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Introduction
00000000000

A heavy ion collision

Pb+Pb @ sart(s) = 2.76 ATeV.

2010-11-08 11:30:46
Fill : 1482
Run : 137124

Event : 0x00000000D3BBES93

» ~ 1600 primary charged hadrons per unit rapidity
» p+p at comparable v/s: dNg,/dn ~ 4 —5
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Heavy ion collisions: bird's eye view

> heavy ion collisions create strongly interacting system of high
density

» Bjorken's energy density estimate:

1 dEL

~ = ~ 25 GeV /fm3
~RZr dn o 5GeV/fm

€0

Bjorken, Phys. Rev. D 27 (1983) 140
ALICE, Phys. Rev. C 94 (2016) 034903

> there has to be re-scattering in the final state

v

scattering drives a system towards thermal equilibrium

» How and to what extent does the final state in heavy ion
collisions equilibrate?
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What is this stuff we're producing? — qualitative arguments

» QCD is asymptotically free — becomes weakly coupled at high
temperature and/or density

sgeses
et

Individual Quark gluon
nucleons plasma

Density
'

S. Flérchinger, ESHEP 2015
» formation of a quark-gluon plasma (QGP)
> (anti-)quarks and gluons become deconfined
» chiral symmetry is restored
» in heavy ion collisions at collider energies: nuclei are largely
transparent — central rapidity region essentially baryon-free
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What is this stuff we're producing? — QCD thermodynamics

» Stefan-Boltzmann law: pressure of non-interacting gas of Ng
massless bosons and NF massless fermions

2 7

T)=—(Nsg+ N | T*
p(T) 90< B+8 F>

» high temperature QGP:

Ng = 2[spin] - (N2 — 1)[colour] = 16
Ng = 2[anti-/particle] - 2[spin] - N¢[colour| - Nf[flavour| = 36

» low temperatures M, < T < M,:

P expect strong increase of pressure at phase boundary
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What is this stuff we're producing? — Lattice QCD

» solve QCD numerically on space-time lattice — Lattice QCD
» suitable for thermodynamic (static) properties of QCD matter
» works for ug ~ 0
> finds crossover at T, = (154 = 9)MeV ~ 1.7 - 102K ~ 10° T,
» QGP doesn’t seem to be weakly coupled
e = 3p for ideal quark-gluon gas

LI N B e e B B B B B B LI S S e s e e s B |

16 [— | (e-3p)T*

non-int. limit N.=8 = T
- 4 4t Ne=10o B |
12} -I-I-Ill-'-l-l-l- L Ne=t2 B |
Il cont =
- HRG "lﬂl' 1 3
sl Te J
3p/T4 2
o4 I b
35/4T° R
1
T [MeV] I T[MeV]
P N AN A M ol
130 170 210 250 290 330 370 130 170 210 250 290 330 370

Bazavov et al. [HotQCD Collaboration], Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387]
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The QCD phase diagram

Quark-Gluon Plasma

Point?

Temperature (MeV)

Color

Nuclear
NEEITD e Superconductor

0 7SS UR U N U R S NS U T N S S oy~ S R
0 200 400 600 800 1000 1200 1400 1600
Baryon Doping — ug (MeV)

A. Aprahamian et al., Reaching for the horizon: The 2015 long range plan for nuclear science
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Putting experimental points on QCD phase diagram

» assume hadron gas in thermal & chemical equilibrium
» number changing processes require high density — stop soon
after hadronisation

> elastic scattering continues, but change affect hadron species =

. . B . . . <

» fit identified hadron yields with fit parameters temperature, .2

. . v o

volume and chemical potentials TR

; <~ 200 ‘ \ o >§

Rl Pb-Pb | 5,,=2.76 TeV, 0-10% centrality - 180F  QuarkGiuon Matier ] G
3 el KKK FE . =
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10°k  ® Data, ALICE 3’.}3‘3—;{? 34 4 . i 1 g §
104y~ Statistical Hadronization - 3 40 [ Points: Statistical Hadronization, Ty, 1 [} :
10°F 4 Band: Lattice QCD, T, ¢ 8
ek “He ‘He] 20F Nuclei ] 5 ¢
! ol i3

g (MeV) =

Korinna Zapp (Lund University) Heavy lon Physics ESHEP 2023 8/45



[ee]e]e]e]ele] lelele)
Why is this interesting?

