \theta}\left(\partial_{\mu} \psi+i\left(\partial_{\mu} \theta\right) \psi\right)
$$

and the kinetic term is no-longer invariant due to the presence of the non-homogenous piece

To make the theory invariant under local transformation, one needs to introduce a gauge field that keeps track/memory of how the phase of the electron changes from one point to another.

For that, we build a covariant derivative that has nice homogeneous transformations

$$
D_{\mu} \psi=\partial_{\mu} \psi+i e A_{\mu} \psi \rightarrow e^{i \theta} D_{\mu} \psi \quad \text { iff } \quad A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \theta
$$

- Lorentz transformation
- local phase rotation

Dynamical Principle

interaction between
gauge field (aka photon) and electron

$$
e A_{\mu} \psi^{\dagger} \gamma^{0} \gamma^{\mu} \psi
$$

Gauge invariance is a dynamical principle: it predicts some interactions among particles.
It also explains why the QED interactions are universal
(an electron interacts with a photon in the same way on Earth, on the Moon and at the outskirts of the Universe)
— Some examples of QED processes

- Moeller scattering : $e^{-}+e^{-} \rightarrow e^{-}+e^{-}$

- Compton scattering : $e^{-}+\gamma \rightarrow e^{-}+\gamma$

- Bhabha scattering : $e^{-}+e^{+} \rightarrow e^{-}+e^{+}$

- Pair annihilation : $e^{-}+e^{+} \rightarrow \gamma+\gamma$

$$
F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}}
$$

Gauge Field Kinetic Term

To build the QED Lagrangian, we had to introduce a new field A_{μ} it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Tensor field strength: $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$

- Lorentz transformations: $\quad \begin{aligned} x^{\mu} & \rightarrow x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} \\ A^{\mu} \rightarrow A^{\mu} & =\Lambda^{\mu}{ }_{\nu} A^{\nu}\end{aligned} \quad \Rightarrow F^{\mu \nu} \rightarrow F^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\rho} \Lambda^{\mu}{ }_{\sigma} F^{\rho \sigma}$
- U(1) gauge transformations: $\quad A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \theta \quad \Rightarrow \quad F_{\mu \nu} \rightarrow F_{\mu \nu}$

$$
\begin{aligned}
& \mathcal{L}_{\text {kin }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
\end{aligned} \text { invariant under } \begin{aligned}
& \text { • Lorentz transformation } \\
& \text { equations of motion local phase rotation }
\end{aligned}
$$

Remark: no interaction among photons (photons only interact with electrically charged fields)

Natural \& Planck Units

- $\left[G_{N}\right]=$ mass $^{-1} L^{3} T^{-2}$
- $[\hbar]=$ mass $L^{2} \mathrm{~T}^{-1}$
- [c]=L T-1
- Planck mass: $M_{\mathrm{Pl}}=\sqrt{\frac{\hbar c}{G_{\mathrm{N}}}} \sim 10^{19} \mathrm{GeV} / \mathrm{c}^{2} \sim 2 \times 10^{-5} \mathrm{~g}$
- Planck length: $l_{\mathrm{Pl}}=\sqrt{\frac{\hbar G_{\mathrm{N}}}{c^{3}}} \sim 10^{-33} \mathrm{~cm}$
- Planck time: $\tau_{\mathrm{Pl}}=\sqrt{\frac{\hbar G_{\mathrm{N}}}{c^{5}}} \sim 10^{-44} \mathrm{~s}$

In High Energy Physics, it is a current practise to use a system of units for which $\bar{\hbar}=1$ and $\mathrm{c}=1$

```
energy~ mass ~ distance-1 ~ time-1
```


Unit conversion: SI \leftrightarrow HEP

- The string theorists will remember:

\mathbf{E}	\mathbf{T}	\mathbf{L}
1 eV	$10^{-16} \mathrm{~S}$	$10^{-7} \mathrm{~m}$
$10^{-16} \mathrm{eV}$	1 s	$10^{9} \mathrm{~m}$
$10^{-7} \mathrm{eV}$	$10^{-9} \mathrm{~s}$	1 m

$M_{\mathrm{Pl}} \sim 10^{19} \mathrm{GeV} \quad \leftrightarrow \quad \tau_{\mathrm{Pl}} \sim 10^{-44} \mathrm{~s} \quad \leftrightarrow \quad l_{\mathrm{Pl}} \sim 10^{-33} \mathrm{~cm}$

