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Reality

Use the inaccurate map as a guide, and then correct as you meet reality



  

Monte Carlo are a great guide
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However...

Neural Networks learning from MC:
Potential biases if learns as physics, 

details, correlations, etc, that are not physics !
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Plugging Neural Network to 
shore contours to learn anything



  

Just as if….

Plugging Neural Network to 
shore contours to learn anything

Not created with this intention!
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one learns from data using

Monte Carlo, Theory and “more”
as a guide (prior)
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Bayesian Inference

Alternative framework in which 
one learns from data using

Monte Carlo, Theory and “more”
as a guide (prior)

Disclaimer: This talk has nothing to do with any 
Frequentist vs. Bayesian (pointless) discussion

Instead: is about new tools and techniques that are
more suitable within a Bayesian framework



  

Summary

● Intro to Bayesian framework
● Graphical Models (the Feynman diagrams in statistics!)

Applications

● q- Vs, g-jets using softdrop Poisson shapes
● Four tops: correlating N

J
 and N

b
● Di-Higgs: correlation and full info extraction
● Posterior predictive ← (check your model with data) 
● LHC measuring techniques
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Bayes Theorem

P(θ|X) = P(X|θ) x P(θ)
prior       

   P(X)

Cleverness: the data is modeled to be sampled from a given PDF

   X : data 
θ : parameters of a PDF 

Hence, in Bayesian the “probability of a probability” is always buzzing around

By seeing the data

you improve your

knowledge of your PDF

Crucial info about Physics!

Statistics
is about

Modeling!

Statistics
is about

Modeling!
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Graphical Models

Each balloon is a random variable

For instance, model the
height of the persons in this room
as coming from 2 populations

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

Empty balloons are
sampled but not measured

Filled balloons are sampled and measured

Arrows indicate
dependence
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Graphical Models

For instance, model the
height of the persons in this room
as coming from 2 populations

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Each balloon is a random variable

Fraction of each 
population



  

Graphical Models

For instance, model the
height of the persons in this room
as coming from 2 populations

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

Z = 0 or 1 is drawn from a Bernoulli with parameter π.  
Then the height is drawn from either of 2 Normal, depending  on Z



  

Graphical Models

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

Model that data is sampled from this given PDF
and compute  P(X|θ) = P( X | μ

0 
σ

0
 μ

1 
σ

1
 π)



  

Graphical Models

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

Use Bayesian techniques to obtain P(θ|X)



  

Graphical Models

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

The posterior is a distribution
Over all latent variables of the model

Use Bayesian techniques to obtain P(θ|X)



  

Graphical Models

height
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μ
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σ
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N

π

Bernoulli

Normal

Few remarks

● Access the internal structure of the data
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Graphical Models

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

Few remarks

● Access the internal structure of the data
● Very complex data can be constructed from 

simple PDFs
● Identify many signals just by using some prior 

knowledge on their shape

This is all in signal region
(you don’t need control region!)



  

Graphical Models
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simple PDFs
● Identify many signals just by using some prior 

knowledge on their shape
● Parameters pursue maximization of the probability 

of the data
● Recent numerical techniques, such as Stochastic 

Variational Inference, or Black Box Inference, etc.
● If you can construct P(X|θ), you’re all set
● They are like Feynman Diagrams in Statistics



  

Graphical Models

height

μ
1

σ
1

μ
0

σ
0

Ζ = 0 or 1

N

π

Bernoulli

Normal

Few remarks

● Access the internal structure of the data
● Very complex data can be constructed from 

simple PDFs
● Identify many signals just by using some prior 

knowledge on their shape
● Parameters pursue maximization of the probability 

of the data
● Recent numerical techniques, such as Stochastic 

Variational Inference, or Black Box Inference, etc.
● If you can construct P(X|θ), you’re all set
● They are like Feynman Diagrams in Statistics

This happens
in collider physics
much more often

than what we think!

This happens
in collider physics
much more often

than what we think!
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quark- Vs gluon-jet

Applications:

Four tops

hh → bbγγ

hh →  bbbb

Shapes

Correlation

Shapes + correlation

Shapes (arbitrary) + 
many correlations

(In preparation)



quark- Vs gluon-jet

Applications:

2112.11352
E.Alvarez

M.Spannowsky
M.Szewc



  

Quark and gluon jet



  

Quark and gluon jet

SoftDrop (n
SD

) is 
an integer number 
for any jet.  At 
leading-log:

n
SD

 ~ Poisson(λ
q,g

)



  

Quark and gluon jet

SoftDrop (n
SD

) is 
an integer number 
for any jet.  At 
leading-log:

n
SD

 ~ Poisson(λ
q,g

)

Very well defined shape
each class!



