Design Framework \& Concepts for 6D Cooling After Rectilinear Yield (6D CARY)

Outline

> Purpose
$>$ Preliminaries: Figure of Merit for σ_{E}
> Motivation/Inspiration of Design
$>$ Evolution of Design
> Asymptotic Performance Reach Using an Initial Attempt at Coping with Rectilinear Transverse Emittance
> Updated Methods to Cope with Rectilinear Transverse Emittance
$>$ Summary

Purpose

The intent is to present a design framework and concepts for additional 6D cooling beyond that achieved by the Rectilinear channel and have this archived for potential further development if deemed worth pursuing and funding becomes available.

Preliminaries: Figure of Merit for σ_{E}

Evaluation of the energy spread will be based on an energy spread evolution formula in Dave Neuffer's 1999 CERN yellow paper (CERN 99-15, 16 Decemeber 1999):

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{E}}^{2}}{\mathrm{ds}}=-2 \frac{\mathrm{~g}_{\mathrm{L}}(\mathrm{dE} / \mathrm{ds})}{\beta^{2} \mathrm{E}} \sigma_{\mathrm{E}}^{2}+4 \pi\left(\mathrm{r}_{\mathrm{e}} \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}\right)^{2} \mathrm{n}_{\mathrm{e}} \gamma^{2}\left(1-\frac{\beta^{2}}{2}\right) . \tag{4.9}
\end{equation*}
$$

- The longitudinal partition number g_{L} increases as $\eta \rho^{\prime} / \rho_{0}$, where η is the dispersion and ρ^{\prime} / ρ_{0} is the relative change in density with respect to transverse position. All configurations will use wedges with uniform density, so $g_{L}=\eta$.
- r_{e} is the classical electron radius $2.82 \times 10^{-15} \mathrm{~m}$.
- n_{e} is the electron density in the material (LiH).
- $\mathrm{n}_{\mathrm{e}}=\mathrm{N}_{\mathrm{A}} \rho \mathrm{Z} / \mathrm{A}=\left(6.02 \times 10^{23} / \mathrm{g}\right) \times\left(8.2 \times 10^{8} \mathrm{~g} / \mathrm{m}^{3}\right) \times(0.50321)=2.48 \times 10^{29} / \mathrm{m}^{3}$
$>$ Setting the above derivative to zero provides the energy spread equilibrium.

$$
\left.\sigma_{E}\right|_{E q}=\beta \gamma\left(r_{e} m_{e} c^{2}\right) \sqrt{\frac{2 \pi n_{e}\left(1-\frac{\beta^{2}}{2}\right) E}{\eta\left(\frac{d E}{d s}\right)}}
$$

Preliminaries: Figure of Merit for σ_{E}

Exact use of $\sigma_{\text {E|Eq }}$ wasn't clear. Is it the standard deviation or full width?

$$
\left.\sigma_{E}\right|_{E q}=\beta \gamma\left(r_{e} m_{e} c^{2}\right) \sqrt{\frac{2 \pi n_{e}\left(1-\frac{\beta^{2}}{2}\right) E}{\eta\left(\frac{d E}{d s}\right)}}
$$

Looked at last stage of Rectilinear output for guidance/benchmark and apparently the full width seems to fit, so will use it this way.

FIG. 8. Snapshots of a sample of the longitudinal phase space at various positions along our proposed 6D rectilinear cooling channel: (a) at the entrance of the cooling channel before recombination; (b) at the entrance of the bunch merger; (c) at the exit of the bunch merger [26]; (d) at the end of the 6D cooling channel.

$$
\begin{aligned}
\Delta \mathrm{P}=\sim 175-225 \mathrm{MeV} / \mathrm{c} \triangle \Delta \mathrm{E} & =\sim 204.4-\left.248.6 \mathrm{MeV} \quad \sigma_{E}\right|_{E q}(\eta=6 \mathrm{~mm})=39.9 \mathrm{MeV} \\
& =44.2 \mathrm{MeV}
\end{aligned}
$$

Assuming the last stage of the Rectilinear channel strives for the equilibrium energy spread, we'll assume the calculated $\sigma_{\mathrm{E} \mid \mathrm{Eq}}$ is reasonable for the full width in our evaluations. Even if not exactly correct, it at least provides a consistent measure.

Motivation/Inspiration of Design

As noted above, better longitudinal cooling can be achieved with larger dispersion and the initial design attempts to exploit this.

$$
\left.\sigma_{E}\right|_{E q}=\beta \gamma\left(r_{e} m_{e} c^{2}\right) \sqrt{\frac{2 \pi n_{e}\left(1-\frac{\beta^{2}}{2}\right) E}{\eta\left(\frac{d E}{d s}\right)}}
$$

An old study (MOPP071 EPAC08) for capturing pions/muons off a target for a potential Mu2e upgrade utilized a Dipole/Wedge scheme that involved very large dispersion (1.15 m) and monochromized the beam in a single pass.

Evolution of the design discovers another dimension in longitudinal emittance reduction...or at least containment.

Motivation of Design (MOPP071 EPAC08)

Motivation of Design (MOPP071 EPAC08)

Design I: Based on EPAC08

Design II: 90° Bend to Create Space for Components

Design III: Isochronicity

Design III: Isochronicity

Design III: Isochronicity

Simple Geometric Argument for Wedge Configuration for Minimal Energy Spread

The configuration to the right should have minimal energy spread compared to the other two wedges due to expected smaller path differences between the 3 particle trajectories.

Timing Considerations for Wedge Configuration

$>$ Note that among the 3 configurations below, the left that introduces absorber earliest has timing for $\mathrm{P}_{\text {Mid }}$ closest to $\mathrm{P}_{\text {High }} \& \mathrm{P}_{\text {Low }}$.
$>$ If reduction of time spread becomes a higher priority than energy spread, a configuration as one to the left might be used.
$>$ Further time spread reduction might be realized by introducing the slowing absorber material earlier between the dipole exit and wedge region entry.
\Rightarrow Might even be desirable to have $P_{\text {Mid }}$ be later than $P_{\text {High }} \& P_{\text {Low }}$, since path length for $P_{\text {Mid }}$ will be shorter than those for $\mathrm{P}_{\text {High }}$ \& $\mathrm{P}_{\text {Low }}$ from focusing quad to defocusing quad.

> For now, energy spread reduction will be the priority and the configuration to the right above will be used.