» QGP: only strongly coupled system of Standard Model
microscopic degrees of freedom
» understand strongly interacting matter at temperatures
~ 10° times higher than the core of the sun
» How do heavy ion collisions equilibrate?
» How does collectivity arise in asymptotically free theory?
> QGP: “simplest form of complex quantum matter”
» understand QGP properties and QCD phase diagram theoretically
and experimentally
» How does multitude of complex materials arise from simple
underlying theory?

> early universe went through QGP phase (O(1075s))

possibly no phenomenological consequences at later times
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
| Il | |

. . N B
o i
W

initial state
pre-equilibrium
dynamics
hydrodynamic
expansion

hadronisation

hadronic
re-scattering

picture from https://phy.duke.edu/modeling-relativistic-heavy-ion-collisions
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Outline for rest of lectures

Part | — today

» go through different stages of heavy ion collisions

» focus on soft particle production

Part Il — tomorrow
» hard processes

» quarkonia
» electroweak bosons
> jets

» small collision systems

» other fun stuff with heavy ions
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Heavy ion colliders; RHIC & LHC

» RHIC: Relativistic Heavy lon Collider in Brookhaven
> Aut+Au +/Sun = 200 GeV
centre-of-mass energy per nucleon pair
» p+p, p+Au and d+Au
» U, Cu, O, Ru, Zr, ...
» LHC: Large Hadron Collider at CERN
» Pb+Pb /syn = 2.76 GeV and 5.02 GeV
» p+p and p+Pb
> Xe+Xe, O+0O (coming soon)

iiiiii
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Initial state
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
| Il | |

initial state

pre-equilibrium
dynamics
hydrodynamic
expansion

hadronisation

hadronic
re-scattering

Korinna Zapp (Lund University) Heavy lon Physics ESHEP 2023 13 /45



Initial state
0

Centrality
Centrality
y
impact parameter b: transverse distance /—(< Ra
between centres of colliding nuclei >
* N X
centrality: fraction of geometric cross section %
\\%

» if nuclei were billiard balls:

Ogeo = T(Ra + RB)2
b 2w

o(b) = //b’db/dqb = 7b?
0 0
centrality(b) = b?/(Ra + Rg)?
Heavy lon Physics ESHEP 2023 14 /45
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Centrality
Measuring centrality

» one option: forward multiplicity
> relation to b or Ny, relies on models

12 10 8 6 4 2 0 <b(fm)>
—T T

E T T T 10
E ool Glauber-MC
~ F s Pb-Pb |5y = 2.76 Te!
3 [__50 100 150 200 250 300 350 <Npart>! E 10°
s — T T T T 15000
=
z
%10" In|<'| 10000 o
]
5000] 10¢
o 10°

Fe Glauber-MC
U, PoPD {5 =276 TeV
% LY

i : i
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95
0/(7‘0{(%)\
W) FERTE FETTY FERTE FRNTE FRTRE FRNTY FRRRE FRNTE FRRUNA AN
10°

0
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Ne,

Sarkar, Satz, Sinha,"The physics of the quark-gluon

plasma”,Lect. Notes Phys. 785 (2010) pp.1

ALICE, Phys. Rev. C 91 (2015) no.6, 064905 [arXiv:1412.6828]
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Glauber model

Dealing with geometry: Glauber model

» nuclei are not billiard balls:
» nuclear potential, e.g. Woods-Saxon potential
No