  

Quark and gluon jet

Graphical Model
(or PDF)



  

Quark and gluon jet

Graphical Model
(or PDF)

Get n
SD

 from a 
simulated sample

using Pythia and/or Hergiw



  

Quark and gluon jet

Graphical Model
(or PDF)

Extract a posterior distribution over parameters
P(θ|X)

π

λ
q

λ
g

Tool: Bayesian Inference
EMCEE



  

Quark and gluon jet

Results:

Tool: stochastic Variational Inference



  

Quark and gluon jet

Results:

AUC ~ 0.8

Robust to simple detector effects

Smearing η and φ with a N(0,σ)

Accuracy
~ 0.71

Fully 
unsupervised



  

Quark and gluon jet

Results:

AUC ~ 0.8

Robust to simple detector effects

Smearing η and φ with a N(0,σ)

Accuracy
~ 0.71

Fully 
unsupervised

2212.10493
A.Butter
B.Dillon
T.Plehn
L.Vogel



Four tops

Applications:

2107.00668
E.Alvarez

B.Dillon
D.Faroughy
J.Kamenik
F.Lamagna

M.Szewc



  

Four tops
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j

j

j

j

Same Sign di-Lepton 
Channel
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b
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j

j

Very
challenging

to model

Very
challenging

to model

Also its backgrounds ttZ, ttW. ttH...

N
J
 , N

b
Conditionally Independent

(approx)
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Four tops

Dirichlet
Multinomial

Dirichlet
Multinomial

beta
Bernoulli



  

Four tops

Multinomials are too flexible,
but N

J
 - N

b 
correlation fixes the issue



  

Four tops

Multinomials are too flexible,
but N

J
 - N

b 
correlation fixes the issue

Signal (tttt) expects 
larger N

J
 and N

b 

Background (ttW) expects
smaller N

J
 and N

b 



  

Four tops

Results:



  

Four tops

Results:



  

Four tops

Each parameter approaches 
the true values with the 
posterior!

        Excerpt from 
        Corner-plot panels

true

prior

posterior

P
D

F
s

C
or

re
la

tio
ns

(500 fb-1)



  

Four tops

true

prior

posterior

P
D

F
s

C
or

re
la

tio
ns

Four tops has large discrepancies

between data and MC.

We considerably reduce MC impact



  

Four tops

true

prior

posterior

P
D

F
s

C
or

re
la

tio
ns

Four tops has large discrepancies

between data and MC.

We considerably reduce MC impact

● N
J
 N

b
 at the event-by-event level

● Use prior info
● Bayesian Inference techniques



Di-Higgs

Applications:

2210.07358 (hh → bbγγ)
E.Alvarez

+ in preparation (hh →bbbb)
A.Alvarez,L. Da Rold, 
S.Tanco, T.Tarutina,  

M.Szewc, A.Szynkman

Simplified for the sake of the algorithm



  

Di-Higgs: hh → bbγγ

b

b

γ

γ



  

Di-Higgs: hh → bbγγ

b

b

γ

γ

Independent
resonant 
decays!



  

Di-Higgs: hh → bbγγ

b

b

γ

γ

Independent
resonant 
decays!

Versus continuum exponentially decaying background

(plus semi-resonant, and others)



  

Di-Higgs: hh → bbγγ

Observables are (approx) 
independent once they are 
conditioned on the class

m
bb

 and m
γγ 

correlation 
in the data is the key!



  

Di-Higgs: hh → bbγγ



  

Di-Higgs: hh → bbγγ

PDF 
 
Signal (10%) + 
background

(MG5+Pythia+Delphes) 



  

Di-Higgs: hh → bbγγ

PDF

Given m
bb

 the probability for m
γγ

 depends 
on all parameters, including the fraction



  

Di-Higgs: hh → bbγγ

PDF 

Given m
bb

 the probability for m
γγ

 depends 
on all parameters, including fraction

The Bayesian algorithm
does all the ‘thinking’

and extracts a posterior
over all parameters



  

Di-Higgs: hh → bbγγ

Generate 1k events (MG5+Pythia+Delphes).
Use a biased prior to emulate an inaccurate Montecarlo



  

Di-Higgs: hh → bbγγ
           m

bb
                                          m

γγ
 

λ
b

λ
γ



  

Di-Higgs: hh → bbγγ
           m

bb
                                          m

γγ
 

λ
b

λ
γ

Correct inference for
signal fraction



  

Di-Higgs: hh → bbγγ

This is what we actually see

(here with labels)



  

Di-Higgs: hh → bbγγ

Hard to recognize 
something 



  

Di-Higgs: hh → bbγγ

Hard to recognize 
something 

Fraction inferred 



  

Di-Higgs: hh → bbγγ

What we see

With Labels

Posterior

     0%                             5%                           10%



  

Di-Higgs: hh → bbγγ

What we see

With Labels

Posterior

     0%                             5%                           10%

How we check consistency

in a re
al case scenario

 ?



  

Posterior predictive check

Probability of the data

→ Leave some held-
out data aside, and 
then check the 
probability of having 
sampled those data-
points with the 
inferred PDF
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→ Leave some held-
out data aside, and 
then check the 
probability of having 
sampled those data-
points with the 
inferred PDF



  

Posterior predictive check

1. Sample replicate data 
with the posterior

2. Compute the predictive 
score

Probability that probability of 
replicate data is less than the 
probability of held-out data 



  

Posterior predictive check

1. Sample replicate data 
with the posterior

2. Compute the predictive 
score

Probability that probability of 
replicate data is less than the 
probability of held-out data 

Score: 0.5 +/- 0.03  



  

ATLAS @ hh → bbγγ

ATLAS: first selects using m
bb

 and then 
uses m

γγ 
to make the analysis.