Design III: Isochronicity

$>$ Last Stage Ends at RF

Impact of Upstream Transverse Emittance

Angular span from dipole entry to end of wedge: $\theta x=2 x \tan -1((W / 2) / L)=4.86$ degrees

	Rectilinear [A]	Rectilinear [B]
$\varepsilon_{\mathrm{T}, \mathrm{N}}(\mathrm{mm})$	0.28	0.3
$\varepsilon_{\mathrm{L}, \mathrm{N}}(\mathrm{mm})$	1.57	1.58
$\Delta \theta_{\mathrm{x}}=2 \tan ^{-1}\left[\left(\Delta \mathrm{P}_{\mathrm{x}} / 2\right) / \mathrm{P}_{\mathrm{z}}\right](\mathrm{deg})$	33.40	22.62
$\mathrm{Pz}(\mathrm{MeV} / \mathrm{c})$	200	200
$\Delta \operatorname{Px}(\mathrm{MeV} / \mathrm{c})$	120	80

[A] Stratakis \& Palmer PRLSTAB 18, 031003 (2015)
[B] Zhu Ruihu, Muon Cooling Working Group Meeting, 2023.03.23

Impact of Upstream Transverse Emittance

Angular span from dipole entry to end of wedge:
$\theta x=2 x \tan -1((W / 2) / L)=4.86$ degrees

	Rectilinear $[A]$	Rectilinear $[B]$
$\varepsilon_{T, N}(\mathrm{~mm})$	0.28	0.3
$\varepsilon_{L, N}(\mathrm{~mm})$	1.57	1.58
$\Delta \theta_{\mathrm{x}}=2 \tan ^{-1}\left[\left(\Delta \mathrm{P}_{\mathrm{x}} / 2\right) / \mathrm{P}_{\mathrm{Z}}\right](\mathrm{deg})$	33.40	22.62
$\mathrm{PZ}(\mathrm{MeV} / \mathrm{c})$	200	200
$\Delta \mathrm{Px}(\mathrm{MeV} / \mathrm{c})$	120	80

[A] Stratakis \& Palmer PRLSTAB 18, 031003 (2015)
[B] Zhu Ruihu, Muon Cooling Working Group Meeting, 2023.03.23

At end of Rectilinear, beam spread at absorber is 10.7 times the size of the sensitive area for cooling between $\mathrm{P}=175$ to $225 \mathrm{MeV} / \mathrm{c}$.

Dispersion $\eta(\mathrm{m})$	0.0060
$\Delta x_{\text {Abs }}=\eta \frac{\Delta p}{p_{0}}(\mathrm{~m})$	0.0015
$\Delta \mathrm{x}$, beam from Fig 9d (m)	0.0160
$\Delta \mathrm{x}$,beam $/ \Delta \mathrm{x}_{\text {Abs }}$	10.6667

So, cooling a beam that spans beyond the designed sensitive region appears to work!

The following slides will present:

1. Schemes (not necessarily advocated in the final result) that attempt to address the effect of the large transverse spread of the beam from the Rectilinear channel by introducing absorber material above and below the designed wedge region.
2. Calculations of such schemes using configurations that are not able to directly address the large transverse spread out of the Rectilinear channel, but does provide asymptotic results, assuming that the transverse spread can be managed in the earlier stages.
3. Updated Methods to Cope with Rectilinear Transverse Emittance
> Item 3 provides methods to accommodate the Rectilinear channel output, while items $1 \& 2$ provide the asymptotic reach of this post-Rectilinear 6D cooling system.

Modified Enlarged Wedge Geometry

$>$ Strategy to handle the large transverse spread out of the Rectilinear channel output is to transversely extend the reach of the wedge absorber material, while maintaining the designed energy loss for muons with zero angular spread.
$>$ Design is driven by desire to address the expected non-trivial amount of large angle muons with $P>P_{\text {Low, Plus }}$ that travel below wedge. If no absorber exists below the wedge, these particles go unimpeded and would likely compromise the cooling performance significantly.
$>$ Note that large angle muons with $\mathrm{P}>\mathrm{P}_{\text {Low, Plus }}$ that travel below wedge will traverse more material due to the large angles, helping it migrate to desired $\mathrm{P}_{\text {Low, }}$ while unfortunately large angle muons with $\mathrm{P}<\mathrm{P}_{\text {High, Plus }}$ that travel above the wedge will loose more energy than desired, migrating away from desired $P_{\text {Low. }}$.
Question is how much material to add after the green wedge to set value of $P_{\text {Low, Plus }}$. Too much material lengthens the absorber which forces it to widen as well in order to maintain the angular acceptance and a wider absorber leads to a wider focusing quad. So, desire least amount of material that can help mitigate large number of muons with $P>P_{\text {Low, Plus }}$ and large angles.

Modified Enlarged Wedge Geometry

For now, we choose 5.35 cm of LiH which will cool $210 \mathrm{MeV} / \mathrm{c}$ muons down to $200 \mathrm{MeV} / \mathrm{c}$. This can be optimized in later studies.

Momenta of Muons Above 200
$\mathrm{MeV} / \mathrm{c}$ vs. Additional LiH

Muon Energy Loss in LiH

Sample Stage 1 Configuration Options ($P_{\text {Low, Plus }}=210 \mathrm{MeV} / \mathrm{c}, \mathrm{P}_{\text {High, Plus }}=258 \mathrm{MeV} / \mathrm{c}$)

B (T)	R1 (m)	R2 (m)	$W_{\text {Wedge }}$ (m)	Dispersion (m)	$\left\lvert\, \begin{aligned} & \sigma_{\mathrm{E} \mid \mathrm{Eq}} \\ & (\mathrm{MeV}) \end{aligned}\right.$	Opening Angle from Dipole Entry to Wedge Exit $\left({ }^{\circ}\right)$	$\theta\left({ }^{\circ}\right)$	$\alpha\left({ }^{\circ}\right)$	Path Len to Wedge Exit (m) $210 \mathrm{MeV} / \mathrm{c}$	Path Len to Wedge Exit (m) $258 \mathrm{MeV} / \mathrm{c}$	Path Len to Wedge Exit (m) Avg	$\begin{aligned} & \Delta \mathrm{W}_{\text {HighOrLow }} \\ & (\mathrm{m})[\mathrm{A}] \end{aligned}$	$\mathrm{W}_{\text {Mod Wedge }}$ $\text { (m) }[\mathrm{B}]$
0.500	1.400	1.723	0.18629	0.9003	3.26	4.76	64.94	63.91	2.207	2.280	2.243	0.44866	1.08361
0.750	0.933	1.149	0.12822	0.6196	3.93	4.51	66.12	71.37	1.601	1.653	1.627	0.32536	0.77894
1.000	0.700	0.862	0.09908	0.4788	4.47	4.31	67.25	75.40	1.297	1.338	1.318	0.26355	0.62619
1.518	0.461	0.568	0.06904	0.3337	5.35	3.95	69.44	79.71	0.985	1.015	1.000	0.20000	0.46904
2.000	0.350	0.431	0.05493	0.2654	6.00	3.70	71.33	81.78	0.839	0.863	0.851	0.17024	0.39540

Note that the vertical spread is $2 \times 0.2 \mathrm{~m}=0.4 \mathrm{~m}$, while the horizontal is 0.469 m , which would define the quad aperture.
$\mathrm{A}: \Delta \mathrm{W}_{\text {Highorlow }}=\mathrm{L}_{\text {avg }}[(\Delta \mathrm{Px} / 2) / \mathrm{Pz}]$
$\Delta \mathrm{Px}=80 \mathrm{MeV} / \mathrm{c}$
B: $\mathrm{W}_{\text {Mod Wedge }}=\mathrm{W}_{\text {Wedge }}+2 \Delta \mathrm{~W}_{\text {HighorLow }}$
$\mathrm{Pz}=200 \mathrm{MeV} / \mathrm{c}$

Design IV: Isochronicity with Modified Wedge

First 10 Sequential Stages

Below are parameters and momenta/energy values for the first 10 stages designed sequentially where the output of a stage drives the design of the subsequent stage. Note that it'll take approximately a dozen stages to reduce the beam spread $\sigma_{\mathrm{E}, \text { out }}$ to midway between the initial value of 44.15 MeV from the Rectilinear channel and the initial equilibrium of 5.35 MeV in stage 1 .