- The nuclear physicists will remember:

\[

\]

- The others will remember: average mosquito $\mathrm{m} \sim 10^{-3 \mathrm{~g}}=100 \mathrm{M}_{\mathrm{P} \mid}$
Compton wavelength $0.01 \mathrm{~L}_{\mathrm{P} \mid}=10^{-35} \mathrm{~cm}$, Schwarzschild radius $100 \mathrm{~L}_{\mathrm{P} \mid}=10^{-3} 1 \mathrm{~cm}$ (much smaller than its physical size, so a mosquito is not a Black Hole)

Dimensional Analysis

$$
\begin{gathered}
{[S]_{m}=0} \\
\left.S=\int d^{4} x \mathcal{L}\right]_{m}=4
\end{gathered}
$$

Scalar field

$$
\mathcal{L}=\partial_{\mu} \phi \partial^{\mu} \phi+\ldots
$$

Spin-1/2 field

$$
\mathcal{L}=\psi^{\dagger} \gamma^{0} \gamma^{\mu} \partial_{\mu} \psi
$$

$$
[\phi]_{m}=1
$$

Spin-1 field

$$
\mathcal{L}=F_{\mu \nu} F^{\mu \nu}+\ldots \text { with } F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\ldots
$$

\square

$$
\left[A_{\mu}\right]_{m}=1
$$

$$
\begin{gathered}
\text { Particle lifetime of a (decaying) particle: }[\tau]_{m}=-1 \quad \text { Width: } \quad[\Gamma=1 / \tau]_{m}=1 \\
\text { Cross-section ("area" of the target): } \quad[\sigma]_{m}=-2
\end{gathered}
$$

From Fermi to the Standard Model

Beta decay

$$
{ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{20}^{40} \mathrm{Ca}^{+}+e^{-} \quad{ }_{29}^{64} \mathrm{Cu} \rightarrow{ }_{30}^{64} \mathrm{Zn}^{+}+e^{-} \quad{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}^{+}+e^{-}
$$

- Two body decays: $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$

EXP measurements
$E_{B}=\frac{m_{A}^{2}+m_{B}^{2}-m_{C}^{2}}{2 m_{A}} c^{2} \quad p=\frac{\sqrt{\lambda\left(m_{A}, m_{B}, m_{C}\right)}}{2 m_{A}} c$
$\lambda\left(m_{A}, m_{B}, m_{C}\right)=\left(m_{A}+m_{B}+m_{C}\right)\left(m_{A}+m_{B}-m_{C}\right)\left(m_{A}-m_{B}+m_{C}\right)\left(m_{A}-m_{B}-m_{C}\right)$
fixed energy of daughter particles
(pure SR kinematics, independent of the dynamics)

$$
\Rightarrow \text { non-conservation of energy? }
$$

Pauli ’30: \exists neutrino, very light since end-point of spectrum is close to 2 -body decay limit

$$
v \text { first observed in ' } 53 \text { by Cowan and Reines }
$$

$$
E_{B_{1}}^{\min }=m_{B_{1}} c^{2} \quad E_{B_{1}}^{\max }=\frac{m_{A}^{2}+m_{B_{1}}^{2}-\left(m_{B_{2}}+\ldots+m_{B_{N}}\right)^{2}}{2 m_{A}} c^{2}
$$

$\pi \rightarrow \mu \bar{\nu} \quad$ (more about pion decay later later)

$$
\mu \rightarrow e \bar{\nu}_{e} \nu_{\mu} \quad \begin{array}{r}
\text { need } 2 \text { neutrino flavours } \\
\text { and flavour conservation since }
\end{array} \quad \mu \ngtr e \gamma
$$

$$
p \bar{\nu}_{\mu} \rightarrow n \mu^{+} \quad \text { but } \quad p \bar{\nu}_{\mu} \nrightarrow n e^{+}
$$

Fermi theory '33

(paper rejected by Nature: declared too speculative !)

$$
\mathcal{L}=G_{\mathcal{F}}(\bar{n} p)\left(\bar{\nu}_{e} e\right) \quad \begin{gathered}
\text { exp: } \mathrm{G}_{\mathrm{F}}=1.166 \times 10^{-5} \mathrm{GeV}^{-2} \\
\text { We'll see later that the structure } \\
\text { is a bit more complicated }
\end{gathered}
$$