No correlation info.



  

CMS @ hh → bbγγ

They do take into account correlation at the event-by-event level!

They rely on MVA over the Montecarlo



h h → bbbb 

In preparation



  

Di-Higgs: hh → bbbb

Reviews in Physics (2020), 100039



  

Di-Higgs: hh → bbbb

Explore improvements to bbbb is important

Reviews in Physics (2020), 100039



  

Di-Higgs: hh → bbbb

b

b

Very difficult to simulate and model, 
ATLAS & CMS go data-driven.  
Large backgrounds.

+



  

Di-Higgs: hh → bbbb

b

b

Very difficult to simulate and model, 
ATLAS & CMS go data-driven.
Large backgrounds.

~ ABCD method

        3b                  4b

Δ
χ 

<
 2

5 
G

e
V

  
  Δ

χ 
>

 2
5

 G
eV



  

Di-Higgs: hh → bbbb

hep-ex/2202.09617

        3b                  4b

Δ
χ 

<
 2

5 
G

e
V

  
  Δ

χ 
>

 2
5

 G
eV

ABCD
tuned



  

ABCD Vs Bayesian techniques

Regions should be 

● Close by to maintain similarity
● Separated to avoid contamination
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ABCD Vs Bayesian techniques



  

G

H

Two observables & must be independent Any number of observables & independent

ABCD Vs Bayesian techniques

E

F
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ABCD Vs Bayesian techniques

Each observable has two outcomes
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Two observables & must be independent Any number of observables & independent

ABCD Vs Bayesian techniques

Each observable has two outcomes Each observable can have any number of
Outomes. Usually continuous is better

Two classes: signal & background  It can have many classes. E.g. many back-
grounds and use prior knowledge on them

Categorical
(~multinomial)



  

Two observables & must be independent Any number of observables & independent

ABCD Vs Bayesian techniques

Each observable has two outcomes Each observable can have any number of
Outomes. Usually continuous is better

Two classes: signal & background  

Signal should be in only one region, usually D

It can have many classes. E.g. many back-
grounds and use prior knowledge on them

Need
control

regions!
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ABCD Vs Bayesian techniques

Each observable has two outcomes Each observable can have any number of
Outomes. Usually continuous is better

Two classes: signal & background  

Signal should be in only one region, usually D S & B mixed in different shape and proportions
everywhere. No control region. No hard cuts!

It can have many classes. E.g. many back-
grounds and use prior knowledge on them



  

Two observables & must be independent Any number of observables & independent

ABCD Vs Bayesian techniques

Each observable has two outcomes Each observable can have any number of
Outomes. Usually continuous is better

Two classes: signal & background  

Signal should be in only one region, usually D S & B mixed in different shape and proportions
everywhere. No control region. No hard cuts!

It can have many classes. E.g. many back-
grounds and use prior knowledge on them

Are there real 
cases of many 
independent 
observable?



  

ABCD Vs Bayesian techniques

DeepJet(J
1
)       J

2       
J

3
     J

4
  Δχ

DeepJet PDFs according to class!
Instead of counting b-jets, 

use the four continuous
Deepjet variables

hh→ bbbb



  

ABCD Vs Bayesian techniques

DeepJet (J
1
)     J

2     
J

3
   J

4
  Δχ

DeepJet PDFs according to class!

Ultimate goal:
● Arbitrary priors with uncertainty

(usually MC)
● Not arbitrarily flexible
● Model observed variables as 

being sampled from there
● Infere everything!
● Calibration (?)
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Conclusions

● ML-Industry and Statistics very successful tools in Bayesian framework

● Have not yet been adequately tested @ LHC

● Simplified examples show good perspectives

● Potential enhancement hh → bbbb (in preparation)

● Are some LHC analysis sub-optimal ?

● Bayesian ML techniques may yield improvement in observables

✔ q-g jet discrimination (2112.11352)
✔ Four-tops (2107.00668)

✔ Unsupervised top-tagging (2212.13583)
✔ hh → bbγγ (2210.07358)

Thank you!
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ABCD Vs Bayesian techniques

DeepJet PDFs according to class!
DJ = 0.69, 0.99, 0.99, 0.99
DJ = 0.1,   0.71, 0.71, 0.71
DJ = 0.71, 0.71, 0.71, 0.71

DeepJet(J
1
)       J

2       
J

3
     J

4
  Δχ

b-jet if DJ > 0.7



  

Backup slides

(see discussion in 1701.04427)



  

Backup slides

(see discussion in 1701.04427)



  

Backup slides

Four-tops
ATLAS-CONF-2021-013



  

Backup slides

Accuracy = 0.71

https://arxiv.org/pdf/2112.11352.pdf



  

Backup slides



  

Backup slides

Existing search by CMS 
improving ~30% sensitivity 
when using the correlation 

of the invariant masses



  

Backup slides

2007.1440

Decorrelated variables based on 
Montecarlo simulations.

Danger: catch patterns that are from MC 
and expect them to be in real data
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