Stage	PLow,In ($\mathrm{MeV} / \mathrm{c}$)	PHigh,In ($\mathrm{MeV} / \mathrm{c}$)	$B(T)$	R1 (m) PLow	$\begin{aligned} & \text { R2 (m) } \\ & \text { PHigh } \end{aligned}$	Dispersion $\eta(m)$	Arc Bend θ (deg)	Wedge Width (m)	Wedge D1 (m)	Wedge D2 (m)	Path Len To Wedge Exit (m) PLow	Path Len To Wedge Exit (m) PMid	Path Len To Wedge Exit (m) PHigh	$\sigma E, O u t$ (MeV)	$\sigma E \mid E q$ (MeV)	ELow, Out (MeV)	EHigh, Out (MeV)	$\Delta \mathrm{E}$ for RF [A] (MeV)	PLow, Out ($\mathrm{MeV} / \mathrm{c}$)	PHigh, Out ($\mathrm{MeV} / \mathrm{c}$)	oP,Out ($\mathrm{MeV} / \mathrm{c}$)
Rectilin	near					0.006								44.15	39.92	204.42	248.57		175.00	225.00	50.00
1	210.00	258.47	1.518	0.461	0.568	0.334	69.436	0.069	0.0535	0.3269	0.9853	1.0000	1.0147	41.92	5.35	205.23	247.16	30.66	175.94	223.43	47.49
2	210.00	256.06	1.467	0.477	0.582	0.340	69.068	0.067	0.0535	0.3129	0.9858	1.0000	1.0142	39.84	5.30	206.27	246.11	29.85	177.16	222.28	45.12
3	210.00	253.81	1.422	0.492	0.595	0.347	68.741	0.065	0.0535	0.2998	0.9862	1.0000	1.0138	37.89	5.25	207.25	245.14	28.81	178.29	221.20	42.91
4	210.00	251.70	1.381	0.507	0.607	0.352	68.453	0.064	0.0535	0.2876	0.9867	1.0000	1.0133	36.07	5.21	208.16	244.23	27.83	179.35	220.19	40.8
5	210.00	249.72	1.345	0.520	0.619	0.358	68.196	0.062	0.0535	0.2762	0.9871	1.0000	1.0129	34.36	5.17	209.02	243.37	26.92	180.34	219.24	38.90
6	210.00	247.86	1.312	0.534	0.630	0.363	67.964	0.060	0.0535	0.2655	0.9875	1.0000	1.0125	32.76	5.13	209.82	242.57	26.07	181.27	218.35	37.08
7	210.00	246.12	1.282	0.546	0.640	0.368	67.757	0.058	0.0535	0.2555	0.9879	1.0000	1.0121	31.25	5.09	210.57	241.82	25.27	182.14	217.52	35.38
8	210.00	244.48	1.255	0.558	0.649	0.373	67.569	0.057	0.0535	0.2461	0.9883	1.0000	1.0117	29.85	5.06	211.27	241.12	24.52	182.95	216.73	33.78
9	210.00	242.95	1.231	0.569	0.658	0.378	67.400	0.055	0.0535	0.2373	0.9887	1.0000	1.0113	28.52	5.03	211.93	240.46	23.81	183.72	216.00	32.28
10	210.00	241.50	1.209	0.579	0.666	0.382	67.250	0.053	0.0535	0.2291	0.9891	1.0000	1.0109	27.28	5.00	212.55	239.83	23.15	184.43	215.31	30.87

IMCC Muon Cooling Meeting
[A] $\Delta \mathrm{E}$ for energy loss in 4D absorber is not included.

Grouped Stages

To expedite investigation of viability of parameters and performance of subsequent stages, we assumed any particular stage could be reused until $\sigma_{\mathrm{E}, \mathrm{Out}}$ was reduced to midway between $\sigma_{\mathrm{E}, \text { nit }}$ and $\sigma_{\mathrm{E} \mid \mathrm{Eq}}$, which would define $\sigma_{\mathrm{E}, \text { nit }}$ for the subsequent stage. We'll refer to the reused stages as a stage group.

Potential Improvement with Smaller Transverse Emittance Downstream

As transverse emittance is reduced, the smaller angular beam spread will allow reach to larger dispersion via a longer distance from dipole entry to the wedge exit. To estimate the sensitivity of improvement, $\mathrm{L}_{\text {Mid }}$ is increased from 1 m to 2 m for stage groups ≥ 4.

Stage Group	PLow,In ($\mathrm{MeV} / \mathrm{c}$)	PHigh,In ($\mathrm{MeV} / \mathrm{c}$)	B (T)	R1 (m) PLow	R2 (m) PHigh
Rectilinear					
	1210.00	258.47	1.518	0.461	0.568
	2210.00	237.38	1.148	0.610	0.689
3	3210.00	226.49	1.003	0.698	0.753
4	4210.00	220.89	0.441	1.589	1.671
5	5210.00	217.23	0.430	1.629	1.685
6	6210.00	215.38	0.424	1.650	1.692
7	$7 \quad 210.00$	214.45	0.422	1.661	1.696
8	8210.00	213.98	0.423	1.655	1.686
9	9210.00	213.74	0.420	1.669	1.698
10	O 210.00	213.62	0.419	1.670	1.699

Path Path Len Len To To Path Len Wedge Wedge To Wedge

ELow, EHigh, O $\Delta \mathrm{E}$ for PLow, PHigh,
Arc Wedge

$$
0
$$

Dispersion (m)	Arc Bend θ (deg)	Wedge Width (m)	Wedge D1 (m)	Wedge D2 (m)	Path Len To Wedge Exit (m) PLow	Path Len To Wedge Exit (m) PMid	Path L To We Exit (m) PHigh
0.006							
0.334	69.436	0.0690	0.0535	0.3269	0.9853	1.0000	
0.394	66.844	0.0482	0.0535	0.2056	0.9902	1.0000	
0.429	65.850	0.0324	0.0535	0.1411	0.9935	1.0000	
0.941	65.015	0.0476	0.0535	0.1132	1.9906	2.0000	
0.958	65.050	0.0324	0.0535	0.0930	1.9936	2.0000	
0.967	65.072	0.0245	0.0535	0.0828	1.9952	2.0000	
0.971	65.084	0.0204	0.0535	0.0777	1.9960	2.0000	
0.971	65.263	0.0182	0.0535	0.0832	1.9964	2.0000	
0.975	65.095	0.0172	0.0535	0.0739	1.9966	2.0000	
0.975	65.096	0.0167	0.0535	0.0732	1.9967	2.0000	

Effect of $\mathrm{L}_{\text {Mid }}=\mathbf{2 m}$ for Stage Groups ≥ 4

[A] $\Delta \mathrm{E}$ for energy loss in 4D absorber is not included.

