

C. Grojean DESY and Humboldt University christophe.grojean@desy.de

ESHEP2023 – Grenaa, DK

Higgs	&	Beyond
-------	---	--------

Homework 3

Date: 17.09.2023

Exercice 1: BSM proton decay

With the particle content of the SM, baryon number is an accidental symmetry when restricting to renormalisable (dimension-4) interactions. One can however build dimension-6 four-fermion interactions among quarks and leptons that do break the baryon and lepton numbers. On dimension ground, derive an estimate of the proton life-time as a function of the "Fermi" constant of these interactions. Given that the current experimental lower bound on the life-time of the proton in 10^{34} years, find the lower bound on the scale governing these contact interactions.

Exercice 2: Bound of hypothetical scalar leptoquark

A leptoquark is a hypothetical bosonic field which transforms as a triplet of $SU(3)_C$, and consequently (with appropriate $SU(2)_L \times U(1)_Y$ quantum numbers) can couple to quark-lepton pairs. In this exercise, we add to the SM a single scalar field, *F*, that is a doublet of $SU(2)_L$ and has a hypercharge Y_F .

1) We require that the following Yukawa couplings are allowed: $\lambda^{QeF} \bar{Q}_L e_R F$. Determine Y_F and find the baryon and lepton numbers of *F*.

2) We denote the components of the *F*-doublet as (F_u, F_d) . What are the electric charges of F_u and F_d ?

3) The model is ruled out if $\langle F \rangle \neq 0$. Explain why this is the case. In what follows, we then assume that $\langle F \rangle = 0$.

4) Write explicitly, in the quark mass basis, the Yukawa interactions of F_u and F_d introduced in 1). Denote the Yukawa matrices by $\lambda_{ij}^{Fu\ell}$ and $\lambda_{ij}^{Fd\ell}$ respectively (*i*, *j* are the flavour indices). 5) The Higgs vacuum expectation value introduces a splitting between the masses of F_u and F_d . Write the mass-squared terms for *F* and the couplings to the Higgs field. Calculate the masses-squared of F_u and F_d , and explicitly write the mass-squared splitting. Note that there are two independent ways to contract the SU(2)_L indices in the terms that involve the Higgs and the *F* fields. Make sure you include both of them.

From this point on, assume that the splitting between F_u and F_d is negligible.

6) In the Standard Model, the decay $b \rightarrow s\mu^+ e^-$ is forbidden. Explain why.

7) *F* mediates the decay $b \rightarrow s\mu^+ e^-$. Draw the tree-level Feynman diagram for this decay and estimate the amplitude.

8) Estimate the *F*-mediated amplitude $b \rightarrow s\mu^- e^+$.

Next, we derive a lower bound on m_F . To do so, we compare the rate of the F-mediated

 $b \rightarrow s\mu^+ e^-$ decay rate to that of the W-mediated $b \rightarrow c e^- \bar{v}_e$.

9) Draw the tree-level diagram for $b \rightarrow ce^- \bar{v}_e$.

10) Estimate the ratio $\Gamma(b \to s\mu^+ e^-)/\Gamma(b \to ce^- \bar{\nu}_e)$ in terms of $\lambda^{Fd_\ell}, m_F, g, m_W$ and the CKM matrix elements. Assume that $m_F \gg m_b$ and neglect phase space effects. Make sure you write explicitly the flavour structure of the couplings.

explicitly the flavour structure of the couplings. **11**) Assuming that $\lambda_{ij}^{QeF} \sim g$ for all *i* and *j*, and using the experimental data: Br $(b \rightarrow ce^- \bar{v}_e) \sim 10^{-1}$, $|V_{cb}^{CKM}| \sim 0.04$ and Br $(b \rightarrow s\mu^+ e^-) < 10^{-5}$, estimate the lower bound on m_F .