Lifetime "Computations"

muon and neutron are unstable particles

$$
\begin{aligned}
\mu & \rightarrow e \nu_{\mu} \bar{\nu}_{e} \\
n & \rightarrow p e \bar{\nu}_{e}
\end{aligned}
$$

We'll see that the interactions responsible for the decay of muon and neutron are of the form

For the muon, the relevant mass scale is the muon mass $\mathrm{m}_{\mu}=105 \mathrm{MeV}$:

$1=\hbar c \sim 200 \mathrm{MeV} \cdot \mathrm{fm}$		
\mathbf{F} \mathbf{T} \mathbf{L} leV $10^{-16} \mathrm{~s}$ $10^{-7} \mathrm{~m}$		

$$
\Gamma_{\mu}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \sim 10^{-19} \mathrm{GeV} \quad \text { i.e. } \quad \tau_{\mu} \sim 10^{-6} \mathrm{~S}
$$

For the neutron, the relevant mass scale is $\left(m_{n}-m_{p}\right) \approx 1.29 \mathrm{MeV}$:

$$
\Gamma_{n}=\mathcal{O}(1) \frac{G_{F}^{2} \Delta m^{5}}{\pi^{3}} \sim 10^{-28} \mathrm{GeV} \text { i.e. } \tau_{\mathrm{n}} \sim 10^{3} \mathrm{~S}
$$

What if particles were spin-0?

It could still have been true but we would need to give up universality of the Fermi interactions.
Remember theorists like to connect phenomena are are seemingly different.
Even more true when they follow from simple assumptions.

Universality of Weak Interactions

$$
\left.\begin{array}{c}
\mu \rightarrow e \nu_{\mu} \bar{\nu}_{e} \\
\Gamma_{\mu} \approx \begin{array}{c}
n \rightarrow p e \bar{\nu}_{e} \\
\Gamma_{\mu}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \sim 1 / 10^{-6^{\prime \prime}} \\
\mathcal{L}=G_{n} \approx 900 \mathrm{~s}
\end{array} \psi^{4} \\
{\left[\begin{array}{c}
\Gamma_{n}=\frac{G_{F}^{2} \Delta m^{5}}{192 \pi^{3}} \sim 1 / 15^{\prime} \\
\text { factor 192 not exactly correct } \\
\text { because nand pare not elementary particles: } \\
\text { form factors are involved }
\end{array}\right.}
\end{array}\right]
$$

By analogy with electromagnetism, one can see the Fermi force as a current-current interaction (vector-vector interaction instead of scalar-scalar interaction)

$$
\mathcal{L}=G_{F} J_{\mu}^{*} J^{\mu} \quad \text { with } \quad J^{\mu} \stackrel{?}{=}\left(\bar{n} \gamma^{\mu} p\right)+\left(\bar{e} \gamma^{\mu} \nu_{e}\right)+\left(\bar{\mu} \gamma^{\mu} \nu_{\mu}\right)+\ldots
$$

it can be shown (thanks to the transformation law of spin-I/2 field given before) that this Lagrangian is invariant under Lorentz transformation

The cross-terms generate both neutron decay and muon decay.
The life-times of the neutron and muon tell us that the relative factor between the e and the μ in the current is of order one: the weak force has the same strength for e and μ.

Pion decay(s)

What about $\pi^{ \pm}$decay $\tau_{\pi} \approx 10-8 \mathrm{~s}$?

$$
\pi^{-} \rightarrow \mu \bar{\nu}_{\mu} \quad \pi^{-} \rightarrow e^{-} \bar{\nu}_{e}
$$

experimentally the pions decay dominantly into muons and not electrons.

$$
\text { Why } \frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{\nu}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)} \sim 10_{\mathrm{EXP}}^{-4} \text { ? And not } \frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{\nu}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)} \sim \frac{\left(m_{\pi}-m_{e}\right)^{5}}{\left(m_{\pi}-m_{\mu}\right)^{5}} \sim 500 \text { ? }
$$

Does it mean that our way to compute decay rate is wrong?
Is pion decay mediated by another interaction?
The pion is a composite particle: does is mean that the form factors drastically change our estimates? Is the weak interaction non universal, i.e. is the value of G_{F} processus dependent?