IMCC Muon Cooling Meeting

Potential Improvement with Thinner Absorber Downstream

As longitudinal emittance is reduced, the smaller momenta spread suggests lowering the raised $\mathrm{P}_{\text {Low }}$ starting point which means a thinner absorber (smaller D1) and a slight increase in length that determines isochronicity at start of D1. This increases slightly the wedge width \& dispersion. Below, D1 \approx D2 / 2 for stage groups ≥ 5. Improvement is incremental.

Stage Group	PLow,In ($\mathrm{MeV} / \mathrm{c}$)	PHigh,In ($\mathrm{MeV} / \mathrm{c}$)	$B(T)$	R1 (m) PLow	R2 (m) PHigh	Dispersion $\eta(m)$	Arc Bend θ (deg)	Wedge Width (m)	Wedge D1 (m)	Wedge D2 (m)	Path Len To Wedge Exit (m) PLow	Path Len To Wedge Exit (m) PMid	Path Len To Wedge Exit (m) PHigh	σE,Out (MeV)	(MeV)	ELow, Out (MeV)	EHigh, Out (MeV)	ΔE for RF [A] (MeV)	PLow, Out (MeV/c)	PHigh, Out (MeV/c)	$\sigma P, O u t$ ($\mathrm{MeV} / \mathrm{c}$)
Recti						0.00								44.	9.923	204.42	248.57		175.00	225.00	50.00
1	210.00	258.4	1.51	0.46	0.568	0.334	69.436	0.0690	0.0535	0.326	0.985	1.000	1.0147	24.752	5.354	213.82	238.57	30.66	185.89	213.90	28.01
2	210.00	237.3	1.14	0.61	0.689	0.39	66.84	0.048	0.0535	0.20	0.990	1.00	1.00	14.839	4.926	7	233.61	21.26	7	5	79
3	210.00	226.49	1.00	0.69	0.753	0.429	65.850	0.0324	0.0535	0.1411	0.9935	1.0000	1.0065	9.781	4.723	221.30	231.08	16.31	194.45	205.51	11.06
4	210.00	220.89	0.441	1.589	1.671	0.941	65.637	0.0476	0.0535	0.1132	1.9906	2.0000	2.0094	6.484	3.187	222.95	229.44	13.78	196.33	203.66	7.33
5	207.3	214	0.42	1.62	1.680	0.97	65.754	0.033	0.0391	0.0785	1.9	2.0000	2.0067	4.809	3.134	223.79	228.60	9.75	197.28	202.72	5.44
6	205.44	210.83	0.418	1.64	1.683	0.993	66.288	0.0257	0.0290	0.0580	1.9948	2.0000	2.0052	3.956	3.103	224.22	228.17	7.23	197.76	202.23	4.47
7	204.47	208.92	0.413	1.648	1.684	1.004	66.567	0.0216	0.0238	0.0477	1.9956	2.0000	2.0044	3.521	3.087	224.43	227.95	5.94	198.01	201.99	3.98
8	203.98	207.94	0.411	1.653	1.685	1.009	66.709	0.0194	0.0212	0.0424	1.9961	2.0000	2.0039	3.300	3.079	224.54	227.84	5.29	198.13	201.86	3.73
9	203.73	207.44	0.410	1.655	1.685	1.012	66.782	0.0183	0.0198	0.0397	1.9963	2.0000	2.0037	3.187	3.075	224.60	227.79	4.96	198.20	201.80	3.60
10	203.60	207.19	0.410	1.656	1.685	1.013	66.821	0.0177	0.0192	0.0384	1.9964	2.0000	2.0036	3.130	3.073	224.63	227.76	4.79	198.23	201.77	3.54

$>$ Dispersion is continuous.
$>$ Highest density of muons will be at the wedge.
> Muons above wedge encounter twice as much absorber than below it.
$>$ Overall $\sigma_{E \mid E q}$ reduction from Rectilinear is from 39.9 MeV to $\sim 3.1 \mathrm{MeV}$.

Effect of Thinner Absorber for Stage Groups ≥ 5

IMCC Muon Cooling Meeting
[A] $\Delta \mathrm{E}$ for energy
loss in 4D absorber is not included.

Comments on Modified Enlarged Wedge Geometry

Other configurations can be considered for the modified wedge absorber geometry.
$>$ In the spirit of the Rectilinear channel where the wedge extended beyond the designed muon momenta transverse spatial extent, the wedge likewise can be widened to accommodate effects of the large transverse angles as in the middle cartoon or even the entire transverse extent as in the right cartoon below.
$>$ Particle distributions of momenta and angles from simulations at the wedge exit could help guide the modified wedge design, keeping in mind the longer path lengths traversed by large angled muons.

Method to Derive Optimal Absorber Shape

1. With NO absorber in place, create distribution of muons hitting a virtual detector at location of wedge exit.
2. For each muon, extrapolate backwards to the point in location that would result in that particle to lose the amount of energy to end up with $P=200 \mathrm{MeV} / \mathrm{c}$ at the virtual detector.
3. A fit to these extrapolated points should yield the optimal front face 2D surface edge of the absorber.

- The fitting process could have additional weights to account for expected performance of downstream focusing elements. For example, expect co-linear particles to be better focused, so might consider adding a weight of $\cos (\theta)$ or $\cos ^{2}(\theta)$, where θ is the angle with respect to the reference direction.
$>$ Note that this method removes the need for the extra D1 (5.35 cm) of LiH absorber, shortening the system and incrementally helping address the large transverse emittance acceptance issue.

Updated Methods to Cope with Rectilinear Transverse Emittance

> Shorter Configurations
$>$ Contoured Dipole Edges for Focusing in Bend Plane
$>$ Opposing Dipoles of opposite polarities to focus in non-bend plane.
$>$ Possible relaxation of shorter (higher B) configurations to accommodate $\mathrm{B}=2 \mathrm{~T}$.

