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• Recap: transverse emittance optimisation results 

• Emittance blow-up reduction: matching coils  

• Longitudinal parameters optimisation using  
a simplified RF-model for phase-space rotation and acceleration 

• Impact of appropriate bunch distribution cuts 

• Results using optimised bunch rotation and optimised optics 

• RF structures parameterisation 

• Next steps

Outline



Transverse emittance reduction: RF-Track vs. cooling equations
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• 40 T (static field), Liquid hydrogen absorber, initial beam: Pz = 135MeV/c, ϵ⊥ = 300μm, ϵ∥ = 50mm, σ t = 50mm, σE = 3.2MeV

Longitudinal spread included

ϵ⊥ = 31.2μm



4

Optimising transverse emittance only

Less cells are needed in 50T case 
(might improve the transmission and costs?)

• Optimisation starting from last cell, to meet the required transverse emittance  
• Free parameter: starting Pz, absorber length 
• Cooling computed analytically, assuming 40 T (or 50 T) peak B-field

• Note: this assumes ideal optics matching and control of longitudinal parameters 
(acceleration, optimal energy spread and bunch lengths) 

• Transmission is not included
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1st cell (40 T, LH): after optimisation

ϵ⊥,end = 268μm
No matching coils

ϵ⊥,end = 260μm
β⊥,start = 0.34m

β⊥,center = 3cm
B(z) = 3.8T

Incl. matching coils 
in the entrance  

and exit of high-
field solenoid

Larger alpha funcBon values on the 
locaBon of emiCance bumps  
-> opBcs opBmizaBon is crucial for 
desired emiCance reducBon
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Solenoid field optimisation using matching coils

• First 4 cells share exactly the same parameters for solenoid and 
matching coils (the analytically estimated emittance value could be 
achieved with these settings) 

• Observed differences between the emittance computed from full 
bunch and averaged emittance over the slices 

➡ Optics matching is crucial to avoid 
emittance blow up and achieve 
desired cooling performance 

Transverse emi+ance reduc/on using op/mised matching coils

• With estimated optimal transverse emittance at the end of each cell as objective
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Simplified RF model for phase-space rotation and acceleration
• Longitudinal emittance increases after absorber: 
‣ Compute the slope of the particles distribution 
‣ Optimise drift length (develop correlation) and “slope factor” (minimise energy spread or bunch length)  
‣ Objective function longitudinal emittance / transmission 

LH

Drift + “kick” dP/dt

acceleration

Optimised field and absorber 
settings to achieve target 

transverse emittance

According to optimal Pz at 
the start of the next cell

Tracking setup
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Longitudinal emittance optimization: First result

Longitudinal emiCance growth 
towards the end of the channel is too 
large compared to previous studies. 
=> Caused by a few outlier-par5cles!

Frequencies are computed according to                     and gradients as                     .      
         is the momentum gain to be achieved with accelera8ng cavi8es.

σt = λ /20 G = f
ΔPz



Impact of appropriate bunch distribution cuts

Problem: “outlier”-par2cles in the tails 
- 3-sigma cut not always effec2ve 
- Stronger cuts? How to determine? 
- Thresholds which are always valid?
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Impact of bunch cuts: rotation kick
• Important to “clean” the beam after the absorber to estimate the slope to be corrected  
‣ 3 sigma-cut not always reliable, especially towards the end of the channel 
‣ “Anomaly detection” approach - cut off 1% of points which are further away  

(considering all 6 dimensions in phase space!)* 

No cuts applied Finding “relevant” particles  using Isolation Forest 
algorithm for anomaly detection*

* Isola(on forest algorithm: 
h3ps://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.Isola(onForest.html#sklearn.ensemble.Isola(onForest



“+” marked par2cles indicate the “good” par2cles 
used for kick and emiEance computa2on

Impact of appropriate bunch distribution cuts
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Results incl. bunch “cleaning” vs. 120 mm without cleaning  
(total transmission is 7% lower)
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Analysis of transmission reduction: cell 11 and 12
• Transmission losses in the first 10 cells are dominated by the necessary cuts for emittance computation 
• Cell 11 and 12 show a high drop in transmission: 

‣ Caused by lower energies, losses due to lifetime?  

