MEDICAL PHYSICS AND QUALITY ASSURANCE IN PARTICLE THERAPY

Markus Stock

Head Medical Physics @ MedAustron Ion Therapy Centre

Prof Medical Physics in Particle Therapy

PRIVATUNIVERSITÄT FÜR GESUNDHEITSWISSENSCHAFTEN

OVERVIEW

- Introduction
 Differences to photons
- Particle Therapy Treatment Planning
 - DifferencesLET and RBEGuidelines
- Quality Assurance
 Beam Delivery and other equipment
- Conclusion

INTRODUCTION

BEAM PRODUCTION

p, C Synchrotron • Electron Linear Accelerator vs. 2.5 m .00 m

FUNDAMENTAL DIFFERENCE IN PENETRATION

THE PRINCIPLE OF PARTICLE THERAPY

6

Ion Therapy Center

TREATMENT PLANNING - COMPARISON

PHOTONS IMRT, VMAT, SBRT

Several fields, entry and exit dose

PROTONS

Fewer fields, reduced entry dose, no exit dose

DOSE DIFFERENTIAL

Photons minus Protons

TREATMENT PLANNING

PRESCRIBING AND REPORTING ICRU REPORT 78: DOSE QUANTITIES AND UNITS

• Absorbed (physical) dose:

- Symbol: *D* (total absorbed dose)
 d (aborbed dose per fx)
 Unit: **1 Gy**
- RBE-weighted absorbed dose:
 - Symbol: D_{RBE} (total RBE-weighted absorbed dose)
 d_{RBE} (RBE-weighted absorbed dose per fx)
 Unit: 1 Gy (RBE)

PRESCRIBING AND REPORTING ICRU REPORT 78: DOSE QUANTITIES AND UNITS

RBE-WEIGHTED ABSORBED DOSE (DRBE)

Relation between absorbed dose (D) and RBE-weighted absorbed dose (D_{RBE}) for protons:

$D_{\rm RBE} = 1.1 * D$

 \circ RBE is a dimensionless quantity. Therefore, both D and D_{RBE} share the unit Gy.

• To avoid confusion, it is recommended that the quantity

 $D_{\rm RBE}$ shall be expressed in Gy, followed by a space and the parenthetical descriptor '(RBE)'.

TWO RBE MODELS APPLIED CLINICALLY FOR C

	NIRS Clinical dose	Local effect model I (LEM I)	
Developed at	NIRS, Chiba, Japan	GSI, Darmstadt, Germany	
Developed for	Passive scattering beam delivery	Active scanning beam delivery	
1st patient treated	1994	1997	
Total no. Treated, Dec-19	26.000	8.000	
Purpose	Predict tumor response (acute effect)	Predict late side effects	
Cell type	HSG cell line	Chordoma cell line	
Ref. Radiation	(Photons) – indirectly via neutron experience	Photon	
Dose dependent RBE	No	Yes	

TWO RBE MODELS APPLIED CLINICALLY FOR C

NIRS CLINICAL DOSE VS. LEM I

In Japan: D_{NIRS} = 3.6 Gy (RBE)

Adapted from G Magro et al. PMB (2017)

TREATMENT PLANNING SOFTWARE CT CALIBRATION

•CT – Basis for dose calculation

- HUs depend on CT imaging protocol parameters
- HU (to MD) to WET: Conversion table need to be selected
- Imaging protocol specific calibration required

Example of HU to MD conversion table.

TREATMENT PLANNING SOFTWARE DOSE CALCULATION

TREATMENT PLANNING SOFTWARE DOSE CALCULATION ALGORITHMS

Pencil beam algorithm

Monte Carlo algorithm

✓ Fast, pragmatic

- Less sensitive to complex geometries
- Weaknesses in the presence of lateral heterogeneities
- Weaknesses in the modelling of nuclear halo
 - Attention: combination of larger air gaps, range shifter, lateral heterogeneities and oblique surfaces (H&N, lung)

- Time consuming
- ✓ High accuracy
- Semi-analytic implementations in commercial TPS
 - Pre-calculated beam model
 - Scoring starts e.g. at patient surface

MedAustron 🗳

Ion Therapy Center

ed

RANGE UNCERTAINTIES EFFECTS

RANGE UNCERTAINTIES SOURCES

Range uncertainty

Estimated sum of range uncertainties: ~3 - 5%
 Range uncertainties are likely to be systematic.

RANGE UNCERTAINTY

Remaining uncertainty due to:

- Artefacts
- Size dependent calibration
- o I-value
- SPR energy dependency

DirectSPR workflow

Ion Therapy Center

PLAN GENERATION STRATEGIES SFO VS MFO: ISODOSE DISTRIBUTIONS

ICRU Report 78

PLAN GENERATION STRATEGIES ROBUSTNESS EVALUATION

Scenario definition

PLAN GENERATION STRATEGIES ROBUST OPTIMIZATION & FIELD MATCHING / PATCHING

NON-ISOCENTRIC PROTON TREATMENTS

Non-isocentric proton treatments allow reducing proton penumbras!