Shorter Configurations to Address Large Transverse Spread from Rectilinear Channel

Stage	$\begin{aligned} & P_{\text {Low, In }} \\ & (\mathrm{MeV} / \mathrm{c}) \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\text {High,ln }} \\ & (\mathrm{MeV} / \mathrm{c}) \end{aligned}$	B (T)	$\begin{aligned} & \text { R1 (m) } \\ & \mathrm{P}_{\text {Low }} \end{aligned}$	$\begin{aligned} & \text { R2 (m) } \\ & \mathrm{P}_{\mathrm{High}} \end{aligned}$	Dispersion $\eta(m)$		Wedge Width (m)	Wedge D1 (m)	Wedge D2 (m)	Path Len To Wedge Exit (m) $P_{\text {Low }}$	Path Len To Wedge Exit (m) $\mathrm{P}_{\text {Mid }}$	Path Len To Wedge Exit (m) $P_{\text {High }}$	$\sigma_{\mathrm{E}, \text { Out }}$ (MeV)	$\begin{aligned} & \sigma_{\mathrm{El\mid Eq}} \\ & (\mathrm{MeV}) \end{aligned}$	Absorber Width [A] (m)	Absorber Height [B] (m)
Rectilin	near					0.006								44.15	39.92		
	1210.00	258.47	1.518	0.461	0.568	0.334	69.436	0.0690	0.0535	0.3269	0.9853	1.0000	1.0147	41.92	5.35	0.4690	0.4000
	1210.00	258.47	2.545	0.275	0.339	0.219	73.339	0.0453	0.0535	0.3269	0.7398	0.7500	0.7602	42.69	6.61	0.3453	0.3000
	1210.00	258.47	3.422	0.205	0.252	0.174	76.325	0.0361	0.0535	0.3269	0.6453	0.6538	0.6623	42.99	7.41	0.2976	0.2615
	1210.00	258.47	7.338	0.095	0.117	0.101	87.289	0.0210	0.0535	0.3269	0.4942	0.5000	0.5058	43.49	9.71	0.2210	0.2000
	1200.00	248.84	1.391	0.479	0.596	0.369	71.720	0.0803	0.0000	0.2712	0.9823	1.0000	1.0177	42.34	5.09	0.4803	0.4000
	1200.00	248.84	2.211	0.301	0.375	0.251	75.073	0.0547	0.0000	0.2712	0.7373	0.7500	0.7627	42.92	6.17	0.3547	0.3000
	1200.00	248.84	4.254	0.157	0.195	0.152	82.191	0.0331	0.0000	0.2712	0.5339	0.5424	0.5509	43.41	7.93	0.2500	0.2170
	1200.00	248.84	5.211	0.128	0.159	0.131	- 85.107	0.0286	0.0000	0.2712	0.4924	0.5000	0.5076	43.52	8.53	0.2286	0.2000

$$
\begin{aligned}
& \text { A: } \mathrm{W}_{\text {Absorber }}=\mathrm{W}_{\text {Wedge }}+2 \mathrm{~L}_{\text {pmid }}[(\Delta \mathrm{Px} / 2) / \mathrm{Pz}] \\
& \mathrm{B}: \mathrm{H}_{\text {Absorber }}=2 \mathrm{~L}_{\text {Pmid }}[(\Delta \mathrm{Px} / 2) / \mathrm{Pz}] \\
& \quad \Delta \mathrm{Px}=80 \mathrm{MeV} / \mathrm{c} \\
& \mathrm{Pz}=200 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

	Low	Mid			High
P (MeV/c)	200.00	224.42	248.84		
Radius (m)	0.128	0.144	0.159		
Arc Bend Angle (${ }^{\circ}$)	85.107				
Wedge Width (m)	0.0286				
Dispersion (m)	0.1313				
Arc Length in Dipole (m)	0.1900	0.2132	0.2364		
Distance from Dipole Exit to Wedge Region Entry (m)	0.0311	0.0156	0.0000		
Distance in Vac in Wedge Region (m)	0.2712	0.1384	0.0000		
Distance in LiH in Wedge Region (m)	0.0000	0.1328	0.2712		
Length Dipole Entry to Wedge Exit (m)	0.4924	0.5000	0.5076		
Time in Arc (s)	$7.17 \mathrm{E}-10$	$7.86 \mathrm{E}-10$	$8.57 \mathrm{E}-10$		
Time from Dipole Exit to Wedge Region Entry (s)	$1.17 \mathrm{E}-10$	$5.74 \mathrm{E}-11$	$0.00 \mathrm{E}+00$		
Time in Vac in Wedge Region (s)	$1.02 \mathrm{E}-09$	$5.10 \mathrm{E}-10$	$0.00 \mathrm{E}+00$		
Time in LiH in Wedge Region (s)	$0.00 \mathrm{E}+00$	$4.95 \mathrm{E}-10$	$1.00 \mathrm{E}-09$		
Time Dipole Entry to Wedge Exit (s)	$1.86 \mathrm{E}-09$	$1.85 \mathrm{E}-09$	$1.86 \mathrm{E}-09$		

Contoured Dipole Edges for Focusing in Bend Plane

The edges of the dipole above and below the designed wedge region can be contoured to have particles with Pmax and Pmin of all input angles be parallel upon exit with particles of all momenta that enter the dipole on the reference path $(\phi=0)$.
For reference slope m_{0}, input angle ϕ, and radius R corresponding to the particle's momentum ($P=e B R$), the x and y coordinates along these edges (in the bending plane) are:

$$
\begin{aligned}
x & = \pm \frac{m_{0} R}{\sqrt{1+m_{0}^{2}}}+R \cos \varphi \\
y & = \pm \sqrt{R^{2}-(x-R \cos \varphi)^{2}}+R \sin \varphi \\
\pm \varphi_{\max } & = \pm \tan ^{-1}\left[\frac{\Delta P_{x} / 2}{P_{z}}\right] \\
& = \pm \tan ^{-1} \frac{40 \mathrm{MeV} / c}{200 \mathrm{MeV} / c}= \pm 11.3^{\circ}
\end{aligned}
$$

Shown at right is a contoured dipole for the configuration highlighted on the previous slide with $\mathrm{L}=0.5 \mathrm{~m}$ and $\mathrm{D} 1=0 \mathrm{~m}$.