Note: here no cuts are applied, all particles are included 
pz = 75 MeV/c 
Cell 11: N particles start of the cell -> N particles  after absorber: 450 -> 438 
Cell 12: start -> absorber: 438 ->371  
 
Higher momenta at the start of the cell 11: 
pz = 90 MeV/c: 
Cell 11: start -> absorber: 450 -> 450 
Cell 12: start -> absorber: 450 -> 445 
=> pz = 85 MeV/c: 
Cell 12: start -> absorber: 450 -> 441 
=> pz = 80 MeV/c: 
Cell 12: start -> absorber: 450 -> 418  

➡ Transmission decreases due to lower energies:  
➡ “optimal” cooling path studies should include transmission
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Optimise drifts and kick, using optimised solenoid settings 
13 cells, longitudinal parameters are computed up to the end of the cell 13 only  
(assuming re-accelera9on will be done separately a<er the last cooling cell)

✓ Transverse emittance = 32 micron, Longitudinal emittance = 77 mm (B(z)=40 T) 
✓ Achievable only if using optimised RF settings to control longitudinal parameters 

Problem: Transmission (only ~29% after last cell)

ϵ⊥,simulated = 32.3μm
ϵ⊥,estimated = 24.5μm

ϵ⊥,simulated = 32.3μm
ϵ⊥,estimated = 24.5μm

Applied op(miza(on algorithms / ML-techniques: 
- BOBYQA:  Bound Op(miza(on BY Quadra(c Approxima(on, deriva(ve-free, solves “trust-region” subproblems 
- Bayesian Op(miza(on (converges much faster compared to e.g. differen(al evolu(on algorithm), uncertainty es(ma(on 
- Surrogate model to obtain ini(al guesses for op(misers => produced significant improvement for op(cs op(misa(on 
Note: choice of algorithms strongly depends on number of free parameters and robustness of tracking results
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Optimise drifts and kicks, using optimised solenoid settings 
14 cells, longitudinal parameters are computed up to the end of the cell 13 only (assuming re-accelera9on will be done separately a<er the last cooling cell)

ϵ⊥,simulated = 32.3μm
ϵ⊥,estimated = 24.5μm

RF parameters op,mised towards longitudinal emi4ance reduc,on and transmission        
maximisa,on (incl. decays and 1-2% cuts on bunch distribu7on)

Corresponding absorber and momenta requirements for transverse cooling  
( assuming 40 T max B(z), analy,cally es,mated)
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Optimise drifts and kicks, using optimised solenoid settings 
14 cells, longitudinal parameters are computed up to the end of the cell 13 only (assuming re-accelera9on will be done separately a<er the last cooling cell)

ϵ⊥,simulated = 32.3μm
ϵ⊥,estimated = 24.5μm

RF parameters op,mised towards longitudinal emi4ance reduc,on and transmission        
maximisa,on (incl. decays and 1-2% cuts on bunch distribu7on)

Corresponding absorber and momenta requirements for transverse cooling  
( assuming 40 T max B(z), analy,cally es,mated)

✓ Transverse emittance = 32 micron, Longitudinal emittance = 77 mm 
✓ Problem: Transmission (only ~29% after last cell)  

=> more acceleration, higher momenta at the start of last cells?
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Next steps
• Translate optimised simplified RF-model into full RF-track simulations 

• Using optimised solenoid fields 
• RF SW-structures with parameters according to computed optimal kicks for bunch rotation and acceleration,  

and resulting bunch lengths . 

• Re-optimise starting momenta and absorber thickness at every cell using higher energies to improve the transmission?  
• COOL23: 2 abstracts to submit 

- “Final Cooling Design for Muon Collider: challenges and progress” 
- “Machine Learning assisting muon final cooling modelling and optimisation” 

σt = λ /20

G = f

- StarBng from cell 4:  
given the computed gradients,   
total acceleraBon length < length of one cavity 
=> find other scaling?  
=> reduce gradients for long caviBes? 

- Next: opBmize RF phases and frequencies (esBmated 
frequencies to be used as lower bounds)