Up to 30-40% penumbra reduction clinically!

Non-Isocenter – 50 cm closer to nozzle

Grevillot et al MedPhys 2020

PHYSICAL BEAM PROPERTIES SPOT SIZE / PENUMBRA

dosmetric impact of air gap reduction

DIFFERENCE BETWEEN PROTONS AND CARBONS

- Sharp penumbra maintained in depth
- Fragmentation tail
- High LET in last part of the path

RE-IRRADIATION SCENARIO

From 78 to 16 Gy RBE in 10 mm (> 6 Gy RBE per mm)

BIOLOGICAL IMPACT

chromatin fiber of

Photons

DNA double helix

CARBON IONS HIGH LET - ONLY WHERE YOU NEED IT?

Is CIRT dealing with high LET_d ?

NOVEL TREATMENT PLAN EVALUATION CONCEPT IN CIRT BASED ON HIGH-LET-DOSE

- High-LET-dose (hLD physical dose filtered on LET) quantity with potential to be additional evaluator in TP
- compared the hLD distribution in small and large tumors
- 10 patients having either <500 cm³ small (n=5) or \geq 500 cm³ as large tumor
- voxel-based evaluation of fraction of hLD to physical dose (hLDf) as a function of LET threshold was performed

30 keV/um appropriate threshold?

Ion Therapy Center

HIGH LET dose objective

LET_d distribution: what can be achieved?

Original – LET optimized

increase high LET dose – e.g the dose which has a LET beyond 40 keV/ μm should be more than 15 Gy

Ion Therapy Center

QUALITY ASSURANCE

QA EQUIPMENT/MEASURMENT DEVICES

For Beam-commissioning

Daily QA and Patient specific QA

Grevillot et al Med Phys. 2018 Jan;45(1):352-369

QA TABLE

FasterEasier

Prototype

ESTABLISH OPTIMIZATION OF QA

• Integrated system for both proton and carbon ions and generate trendlines

		Protons		Carbon ions	
Sphinx/Lynx region	QA parameter	Warning	Fail	Warning	Fail
Spot	Beam position (x,y)	1.5 mm	3 mm	1.5 mm	3 mm
	Beam size (x,y)	20%/2mm	30%/3mm	20%/2mm	40%/3mm
Bragg peak	Distal range	1 mm	2 mm	1 mm	2 mm
	Proximal range	1 mm	2 mm	1 mm	2 mm
	Width	1 mm	2 mm	1 mm	2 mm
	Fall-off	1 mm	2 mm	1 mm	2 mm
Central fiducial	Coincidence (x,y)	1.5 mm	3 mm		
Homogeneity	Homogeneity (1D)	3%	6%	3%	6%
Dose	Dose	2%	3%	2%	3%

Grevillot et al J Appl Clin Med Phys. 2023;24:e13896

35_

PPVS DAILY QA

PAS WHOLE WORKFLOW

IGRT accuracy

Daily check

With whole clinical workflow with intended wrong position

Check of markers on the cube with laserlines after registration and alignment

1 Position: T180°

- Tolerance level: 0.5 mm
- Action level 1: 1.0 mm
- Action level 2: 2.0 mm

OPERATION SCHEDULE

MedAustron

PILLARS OF BEAM TIME REDUCTION FOR QA

I. OPTIMIZATION (optimizing QA procedures with beam)

In use since March 2019

First worldwide routine use of Sphinx for carbon ions!

II. SUBSTITUTION (replacing QA procedures with beam by other means)

Reimagining patient-specific QA in proton and ion therapy facilities

26 May 2021 Sponsored by IBA Dosimetry

Medical physicists from the Austrian particle therapy centre MedAustron explain how – and why – they ve put an independent QA solution at the heart of their patient treatment programme

Proton PSQA – 87% in Dec 2021!

In use since February 2021

First worldwide clinical user of myQAion!

MOTIVATION TOWARDS INDEPENDENT DOSE CALCULATION

Rationale

o expQA (experimental QA) requires a lot of beam time!

○ expQA is performed in a homogeneous geometry – not representative of the patient!

• expQA is less sensitive in detecting treatment failures than IDC!

IMRT:

IDC was 12 times more sensitive at detecting treatment failures for IMRT than measurementbased PSQA. **Kry et al, Med Phys 2019**

Cyberknife:

similar findings in terms of sensitivity. Milder et al, J Appl Clin Med Phys, 2020

Protons:

"The implementation of a Monte Carlo (MC) algorithm in an IDC system was shown to illuminate dose computation issues from analytical algorithms implemented in TPS, which would not otherwise be detected using traditional measurement-based PSQA." **Jhonson et al, PloSOne 2019**

PSQA AT MEDAUSTRON

• PSQA set-up for horizontal beam

Horizontal beam

Entrance window

24 pinpoints block (placed at the treatment position in water)

Positionning via tracking camera

PROTON INDEPENDENT DOSE CALCULATION

• MyQA iON (IBA-Dosimetry)