Pathology at High Energy

What about weak scattering process, e.g. $e \nu_{e} \rightarrow e \nu_{e}$?

$$
\mathcal{L}=G_{F} J_{\mu}^{*} J^{\mu} \quad \text { with } \quad J^{\mu}=\left(\bar{n} \gamma^{\mu} p\right)+\left(\bar{e} \gamma^{\mu} \nu_{e}\right)+\left(\bar{\mu} \gamma^{\mu} \nu_{\mu}\right)+\ldots
$$

The same Fermi Lagrangian will thus also contain a term

$$
G_{F}\left(\bar{e} \gamma^{\mu} \nu_{e}\right)\left(\bar{\nu}_{e} \gamma^{\mu} e\right)
$$

that will generate $\mathrm{e}-v_{\mathrm{e}}$ scattering whose cross-section can be guessed by dimensional arguments

non conservation of probability
(non-unitary theory) inconsistent at high energy

It means that, at high-energy, the quantum corrections to the classical contribution can be sizeable:

$$
\sigma \propto G_{F}^{2} E^{2}+\frac{1}{16 \pi^{2}} G_{F}^{4} E^{6}+\ldots
$$

The theory becomes non-perturbative at an energy $E_{\max }=\frac{2 \sqrt{\pi}}{\sqrt{G_{F}}} \sim 100 \mathrm{GeV}-1 \mathrm{TeV}$ unless new degrees of freedom appear before to change the behaviour of the scattering

Electroweak Interactions

Low energy

$$
\sigma \propto G_{F}^{2} E^{2}
$$

High energy

$\sigma \propto g^{4} \frac{E^{2}}{m_{W}^{2}\left(E^{2}+m_{W}^{2}\right)}$
— matching -

$$
G_{F} \propto \frac{g^{2}}{m_{W}^{2}}
$$

The Fermi interaction is not a fundamental interaction of Nature.
It is a low energy effective interaction.

Electroweak Interactions

charged $\mathrm{W} \Rightarrow$ must couple to photon:

\Rightarrow non-abelian gauge symmetry $\left[\mathrm{Q}, \mathrm{T}^{ \pm}\right]= \pm \mathrm{T}^{ \pm}$

1. No additional "force" (Georgi, Glashow '72) mathematical consistency \Rightarrow extra matter
$S U(2)$
$\left[T^{a}, T^{b}\right]=i \epsilon^{a b c} T^{c}$
$\left[T^{+}, T^{-}\right]=Q \quad\left[Q, T^{ \pm}\right]= + \pm T^{ \pm}$
$T^{ \pm}=\frac{1}{\sqrt{2}}\left(T^{1} \pm i T^{2}\right)$
$\operatorname{Tr}_{\text {irrep }} T^{3}=0 \Rightarrow$ extra matter $\left(\begin{array}{c}X_{L} \\ \nu_{L} \\ e_{L}\end{array}\right)\left(\begin{array}{c}X_{R} \\ \nu_{R} \\ e_{R}\end{array}\right)$
$S U(1,1)$
$\left[T^{+}, T^{-}\right]=-Q$
$\left[Q, T^{ \pm}\right]= + \pm T^{ \pm}$
non-compact unitary rep. has dim ∞
E_{2}
2D Euclidean group
$\left[T^{+}, T^{-}\right]=0$
$\left[Q, T^{ \pm}\right]= + \pm T^{ \pm}$
only one unitary rep.
of finite dim. = trivial rep.
2. No additional "matter" (Glashow '61, Weinberg '67, Salam '68): $\operatorname{SU}(2) \times U(1)$
\Rightarrow extra force

$$
Q=T^{3} ? \quad Q=Y ?
$$

as Georgi-Glashow
\Rightarrow extra matter

$$
Q\left(e_{L}\right)=Q\left(\nu_{L}\right)
$$

$$
Q=T^{3}+Y!
$$

Gell-Mann '56, Nishijima-Nakano '53

Electroweak Interactions

Gargamelle experiment '73 first established the $\mathrm{SU}(2) \times \mathrm{X}(\mathrm{I})$ structure How?
rely on a particle that doesn't interact with photon to prove the existence a new neutral current process!