> (inelastic) nucleon-nucleon cross section ojin

elastic scattering has no effect near mid-rapidity

> integrate over beam direction
o
Ta(s) = / dz na(v/'s? + z2)
e
» overlap of two colliding nuclei

Tas(b) = / ST a(s) Ti(s — b)
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Glauber model

Dealing with geometry: Glauber model

» number of binary nucleon-nucleon collisions

Neoi = Tag(b) ol

inel

» number of participant nucleons

+/d25 TB(S){].— [1_ UiNngTi\éfs‘f‘b)]A}

NN T(b) 1"
» probability for nucleon not to interact: |1 — U'"e'AA()]

> soft particle production scales like Npart
» hard processes scale like Ny
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Initial state
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Glauber model

Dealing with geometry: Glauber model

> geometric cross section: cross section for Neoy > 1
NN
Ogeo = /dzb [1 — e~ Tas(b) o

100

Au+Au

830} 4

o

0 2 4 6 8 10 12 14 16 18
b [fm]
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Glauber model

Monte Carlo Glauber model

> simple way of dealing with event-by-event fluctuations

» distribute nucleons in nucleus according to nuclear potential

» for each nucleon in one nucleus calculate number of nucleons in
other nucleus with transverse distance < {/oNN /7

» from this compute Npart and Ny

-10- b=6fm

-10 - o 5 10 -15 -10 -5 0 5 10 15
x (fm) z (im)

Miller, Reygers, Sanders, Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025]
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Gluon saturation and the Colour Glass Condensate

Gluon saturation

» soft particle production probes low-x gluons
> rapid rise of gluon density due to scale evolution
» at high gluon densities recombination becomes important
slows down evolution and leads to gluon saturation
> saturation scale Qs: typical p, of saturated gluons
» or: saturated gluons have size 1/Qs
» for RHIC and LHC energies Qs is of order a few GeV

Proton Structure energy

low medium high

®

https://www.uu.nl/en/research/institute-for-subatomic-physics/research/color-glass-condensate
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Initial state
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Gluon saturation and the Colour Glass Condensate

The Colour Glass Condensate (CGC)

v

hard valence partons: “frozen” by time dilation, act as colour
sources for

saturated gluons with typical momenta Qs

saturated gluons have occupation number 1/as — over-occupied
strong fields but weakly coupled (as(Qs) < 1)

can be described using classical field theory

obey RG evolution equation (JIMWLK equation)

vVvvyVvVvYyypy

interactions between nuclei lead to strong colour fields decaying
to partons
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Gluon saturation and the Colour Glass Condensate

Comparing different models

» compute distribution of energy density ¢ in different models
» Glauber model doesn’t predict €

— have to make assumptions & tune to data
» here: for each participant add Gaussian with width 0.4fm

» in contrast: length scale for fluctuations in IP-Glasma is 1/Qs

povE.l
ey
v 8 8
B B N
. 4 g™ 4 8
L 2 5, 6
% i
2
0 2
< L .
4
N -6

2
P 0
N yifm] o, ¥ 2 yifm]
Afm] “ s B

Aim]
. P
88 &8

Glauber-MC MC-KLN IP-Glasma

Schenke, Tribedy, Venugopalan, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646]
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
| Il | |
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W

initial state
pre-equilibrium
dynamics
hydrodynamic
expansion

hadronisation

hadronic
re-scattering
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Pre-equilibrium
°0
Weak coupling scenario

Approach to equilibrium

early stages of HIC are far-from-equilibrium systems

system expands rapidly

>
>
» hydrodynamic description becomes applicable at 1fm/c
» at 1fm/c the system is still very an-isotropic

>

“hydrodynamisation”
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Pre-equilibrium
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Weak coupling scenario

Equilibration in kinetic theory

W . [ fm/c] 0
Anisotropy: P,/ P,

g
Kinetic theory | Both  Classical
YM

FT P T

- 43
71t
’