Cary Y. Yoshikawa
IMCC Muon Cooling Meeting

Path Len Path Len Path Len To To Wedge To Wedge Wedge Exit R1 (m) R2 (m) Dispersion Arc Bend θ Width Wedge Wedge Exit (m) Exit (m) (m) (degrees) (m) D1 (m) D2 (m) $P_{\text {Low }}$ $P_{\text {Mid }} \quad P_{\text {High }}$$P_{\text {High }}$

Absorber Absorber Width [A] Height [B] (m) (m)$\sigma_{E, \text { Out }}$$(\mathrm{MeV})(\mathrm{MeV})$
$44.15 \quad 39.92$

$\begin{array}{lllllll}1 & 210.00 & 258.47 & 1.518 & 0.461 & 0.568 & 0.334\end{array}$| 0.334 | 69.436 | 0.0690 | 0.0535 | 0.3269 |
| :--- | :--- | :--- | :--- | :--- | :--- |0.98531.0000$\begin{array}{lll}1.0147 & 41.92 \quad 5.35\end{array}$

. 3269	0.9853	1.0000	1.0147	41.92	5.35	0.4690	0.4000
. 3269	0.7398	0.7500	0.7602	42.69	6.61	0.3453	0.3000
. 3269	0.6453	0.6538	0.6623	42.99	7.41	0.2976	0.2615
. 3269	0.4942	0.5000	0.5058	43.49	9.71	0.2210	0.2000
. 2712	0.9823	1.0000	1.0177	42.34	5.09	0.4803	0.4000
. 2712	0.7373	0.7500	0.7627	42.92	6.17	0.3547	0.3000
. 2712	0.5339	0.5424	0.5509	43.41	7.93	0.2500	0.2170
. 2712	0.4924	0.5000	0.5076	43.52	8.53	0.2286	0.2000

A: $\mathrm{W}_{\text {Absorber }}=\mathrm{W}_{\text {Wedge }}+2 \mathrm{~L}_{\text {Pmid }}[(\Delta \mathrm{Px} / 2) / \mathrm{Pz}] \quad \Delta \mathrm{Px}=80 \mathrm{MeV} / \mathrm{c}$
B: $\mathrm{H}_{\text {Absorber }}=2 \mathrm{~L}_{\mathrm{Pmid}}[(\Delta \mathrm{Px} / 2) / \mathrm{Pz}]$
$\mathrm{Pz}=200 \mathrm{MeV} / \mathrm{c}$

Reduction in bending plane compared to straight drift:

Note that beam spread in nonbend plane becomes the larger!

Once an optimized absorber shape is derived from simulations described earlier, $L_{1, \text { Wedge Area,Vac }}$ and $L_{2, \text { Wedge Area,Vac }}$ can be determined and the isochronous condition can be reapplied using an updated formula:

$$
\left[\frac{R_{2}}{v_{2}}-\frac{R_{1}}{v_{1}}\right] \theta-\frac{\left(R_{2}-R_{1}\right)}{v_{1}} \sin \theta+\frac{L_{2, W e d g e A r e a, V a c}}{v_{2}}+t_{2, L i H}-\frac{L_{1, \text { WedgeArea,Vac }}}{v_{1}}-t_{1, L i H}=0
$$

The isochronous condition will yield a configuration (θ) that hopefully is not too different that becomes the basis for simulations to derive a re-optimized absorber shape. The simulations for the re-optimized absorber would involve a virtual detector located $D(27.12 \mathrm{~cm}$ below) distance downstream from the dipole exit of a muon with $\max \phi$ and $P_{2, M a x}$. This re-optimized absorber will yield modified values for $L_{1, \text { Wedge Area,Vac }}$ and $L_{2, \text { Wedge Area,Vac }}$ that would be subject to reapplication of the isochronous condition. Hopefully, this iterative procedure converges quickly and ultimately will rest at the design tolerance for isochronicity out of the absorber.

Addressing Vertical Spread

To address the vertical spread of the beam, edges of the dipole parallel to the enveloping particle trajectories are contoured to accommodate coils that provide the focusing B fields. Below shows contours for $2 \phi_{\max }$, but this tolerance can be tightened (say to $1.5 \phi_{\max }$) if needed to provide desired B fields.

$\pm \varphi_{\max }= \pm \tan ^{-1}\left[\frac{\left(\Delta P_{x, y}\right) / 2}{P_{z}}\right]= \pm \tan ^{-1}\left[\frac{\left(80^{\frac{M e V}{c}}\right) / 2}{200 \frac{M e V}{c}}\right]= \pm 11.3^{\mathbf{x}(\mathrm{m})}$
$5 / 25 / 2023$

Addressing Vertical Spread

Coils of opposing polarity are added transverse to the dipole field, creating a B field in the radial direction that varies with the vertical position, being zero in the mid-plane. To estimate the effect of the two opposing coils, we assume a linear gradient away from the mid-plane and that appropriate placement of the coils might maintain sufficient gradient throughout the active volume.
\Rightarrow A gradient of $-40.75 \mathrm{~T} / \mathrm{m}$ provides $\mathrm{B}_{\mathrm{r}}=-0.986 \mathrm{~T}$ at $\mathrm{y}=2.4 \mathrm{~cm}$ and is able to rotate a muon with $P_{y}=40 \mathrm{MeV} / \mathrm{c}$ at dipole entry to be parallel with the reference upon exit.

Revisit Shorter Configurations to Address Large Transverse Spread from Rectilinear Channel with $B=2 T$

Contoured Dipole Edges for Particles with $P_{\max } \& P_{\min }$ of All Input Angles to be Parallel at Exit with Particles of All Momenta Entering Dipole on Reference Path

The edges of the dipole above and below the designed wedge region can be contoured to have particles with Pmax and Pmin of all input angles be parallel upon exit with particles of all momenta that enter the dipole on the reference path ($\phi=0$).
For reference slope m_{0}, input angle ϕ, and radius R corresponding to the particle's momentum ($P=e B R$), the x and y coordinates along these edges are:

$$
\begin{aligned}
x & = \pm \frac{m_{0} R}{\sqrt{1+m_{0}^{2}}}+R \cos \varphi \\
y & = \pm \sqrt{R^{2}-(x-R \cos \varphi)^{2}}+R \sin \varphi \\
\pm \varphi_{\max } & = \pm \tan ^{-1}\left[\frac{\Delta P_{x} / 2}{P_{z}}\right] \\
& = \pm \tan ^{-1} \frac{40 \mathrm{MeV} / c}{200 \mathrm{MeV} / c}= \pm 11.3^{\circ}
\end{aligned}
$$

Shown at right is a contoured dipole for the configuration highlighted on the previous slide with $\mathrm{B}=2 \mathrm{~T}$ and $\mathrm{L}=0.795 \mathrm{~m}$.

Addressing Vertical Spread

\Rightarrow A gradient of $-7.91 \mathrm{~T} / \mathrm{m}$ provides $\mathrm{B}_{\mathrm{r}}=-0.433 \mathrm{~T}$ at $\mathrm{y}=5.5 \mathrm{~cm}$ and is able to rotate a muon with $P_{y}=40 \mathrm{MeV} / \mathrm{c}$ at dipole entry to be parallel with the reference upon exit.
$>A$ muon entering the dipole at $y=1 \mathrm{~cm}$ with $\mathrm{Py}=0$ \& $\mathrm{Pz}=224.42 \mathrm{MeV} / \mathrm{c}$ experiences $\mathrm{B}_{\mathrm{r}}=-0.079 \mathrm{~T}$ at entry and exits the dipole at $y=\sim 0(5.6 \mathrm{E}-6 \mathrm{~m})$ with $\mathrm{Py}=-7.31 \mathrm{MeV} / \mathrm{c} \& \mathrm{Pz}=224.30 \mathrm{MeV} / \mathrm{c}$, resulting in $\theta_{\text {out }}=-1.87^{\circ}$.

Gradient tuned to achieve $\theta_{\text {Out }}=0$ at exit.