From Gauge Theory to Fermi Theory

We can derive the Fermi current-current contact interactions by "integrating out" the gauge bosons,
i.e., by replacing in the Lagrangian the W's by their equation of motion. Here is a simple derivation:
(a better one should take taking into account the gauge kinetic term and the proper form of the fermionic current that we'll figure out tomorrow, for the moment, take it as a heuristic derivation)

$$
\begin{gathered}
\mathcal{L}=-m_{W}^{2} W_{\mu}^{+} W_{\nu}^{-} \eta^{\mu \nu}+g W_{\mu}^{+} J_{\nu}^{-} \eta^{\mu \nu}+g W_{\nu}^{-} J_{\nu}^{+} \eta^{\mu \nu} \\
J^{+\mu}=\bar{n} \gamma^{\mu} p+\bar{e} \gamma^{\mu} \nu_{e}+\bar{\mu} \gamma^{\mu} \nu_{\mu}+\ldots \quad \text { and } \quad J^{-\mu}=\left(J^{+\mu}\right)^{*}
\end{gathered}
$$

The equation of motion for the gauge fields: $\quad \frac{\partial \mathcal{L}}{\partial W_{\mu}^{+}}=0 \quad \Rightarrow \quad W_{\mu}^{-}=\frac{g}{m_{W}^{2}} J_{\mu}^{-}$
Plugging back in the original Lagrangian, we obtain an effective Lagrangian (valid below the mass of the gauge bosons):

$$
\mathcal{L}=\frac{g^{2}}{m_{W}^{2}} J_{\mu}^{+} J_{\nu}^{-} \eta^{\mu \nu}
$$

which is the Fermi current-current interaction. The Fermi constant is given by (the correct expression involves a different normalisation factor)

$$
G_{F}=\frac{g^{2}}{m_{W}^{2}}
$$

But what is the origin of the W mass?
By the way, it is not invariant under $\mathrm{SU}(2)$ gauge transformation... That's what the Higgs mechanism will take care of!

Chirality and the Mass Problem

Chirality \& Masslessness

Quantum Mechanics I.0.I

Particle of spin \mathbf{s} has $\mathbf{2 s + 1}$ polarisation states

Particle spinning anticlockwise wrt its direction of motion

electron
has 2 polarisation

Particle spinning clockwise wrt its direction of motion

Chirality \& Masslessness

Relativistic invariance I.0.I:
there must be no distinction for massive particles between particles spinning clockwise or anti-clockwise [chirality operator doesn't commute with the Hamiltonian]

If your theory sees a difference between e_{L} and e_{R}, either your theory is wrong or $m_{e}=0$

Chirality of SM \& Mass problem

TH: Yang\&eLee '56. EXP: Wu ‘5'

Weak interaction

(force responsible for neutron decay) is chiral!
[e_{L} and e_{R} are fundamentally two different particles
Only an accident of the history of physics that they are both called electron]

but since we know it is not true, we
> need a new phenomena to generate mass: Higgs mechanism

Chirality of SM \& Mass problem

TH: Yang\&eLee '56. EXP: Wu '5'

SM is a Chiral Theory

Weak interactions maximally violates P

$$
{ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}+e^{-}+\bar{\nu}_{e} \quad \text { only left-handed (LH) e- produced }
$$

Weak interactions act only on LH particles (and RH anti-particles)

this property has an important consequence (aka selection rule) for pion decay

Technical Details for Advanced Students

Time-ordering \neq Causality

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{c}
c t^{\prime}=\gamma_{0}\left(c t-\beta_{0} x\right) \\
x^{\prime}=\gamma_{0}\left(-\beta_{0} c t+x\right) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right)
$$

"time dilation + space contraction"
consider two events E_{1} and E_{2} characterised by their space-time coordinates E_{2}

$$
\begin{array}{lc}
t_{2}>0 & c t_{2}^{\prime}=\gamma\left(c t_{2}-\beta x_{2}\right) \\
x_{2}>0 & x_{2}^{\prime}=\gamma\left(-\beta c t_{2}+x_{2}\right)
\end{array}
$$

t'2 can be positive or negative causality \neq time ordering

Proper space-time distance Δ is independent of the observer:

$$
\Delta^{\prime 2}=\left(c t_{2}^{\prime}\right)^{2}-\left(x_{2}^{\prime}\right)^{2}=\left(c t_{2}\right)^{2}-x_{2}^{2}=\Delta^{2}
$$