~,

43
TP

Initial

— Kinetic thy.
== lstorder hydro
= 2nd ordet hydro

Thermal

43 8
Components of © T:/Q
o
=

I
1)
]
[}
i
1
i

J~o ~1 fro? 0.001 A PRI R
Occupancy: f ! 0 0
Kurkela, Nucl. Phys. A 956 (2016) 136 Kurkela, Zhu, Phys. Rev. Lett. 115 (2015) no.18, 182301

> region f < 1/as described by effective kinetic theory
» solve Boltzmann transport equation

—(0r +v -V )f(x,p, t) = Crrsp[f] + Cocso[f]

» Ce1,0v: splitting/merging rate in presence of multiple scattering
» (,,0: elastic scattering rate

» hydrodynamisation on timescales < 1fm/c
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Pre-equilibrium
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Strong coupling scenario

Equilibration at strong coupling

» AdS/CFT correspondence: relates strongly coupled conformal
field theory to a weakly coupled type IIB string theory

> can be used to study strongly coupled field theories
here: N/ = 4 Super-Yang-Mills theory

» model heavy ion collision as collision of shock waves
» thermalisation related to black hole formation in 5th dimension

» hydrodynamic behaviour reached quickly (timescale ~ 1/T)

¢ (TeV/fin') s
2000 ot e

» unfortunately N'=4 SYM is
not QCD
QCD nearly conformal at high T

\ 4
t (fim/c) 0.00
0.06 —0.05 7 (fim)
Chesler, van der Schee, Int. J. Mod. Phys. E 24 (2015) no.10, 1530011 [arXiv:1501.04952]
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Hydrodynamics
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
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Discovery of flow

First main discovery of heavy ion physics

event displays from G. Roland, CMS

» anisotropy due to different pressure gradients

— collective flow
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Discovery of flow

Collective flow

0
.
-

100 us

200 ps

400 ps

600 ps

800 s

1000 ps

1500 ps

2000 ps

O'Hara et al.,
Science 298 (2002) 2179
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Hydrodynamics
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Discovery of flow

Collective flow

100 us
200 ps
400 ps
600 s
800 s
1000 ps
1500 us

2000 us

[000REEE

O'Hara et al.,
Science 298 (2002) 2179

Korinna Zapp (Lund University)

r ALICE VISHNU — Pb+Pb2.76 A TeV
n A — N
K © o
- p O =

20-30%

50-60%

L | L
2 2
py(GeV) p(GeV)

dN N

9 = ox 1 +2zn:vnc05(n(¢>— )

» described by hydrodynamics
» mass ordering due to common velocity

Heavy lon Physics ESHEP 2023
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Hydrodynamics
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Hydrodynamics in a nutshell

Hydrodynamics: what it is

Romatschke, Int. J. Mod. Phys. E 19 (2010), 1-53

> low energy effective theory describing long distance, late time
behaviour of averaged macroscopic features of the system

> applicable to very generic set of theories

» assumes that matter is close to local thermal equilibrium
» microscopic details of theory enter in inputs of hydrodynamics

> equation of state
> transport coefficients
> relaxation times

» valid for

> distances large compared to mean free path
» times long compared to inverse scattering rate
» systems with sufficiently smooth variation
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Hydrodynamics
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Hydrodynamics in a nutshell

|deal hydrodynamics

» fluid in global thermal equilibrium described by
energy-momentum tensor

T =eutu” + p(g"” + u*u"”)

v

with metric g" and fluid velocity u"

» energy density and pressure related through equation of state
» allow small deviation from equilibrium such that

€ = €(x) u* = u!(x)

> for small gradients systems stays in local thermal equilibrium
> energy-momentum conservation 9, T"” = 0 leads to

u"0,e+ (e + p)o,u” =0
(e + p)utOuu” + (g + u”u")0,p =0

independent of micro-physics
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Hydrodynamics
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Hydrodynamics in a nutshell

Viscous corrections
» allow for perturbations with larger gradients — need more general
form of TH”:
T = eutu” + pA*Y + v

with A*Y = g + uHu” \ viscous stress tensor

» decompose MN*" into traceless part and remainder

= g 4+ Tpuk AMY

shear stress \—/ \ bulk viscous pressure

> parametrise deviations from ideal fluid dynamics
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Hydrodynamics
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Hydrodynamics in a nutshell

Viscous corrections

» viscous fluid dynamics can be organised as gradient expansion

Thulk = —C@uu“ + ...