Addressing Vertical Spread

$>$ A gradient of $-7.91 \mathrm{~T} / \mathrm{m}$ provides $\mathrm{B}_{\mathrm{r}}=-0.433 \mathrm{~T}$ at $\mathrm{y}=5.5 \mathrm{~cm}$ and is able to rotate a muon with $P_{y}=40 \mathrm{MeV} / \mathrm{c}$ at dipole entry to be parallel with the reference upon exit.
$>A$ muon entering the dipole at $y=1 \mathrm{~cm}$ with $\mathrm{Py}=0$ \& $\mathrm{Pz}=224.42 \mathrm{MeV} / \mathrm{c}$ experiences $\mathrm{B}_{\mathrm{r}}=-0.079 \mathrm{~T}$ at entry and exits the dipole at $\mathrm{y}={ }^{\sim} 0(5.6 \mathrm{E}-6 \mathrm{~m})$ with $\mathrm{Py}=-7.31 \mathrm{MeV} / \mathrm{c} \& \mathrm{Pz}=224.30 \mathrm{MeV} / \mathrm{c}$, resulting in $\theta_{\text {out }}=-1.87^{\circ}$.

Addressing Vertical Spread

Biot-Savart calculations were performed on a simplified geometry using straight segments instead of the curved to estimate what may be possible.

It may be best to have the distance between coils at inner and outer radii be constant along z as much as possible.

Addressing Vertical Spread

B_{x} contribution from vertical current segments at the entrance and exit of dipole is less than 0.6% of that from current segments in the dipole parallel to the beam and have been ignored in the calculations for the current.

Addressing Vertical Spread
Current density of $220 \mathrm{~A} / \mathrm{mm}^{2}$ from Rectilinear cell B8 in presentation by Siara Fabbri \& Jonathan Pavan at the 5/15/23 IMCC Accelerator Design Meeting.
B_{x} contribution from vertical current segments at the entrance and exit of dipole is less than 0.6% of that from current segments in the dipole parallel to the beam and have been ignored in the calculations for the current.

B_{x} contribution from vertical current segments at the entrance and exit of dipole is $\sim 3 \%$ of that from current segments in the dipole parallel to the beam and have been ignored in the calculations for the current.

Addressing Vertical Spread

B_{x} contribution from vertical current segments at the entrance and exit of dipole is $\sim 3 \%$ of that from current segments in the dipole parallel to the beam and have been ignored in the calculations for the current.

Addressing Vertical Spread

is

Addressing Vertical Spread

The configuration with the coils at the edges ($\mathrm{w}=201 \mathrm{~mm}$) provides a more linear gradient and suffers less fall off at higher y values, but requires more current. However, this geometry allows more space to achieve the desired current.

Stage 1 Comparison Between Configurations with $L=0.5 \mathrm{~m}$ vs. $\mathrm{B}=2 \mathrm{~T}$

$\begin{aligned} & P_{\text {Low,ln }} \\ & (\mathrm{MeV} / \mathrm{c}) \end{aligned}$	$\begin{aligned} & P_{\text {High,ln }} \\ & (\mathrm{MeV} / \mathrm{c}) \end{aligned}$	B (T)	$\begin{aligned} & \text { R1 (m) } \\ & \mathrm{P}_{\text {Low }} \end{aligned}$	$\begin{aligned} & \text { R2 (m) } \\ & \mathrm{P}_{\mathrm{High}} \end{aligned}$	Dispersion $\eta(m)$	Arc Bend θ (deg)	Wedge Width (m)	Wedge D1 (m)	Wedge D2 (m)	Path Len To Wedge Exit (m) $P_{\text {Low }}$	Path Len To Wedge Exit (m) $P_{\text {Mid }}$	Path Len To Wedge Exit (m) $P_{\text {High }}$	Updated Absorber Width (m)	Updated Absorber Height (m)
200.00	248.84	2.00	0.333	0.415	0.272	74.243	0.0593	0.0000	0.2712	0.7815	0.7950	0.8086	0.2009	0.1097
200.00	248.84	5.21	0.128	0.159	0.131	85.107	0.0286	0.0000	0.2712	0.4924	0.5000	0.5076	0.0847	0.0484

Summary

A design framework and concepts for 6D cooling beyond that of the Rectilinear channel have been presented that address emittances in each dimension.
$>$ To minimize the energy spread σ_{E}, large dispersion is exploited to minimize its equilibrium:

$$
\left.\sigma_{E}\right|_{E q}=\beta \gamma\left(r_{e} m_{e} c^{2}\right) \sqrt{\frac{2 \pi n_{e}\left(1-\frac{\beta^{2}}{2}\right) E}{\eta\left(\frac{d E}{d s}\right)}}
$$

> To minimize the time spread, the Dipole and Wedge Absorber operate isochronously to the end of the absorber.
$>$ To mitigate large transverse spread of the beam out of the Rectilinear channel in the bending plane, edges of the dipole are contoured to focus muons with $P_{\max }$ and $P_{\text {min }}$ of all input angles to be focused parallel upon dipole exit with muons of all momenta that enter the dipole on the reference path.
$>$ Transverse beam spread is reduced compared to free drift.
$>$ Enhanced co-linear beam allows for better focusing downstream.
$>$ To mitigate large transverse spread in the non-bending plane, paired dipoles of opposite polarities create magnetic gradient fields that reduce the vertical spread of the beam.
$>$ An iterative procedure to determine the absorber shape and isochronous configuration (θ bend of reference in dipole) optimizes for overall 6D cooling.

Summary

$>$ Potential reduction of σ_{E} is estimated to be approximately by a factor of 10 , but will be dependent on amount of transverse cooling yet to be estimated.

- $\sigma_{\mathrm{E} \mid \mathrm{Eq}}$ (Rectilinear) $=39.9 \mathrm{MeV}$ to $\sigma_{\mathrm{E} \mid \mathrm{Eq}}=\sim 3.1 \mathrm{MeV}$?
$>$ Can the reduction in $\sigma_{\mathrm{E} \mid \mathrm{Eq}}$ be useful to analyze the Higgs mass width (line shape) in the s-channel? Probably not sensitive to contribution of an individual particle, but maybe to addition or absence of a group of particles? Ask an HEP theorist?
- In the 1990's, the line-shape of Z from LEP gave $N_{v}=2.991 \pm 0.016$, providing a good argument that the top quark was the last quark to be discovered (or observed).