Only events inside the past/future light cones are causally connected
The light cones are invariant under Lorentz transformations

Spinor Transformation

Transformation law: $\quad \psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S(\Lambda) \psi(x)$

We want the Dirac equation to take the same form in the two systems of coordinates x and x

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}=0
$$

This implies the condition: $\quad S \gamma^{\mu} \Lambda^{\nu}{ }_{\mu} S^{-1}=\gamma^{\nu}$
We consider small Lorentz transformations:

$$
\Lambda_{\mu}{ }^{\nu}=\delta_{\nu}^{\mu}+\omega_{\nu}^{\mu} \quad S=1-\frac{i}{4} \sigma^{\mu \nu} \omega_{\mu \nu}
$$

The covariance of the Dirac equation then implies that the matrices $\sigma_{\mu \nu}$ have to satisfy the relation

$$
\left[\gamma^{\nu}, \sigma^{\rho \sigma}\right]=2 i\left(\eta^{\nu \rho} \gamma^{\sigma}-\eta^{\nu \sigma} \gamma^{\rho}\right)
$$

It is easy to check that the following matrices fit the bill: $\sigma^{\rho \sigma}=\frac{i}{2}\left[\gamma^{\rho}, \gamma^{\sigma}\right]$

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=\left(\delta^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}\right) x^{\nu} \quad \text { with } \quad \omega_{\mu \nu}+\omega_{\nu \mu}=0 \\
\psi(x) \rightarrow \psi^{\prime}\left(x^{\prime}\right)=\left(1_{4}+\frac{1}{8} \omega_{\mu \nu}\left[\gamma^{\mu}, \gamma^{\nu}\right]\right) \psi(x)
\end{gathered}
$$

Lorentz-invariant Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \psi^{\dagger} M\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \\
& M=\gamma^{0} \text { is Lo solution and it defines the Dirac Lagrangian. } \bar{\psi} \equiv \psi^{\dagger} \gamma^{0}
\end{aligned}
$$

SU(N) non-Abelian Gauge Symmetry

We generalise the QED construction by considering general transformation of a N -vector

$$
\phi \rightarrow U \phi
$$

We build a covariant derivative that again has nice homogeneous transformations

$$
D_{\mu} \phi=\partial_{\mu} \phi+i g A_{\mu} \phi \rightarrow U D_{\mu} \phi \quad \text { iff } \quad A_{\mu} \rightarrow U A_{\mu} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1}
$$

g is the gauge coupling and defines the strength of the interactions
For the field strength to transform homogeneously, one needs to add a non-Abelian piece

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \rightarrow U F_{\mu \nu} U^{-1}
$$

Contrary to the Abelian case, the gauge fields are now charged and interact with themselves

$$
\mathcal{L}_{\text {kin }}=\operatorname{Tr} F_{\mu \nu} F^{\mu \nu} \supset g \partial A A A+g^{2} A A A A
$$

g^{2}
\exists gauge boson self-interactions

Symmetries and invariants

SU(N)
the transformations among the components of a complex N -vector that leaves its norm invariant

$$
|\phi|^{2}=\phi_{1}^{*} \phi_{1}+\ldots \phi_{N}^{*} \phi_{N} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SU(N,M)

the transformations among the components of a complex ($\mathrm{N}+\mathrm{M}$)-vector that leaves its (N, M) norm invariant

$$
|\phi|^{2}=\phi_{1}^{*} \phi_{1}+\ldots \phi_{N}^{*} \phi_{N}+\phi_{N+1}^{*} \phi_{N+1}-\ldots-\phi_{N+M}^{*} \phi_{N+M} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SO(N)

the transformations among the components of a real N -vector that leaves its norm invariant

$$
|\phi|^{2}=\phi_{1}^{2}+\ldots \phi_{N}^{2} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

SO(N,M)

the transformations among the components of a real $(N+M)$-vector that leaves its (N, M) norm invariant

$$
|\phi|^{2}=\phi_{1}^{2}+\ldots \phi_{N}^{2}+\phi_{N+1}^{2}-\ldots-\phi_{N+M}^{2} \rightarrow\left|\phi^{\prime}\right|^{2}=|\phi|^{2}
$$