1 1 1
T = —2n (2AWAV5 + S AMAY 4 3A’“’Aaf3) Oatig + . ..

» at first order: bulk viscosity ¢ = ((¢) & shear viscosity n = 7(€)

> at second order: many more parameters

relaxation times, more transport coefficients, ...

> increasingly complicated evolution equations

have to be solved numerically
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Hydrodynamics in a nutshell

Shear viscosity

» shear viscosity related to momentum transport

> large /s — momentum transport over large distances by
quasi-particles
> small /s — no well-defined quasi-particles

» 1/s calculable at weak coupling (kinetic theory) and at strong
coupling (AdS/CFT)

1=0.4 fm/c 1=6.0 fm/c, ideal 1=6.0 fm/c, n/s=0.16

y [fm]
e[fm™)
y [fm]
y [fm]

0 5 0 5 10 0 5 0 5 10
x [im] x[fm]

Schenke, Jeon, Gale, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244]
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Hydrodynamics in a nutshell

Shear viscosity

25 T T
== ideal
. 20k = == 1/5=0.03 - "
» efficiency of v» generation T meole ST
sensitive to shear viscosity 7 5T - STAR M
g - et
. .. ok Tt .
» heavy ion collisions least >
. . . / .
dissipative system known st N .
0 i 5 3 d
pr[GeV]

Romatschke & Romatschke, Phys. Rev. Lett. 99 (2007) 172301
» conjectured lower bound form obtained from AdS/CFT

7 1

s Arw
n/s = 1/4m realised in field theories with gravity duals
Kovtun, Son, Starinets, Phys. Rev. Lett. 94 (2005) 111601
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Nuclear geometry and fluctuations

Higher harmonics

i

fluctuations generate odd
harmonics

no odd harmonics
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Hydrodynamics
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Nuclear geometry and fluctuations

Higher harmonics

. fluctuations generate odd
no odd harmonics

harmonics
Pb-Pb 2.76 TeV, 0-2% central

2« p'T < 2.5 GeVic >
1.5<p"T<ZGeVIc )
0.8 <|An|<1.8 Y

very central collisions

v

vo small

» mid-central collisions
Vo > V3> vy

¥¥ndf =33.3/35
1 L

2 4
A¢ [rad] ALICE, Phys. Lett. B 708 (2012) 249
Korinna Zapp (Lund University) Heavy lon Physics
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Hydrodynamics
oe

Nuclear geometry and fluctuations

Anisotropic flow and nuclear structure

> anisotropic flow sensitive to geometry of collision
— sensitive to nuclear structure

0.08] RuRu, Vo =02TeV____ ] gggg RuRu, Vixx =0.2 TeV
__0.06 /"“\ _ 0.020 /—v\&\\’\-
a : T 0.015
2 0.04 .~ £0.010
0.02}, sTAR Inl<1 0.005/, sTAR \
0.00! Trajectum 12 3 45 0.000 Trajectum 12 3 4.5
0.08" ZrZr, Vsxx =02 TeV gggg Z1Zr, \sny =02 TeV
0,06 T )
a :
| ® 6
0.027, sTAR ) 0005, sTAR
0.00! Trajectum 0.2 < p/"<2GeV/e 0000 7 crum ‘ ‘
=~ 1.04; =
IS N
N 1.02 ‘W N
2100+ - -1 3
2, £
Z 098 g
0-96§ . ] 3 e
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 96Z
40

o)

o
)
c

centrality [%] centrality [%]