Workflow

- TPS plan exported to MyQAiON
- Automatic IDC recalculation (Monte Carlo algorithm) & gamma evaluation in the background
- After 10min-1hr, IDC analysis review and IDC report generated to approve the treatment (web-browser-based technology)

3D Dose and Gamma verification of the TPS plan dose vs. independent MC plan dose on patient anatomy: 3D Gamma map (upper left), dose difference map (upper right), TPS plan dose (lower right), independent MC plan dose (lower left).

https://www.iba-dosimetry.com/product/myqa-ion-pt

PROTON INDEPENDENT DOSE CALCULATION

OPTIMIZATION OF MACHINE QA

Goal

REDUCING QA BEAM TIME

- INCREASING MP QA EFFICIENCY
- SUBSTITUTING BEAM QA BY OTHER MEANS

Boundaries **KEEP QUALITY** • NO SAFETY COMPROMISES

SUMMARY ON QA OPTIMIZATION

I. OPTIMIZATION

II. SUBSTITUTION

2019

Ultra-Fast Morning QA V1!

2021

• Ultra-Fast Morning QA V2! VBL QA speed-up (~10 min saved daily)

2023

• Ultra-Fast Morning QA V3! 1-energy dose QA Sphinx compact

2024

• Ultra-Fast Morning QA V4?

- IDC HBLp + <u>VBLp</u> (myQAiON)!
- IDEAL v1.0!

- IDC IR4 (myQAiON) preponed!
- myDEAL (HBLc + VBLc) alpha/beta?
- myDEAL (HBLc + VBLc) clinical?

2024+ : Log-file based QA ?

Affiliated with Karl Landsteiner University • JCI accredited

AREAS OF RESEARCH AT MEDAUSTRON

Clinical • Translational

RESEARCH AT MEDAUSTRON

CLINICAL RESEARCH INTERDISCIPLINARY ONCOLOGY RESEARCH TRANSLATIONAL & SCIENTIFIC RESEARCH

- Registry study
- Clinical studies

Creating more evidence in particle therapy

- Radiation Oncology
- Medical Physics

Teaching and research site of the Karl Landsteiner Private University

- Radiation Biology
- Med. Radiation Physics
- Accelerator Physics
- Particle Physics

In cooperation with Medical Universities Vienna & Graz, Technical University Vienna, HEPHY and FH Wr. Neustadt

INTERDISCIPLINARY ONCOLOGY RESEARCH

At the Department of General and Translational Oncology and Hematology at Karl Landsteiner University

PRIVATUNIVERSITÄT FÜR GESUNDHEITSWISSENSCHAFTEN

Prof. Markus Stock Division: Medical Physics

Development/optimization of medical physics methods including dosimetry and microdosimetry, MC simulations, Big Data, radiation plan optimization, software development and process management

Division: Radiation Oncology

Prof. Piero Fossati

Optimization of patient treatments with radiotherapy by applying the best standards of care and by performing clinical research and fostering the translation of preclinical research in a clinical setting

VACANCIES KARL LANDSTEINER UNIVERSITY OF HEALTH SCIENCES/MEDAUSTRON

- POSTDOCTORAL RESEARCH FELLOW (POST DOC) DIVISION "RADIATION ONCOLOGY" - UNIV. PROF. DR. PIERO FOSSATI MD
- 40 Hours (F/M/D)
- PHD Position DIVISION "RADIATION ONCOLOGY" UNIV. PROF. DR. PIERO FOSSATI MD
- 30 Hours (F/M/D)
- PHD Position DIVISION "MEDICAL PHYSICS" UNIV.-PROF. PD DI MARKUS STOCK, PHD
- 30 Hours (F/M/D)

- Workplace: MedAustron in Wiener Neustadt
- For more details contact: <u>markus.stock@medaustron.at</u>

TRANSLATIONAL RESEARCH RESEARCH STRATEGY 2022 - 2024

Applied Particle and Medical Physics

- Particle Imaging
- Instrumentation
- Dose Determination
- Microdosimetry
- Laboratory Course

Biophysics and Molecular Radiobiology

- Pre-clinical Animal Research
- Translational Radiobiology

Exploratory Studies and Emerging Topics

Technological Innovations and Clinical Implementation

- Clinical Implementation
 and Validation
- MRI in Particle Therapy
- Quality Assurance

Accelerator Physics

- Implementation of Helium Ions
- Extraction Mechanisms
- Novel Developments

SUMMARY

- Particle Therapy requires <u>additional specialization</u> of at least 6 months in medical physics (TP, special equipment, QA)
- Synchrotron possibility to take advantage of <u>Multi-Ion</u> <u>treatment</u> at one single site
- Effort in design and requirements definition to get <u>best of</u> <u>several particles</u>
- Many <u>optimization efforts</u> still ongoing (organizational, expansion of indications, dosimetric uncertainty, LET, beamline design, ...) and a lot of <u>research possibilities</u>

MANY THANKS FOR YOUR ATTENTION

MedAustron^D

Ion Therapy Center