The Lorentz group is thus $\operatorname{SO}(1,3)$

Lorentz transformation

SO $(1,3)$

The elements of $\mathbf{S O}(1,3)$ satisfy $U^{t} \eta U=\eta$ where $=\operatorname{diag}(1,-1,-, 1,-1)$
The infinitesimal transformations are $U=e^{\theta^{a} T^{a}} \approx 1+\theta^{a} T^{a}+\ldots$
The generators satisfy the constraints: $T^{a t} \eta+\eta T^{a}=0$

$$
\begin{aligned}
& \text { One particular generator is } T=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \text { We obtain } e^{\theta T}=\left(\begin{array}{cccc}
\cosh \theta & \sinh \theta & 0 & 0 \\
\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

We indeed recover the usual Lorentz transformation with the identification

$$
\begin{gathered}
\gamma=\cosh \theta \quad \text { and } \quad \beta \gamma=\sinh \theta \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} \Leftrightarrow \quad \cosh ^{2} \theta-\sinh ^{2} \theta=1
\end{gathered}
$$

Chirality

Chirality matrix

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

A few remarkable properties

$$
\begin{aligned}
& \left(\gamma^{5}\right)^{2}=1_{4} \\
& \left\{\gamma^{5}, \gamma^{\mu}\right\}=0 \\
& \gamma^{5^{\dagger}}=\gamma^{5}=-\gamma^{0} \gamma^{5} \gamma^{0}
\end{aligned}
$$

Chiral/Weyl spinor

A chiral/Weyl spinor is an eigenvector of the chirality matrix $\psi_{L, R}= \pm \gamma^{5} \psi_{L, R}$
From the Lorentz-transformation law of a spinor, it is obvious that the chirality condition is frame-independent
A Dirac spinor can also be written as a sum of two chiral spinors

$$
\psi=\frac{1}{2}\left(1_{4}+\gamma^{5}\right) \psi+\frac{1}{2}\left(1_{4}-\gamma^{5}\right) \psi \equiv \psi_{L}+\psi_{R}
$$

Charge conjugation

In general, ψ and ψ^{*} do not transform in the same way under Lorentz transformations and the naive reality condition $\psi=\psi^{*}$ is frame dependent

But it is possible to find a matrix C, called charge conjugation matrix, such that

$$
\psi \quad \text { and } \quad \psi_{C}=C \psi^{*}
$$

transform in the same way under Lorentz transformations
The matrix C needs to satisfy $C \gamma^{*}=-\gamma^{\mu} C$
In the Dirac and Weyl representations, $C=i \gamma^{2}$
In the Majorana representation, $\quad C=1_{4}$
Basic properties of the charge conjugation matrix: $C^{2}=1_{4}, C^{\dagger}=C, C^{*}=C$

The charge conjugated spinor, ψc, satisfies the same Dirac equation as ψ, with the same mass but opposite electric charge (when the spinor is minimally coupled to a $U(I)$ gauge field)

A Majorana spinor satisfies the (Lorentz invariant!) condition $\psi=\psi \mathrm{c}$
Note that in 4D, a spinor cannot be simultaneously chiral and Majorana

Dirac and Majorana Masses

By construction, the following two mass terms in the Lagrangian are Lorentz-invariant
Dirac mass:

$$
\mathcal{L}_{\text {Dirac }}=m \bar{\psi} \psi
$$

(conserves fermion number)

Majorana mass: $\quad \mathcal{L}_{\text {Majorana }}=m \bar{\psi}_{C} \psi \quad$ (changes fermion number by 2)

These two mass terms have different a chirality structure

$$
\begin{aligned}
\mathcal{L}_{\text {Dirac }} & =m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right) \\
\mathcal{L}_{\text {Majorana }} & =m\left(\bar{\psi}_{L_{C}} \psi_{L}+\bar{\psi}_{R_{C}} \psi_{R}\right)
\end{aligned}
$$

A chiral fermion can have a Majorana mass A Dirac mass requires spinors of opposite chirality

Whether or not a Dirac or a Majorana mass can be included in the Lagrangian depends on transformation laws of the spinors under the gauge transformations

Within the SM (with the Higgs field), a Dirac mass can written for the charged leptons and the quarks while a Majorana mass can be written for the neutrinos.