Nijs, van der Schee, SciPost Phys. 15 (2023), 041
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
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Hadronisation
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From fluid to particles

» run hydrodynamics until interactions cease — kinetic freeze-out
happens in hadronic phase
> neglecting viscous corrections: occupation numbers for each fluid
element

dn; up (o -1

o = P TR0 00) x |7 1]

d°xd’p

» Cooper-Frye prescription: integral over surface of last scattering
(freeze-out surface) X ¢ gives particle spectra

dN; 1 /
E——=—= [ pu,do*f;

d*p  @r)PUs,
» in practice often assumed that T = const on X ¢
» corrections due to viscosity

Cooper, Frye, Phys. Rev. D 10 (1974), 186
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Hadronisation
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Quark Coalescence

» suitable if partonic distribution functions known
» idea: quarks and anti-quarks combine to form hadrons
» number of mesons

&pr I*p
_ ! p
i =éu /zf (Pdos) (P2u72) GoryoE; (rEs

X fq(x1, p1)fg(x2, p2)fm(x1, x2, p1, p2)

v

fa(x, p): (anti)quark distribution functions
fu(x1, %0, p1, po): probability for g and g to form meson, e.g.

fm(x1, X2, p1, p2) o exp <(X12Aj2)> o <([312A52)>

\4

» corresponding expressions for baryons

Greco, Ko, Levai, Phys. Rev. C 68 (2003), 034904
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Quark number scaling

> coalescence picture predicts scaling of vo with number of
constituent quarks

» observed in RHIC data and to a lesser degree in LHC data
————
[ 4 7+ (PHENIX) O p+p (PHENIX)
0.15] ® =° (PHENIX) O A+7(STAR)
| 0 K*+K (PHENIX) 2 £+ (STAR)
b« K2(STAR) d (PHENIX Preliminary)
[ % ¢(STAR)
oo
Xy

” %%ﬁa A r

0.05

—_—— 4
NIRRT S S R

1 2
[m -m]/n, (GeV)

Granier de Cassagnac, Int. J. Mod. Phys. A 22 (2007) 6043 [arXiv:0707.0328]
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Timeline of heavy ion collisions

~-0.5 fm/c ~0.1 fm/c ~1fm/c ~10 fm/c time
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Hadronic re-scattering
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Re-scattering in hadronic phase

Option 1 i *H
60 —A
» run hydrodynamics until kinetic = ] . At
freeze-out %‘:
» needs suitable input to deal with 2
hadronic phase 0
Option 2 -
> explicit simulation with transport = T %ﬁ:ﬁ:’:&
codes :fm -
» based on Boltzmann equation .
» need to include large number of

resonances & cross sections EREE TN

Weil et al., Phys. Rev. C 94 (2016) no.5, 054905 [arXiv:1606.06642]
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Summary
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Summary

» heavy ion collisions: unique opportunity to study matter at
extreme conditions (temperature and pressure)

» formation of new phase of QCD matter: quark-gluon plasma
— deconfinement, chiral symmetry restoration
» QGP: only strongly coupled system of Standard Model
microscopic degrees of freedom

» what we have learned so far

» QGP created in heavy ion collisions at RHIC and LHC
» “rapid hydrodynamisation”
» QGP is a strongly coupled liquid
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oe
Summary: stages of a heavy ion collision

» initial state:

> geometry (— Glauber model)
> gluon saturation (— colour glass condensate)

» pre-equilibirium dynamics:
> successful descriptions at weak (kinetic theory) and strong
coupling (AdS/CFT)
> leads to hydrodynamic regime on timescales O(1fm/c)
» hydrodynamic expansion:
» the QGP flows — collective behaviour
> least dissipative system known (n/s = 1/4)
» hadronisation: phenomenological modeling

» hadronic re-scattering: hydrodynamics or transport theory

more important at lower beam energies
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