Backup

Overview: Input Parameters and Geometry 1/2

Minternational
MuON Collider Collaboration

Snippets of Transverse Cooling Formulae from Dave Neuffer's CERN yellow book "CERN 99-12"

The differential equation for rms transverse cooling is [1]-[5]:

$$
\begin{equation*}
\frac{\mathrm{d} \epsilon_{\mathrm{N}}}{\mathrm{ds}}=-\frac{1}{\beta^{2} \mathrm{E}} \frac{\mathrm{dE}}{\mathrm{ds}} \epsilon_{\mathrm{N}}+\frac{\beta \gamma \beta_{\perp}}{2} \frac{\mathrm{~d}\left\langle\theta_{\mathrm{rms}}^{2}\right\rangle}{\mathrm{ds}}=-\frac{1}{\beta^{2} \mathrm{E}} \frac{\mathrm{dE}}{\mathrm{ds}} \epsilon_{\mathrm{N}}+\frac{\beta_{\perp} \mathrm{E}_{\mathrm{s}}^{2}}{2 \beta^{3} \mathrm{~m}_{\mu} \mathrm{c}^{2} \mathrm{~L}_{\mathrm{R}} \mathrm{E}} \tag{4.1}
\end{equation*}
$$

where the first term is the energy-loss cooling effect and the second is the multiple scattering heating term. Here ϵ_{N} is the normalized emittance, E is the beam energy, $\beta=\mathrm{v} / \mathrm{c}$ and γ are the usual kinematic factors, $\mathrm{dE} / \mathrm{ds}$ is the energy loss rate, θ_{rms} is the rms multiple scattering angle, L_{R} is the material radiation length, β_{\perp} is the betatron function, and E_{s} is the characteristic scattering energy $(\sim 13.6 \mathrm{MeV})$ [6]. [The normalized emittance is related to the geometric emittance ϵ_{\perp} by $\epsilon_{\mathrm{N}}=\epsilon_{\perp} /(\beta \gamma)$, and the beam size is given by $\sigma_{\mathrm{x}}=\left(\epsilon_{\perp} \beta_{\perp}\right)^{1 / 2}$.]

4.3 Cooling considerations

Some general considerations on the conditions for cooling, and the required absorbers and beam transports, can be developed from Eqs. (4.1) to (4.9). From Eq. (4.1) [with g_{x} from (Eq. 4.7)] we find an equilibrium emittance from setting the derivative to zero:

$$
\begin{equation*}
\epsilon_{\mathrm{N}, \mathrm{eq}}=\frac{\beta_{\perp} \mathrm{E}_{\mathrm{s}}^{2}}{2 \mathrm{~g}_{\mathrm{x}} \beta \mathrm{~m}_{\mu} \mathrm{c}^{2} \mathrm{~L}_{\mathrm{R}}(\mathrm{dE} / \mathrm{ds})} \tag{4.11}
\end{equation*}
$$

This represents the minimal obtainable emittance for a given material and focusing parameter β_{\perp}. From this expression, obtaining small emittance implies having small β_{\perp} (strong focusing), as well as large $L_{R} \mathrm{dE} / \mathrm{ds}$ (small multiple scattering) at the absorber. Table 4.1 displays parameters of typical cooling materials; large $L_{R} d E / d s$ implies light elements ($\mathrm{H}, \mathrm{Li}, \mathrm{Be}$, etc.) for the absorber material.

Beneficial Aspects of Design Concepts

$>$ Isochronous Dipole/Wedge Monochromator minimizes σ_{t}, which helps minimize the longitudinal emittance. Any increase in time spread of the beam occurs between the wedge exit and entry to RF, which is helpful for stable RF operation; and its growth is limited by the RF.

- From the CERN 99-12 yellow paper on " $\mu^{+}-\mu^{-}$Colliders" by Dave Neuffer:

The minimum longitudinal emittance depends on the product of bunch length and energy spread. Longitudinal focusing can be varied substantially, depending on the RF wavelength and gradient, as well as the transport isochronicity. However, from recent studies, cooling to bunch lengths of $\sim 1 \mathrm{~cm}$ seems readily achievable. A 3% energy spread at $\mathrm{E}_{\mu} \cong 250 \mathrm{MeV}$ ($\sigma_{\mathrm{E}} \cong 7.5 \mathrm{MeV}$) obtains a normalized longitudinal emittance of:

$$
\begin{equation*}
\epsilon_{\mathrm{L}, \mathrm{~N}}=\frac{\sigma_{\mathrm{ct}} \sigma_{\mathrm{E}}}{\mathrm{~m}_{\mu} \mathrm{c}^{2}} \cong 0.00 \theta 7 \mathrm{~m} \tag{4.14}
\end{equation*}
$$

> Comparison to solenoid based cooling:

- Avoids "canonical angular momenta build-up" that are due to the dispersed centers of Larmor orbits.
- In this large dispersion scheme, is the impact of space charge reduced due to larger transverse separation over much of the channel? Answer will depend on future 4D cooling studies in region at de-focusing quad to RF where beam is transversely small.
- A solenoid based cooling channel is needed for initial 6D cooling, since the baselined front-end capture system is solenoid based with benefit of capturing both signs.
- However, if a non-baseline horn-based capture system is considered, this 6D cooling system might also be contemplated after initial 4D transverse cooling.

Addressing Vertical Spread

$$
\begin{aligned}
& m=\frac{\sin \theta}{1-\cos \theta} \quad \frac{d y}{d x}=m_{i}=\frac{-1(x-R \cos \varphi)}{\sqrt{R^{2}-(x-R \cos \varphi)^{2}}} \quad x_{0, R L, H i P}= \pm \frac{m_{0} R_{H i}}{\sqrt{1+m_{0}^{2}}}+R_{H i} \cos \varphi \quad y_{0, R L, H i P}= \pm \sqrt{R_{H i}^{2}-\left(x_{0, R L, H i P}-R_{H i} \cos \varphi\right)^{2}}+R_{H i} \sin \varphi \\
& x_{0}=\frac{2 R(\cos \varphi+m \sin \varphi)}{1+m^{2}} \quad i=0 ; \mathrm{RL}, \mathrm{Hi} ; \mathrm{RL}, \mathrm{Lo} \\
& m_{R L, H i}=\frac{y-y_{0, F S, H i}}{x-x_{0, F S, H i}}=-0.1125 \quad x_{1, R L, H i P}=\frac{\mathbf{W}_{\text {total }}=8.75 \mathrm{~cm} \quad y_{1, R L, H i P}=y_{1, H i}+\frac{1}{m_{0}}\left(x_{1, R L}\right.}{m_{0}} \\
& y_{0}=m x_{0} \\
& \text { RL: RectiLinear } \\
& m_{0}=\frac{y_{1, t i}-y_{0, H i}}{x_{1, t i l}-x_{0, t i}}=\frac{y_{1, L o}-y_{0, L O}}{x_{1, L O}-x_{0, L O}}=00856 \\
& \text { Backup } \\
& x_{1, R L, H i}=\frac{y_{1, H i}-y_{0, R L, H i}+m_{R L, H i} x_{0, R L, H i}+\frac{x_{1, H i}}{m_{0}}}{m_{R L, H i}+\frac{1}{m_{0}}} \\
& y_{1, R L, H i}=y_{1, H i}+\frac{-1}{m_{0}}\left(x_{1, R L, H i}-x_{1, H i}\right)
\end{aligned}
$$

