Bayesian Inference in Collider Physics

Ezequiel Alvarez
ICAS, UNSAM \& Conicet (Argentina)
sequi@unsam.edu.ar

ICAS

June $13^{\text {th }}, 2023$

$\mathrm{XVII}^{\text {th }}$ century map

$\mathrm{XVII}^{\text {th }}$ century map

Use the inaccurate map as a guide, and then correct as you meet reality

Monte Carlo are a great guide

Neural Networks learning from MC:
Potential biases if learns as physics, details, correlations, etc, that are not physics !

Just as if....

Plugging Neural Network to shore contours to learn anything

Not created with this intention!

Plugging Neural Network to shore contours to learn anything

Bayesian Inference

Alternative framework in which one learns from data using Monte Carlo, Theory and "more" as a guide (prior)

Bayesian Inference

Alternative framework in which one learns from data using Monte Carlo, Theory and "more" as a guide (prior)

Disclaimer: This talk has nothing to do with any
Frequentist vs. Bayesian (pointless) discussion

Bayesian Inference

Alternative framework in which one learns from data using Monte Carlo, Theory and "more" as a guide (prior)

Disclaimer: This talk has nothing to do with any
Frequentist vs. Bayesian (pointless) discussion Instead: is about new tools and techniques that are more suitable within a Bayesian framework

Summary

- Intro to Bayesian framework
- Graphical Models (the Feynman diagrams in statistics!)

Applications

- q- Vs, g-jets using softdrop Poisson shapes
- Four tops: correlating N_{j} and N_{b}
- Di-Higgs: correlation and full info extraction
- Posterior predictive \leftarrow (check your model with data)
- LHC measuring techniques

Intro to

Bayesian Framework

Intro to Bayesian framework

Bayes Theorem

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

Intro to Bayesian framework

Bayes Theorem

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

Cleverness: the data is modeled to be sampled from a given PDF
X : data
θ : parameters of a PDF

Intro to Bayesian framework

Bayes Theorem

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

Cleverness: the data is modeled to be sampled from a given PDF

$$
\begin{aligned}
& X: \text { data } \\
& \theta: \text { parameters of a PDF }
\end{aligned}
$$

Hence, in Bayesian the "probability of a probability" is always buzzing around

Intro to Bayesian framework

Bayes Theorem

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

By seeing the data you improve your knowledge of your PDF

Cleverness: the data is modeled to be sampled from a given PDF

$$
\begin{aligned}
& X: \text { data } \\
& \theta: \text { parameters of a PDF }
\end{aligned}
$$

Hence, in Bayesian the "probability of a probability" is always buzzing around

Intro to Bayesian framework

Bayes Theorem

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

By seeing the data you improve your knowledge of your PDF

Cleverness: the data is modeled to be sampled from a given PDF

$$
\begin{aligned}
& X: \text { data } \\
& \theta: \text { parameters of a PDF }
\end{aligned}
$$

Crucial info about Physics!

Hence, in Bayesian the "probability of a probability" is always buzzing around

Intro to Bayesian framework

Bayes Theorem

Statistics
 is about
 Modeling!

$$
P(\theta \mid X)=\frac{P(X \mid \theta) \times P(\theta)_{\text {prior }}}{P(X)}
$$

By seeing the data you improve your knowledge of your PDF

Cleverness: the data is modeled to be sampled from a given PDF

$$
\begin{aligned}
& X: \text { data } \\
& \theta: \text { parameters of a PDF }
\end{aligned}
$$

Crucial info about Physics!

Hence, in Bayesian the "probability of a probability" is always buzzing around

Graphical Models

Graphical Models

Probabilistic model for which a graph expresses the conditional dependence structure between random variables.

Graphical Models

Probabilistic model for which a graph expresses the

Just a PDF, but more sophisticated than plain Gaussian, Exponential, etc conditional dependence structure between random variables.

Graphical Models

Probabilistic model for which a graph expresses the conditional dependence structure between random variables.

For instance, model the height of the persons in this room as coming from 2 populations

Graphical Models

Each balloon is a random variable

Empty balloons are sampled but not measured

For instance, model the height of the persons in this room as coming from 2 populations

Arrows indicate dependence

Graphical Models

Each balloon is a random variable

For instance, model the height of the persons in this room as coming from 2 populations

Graphical Models

Each balloon is a random variable

Fraction of each population

For instance, model the height of the persons in this room as coming from 2 populations

Graphical Models

$Z=0$ or 1 is drawn from a Bernoulli with parameter π. Then the height is drawn from either of 2 Normal, depending on Z

For instance, model the height of the persons in this room as coming from 2 populations

Graphical Models

Model that data is sampled from this given PDF and compute $\mathrm{P}(\mathrm{X} \mid \theta)=\mathrm{P}\left(\mathrm{X} \mid \mu_{0} \sigma_{0} \mu_{1} \sigma_{1} \pi\right)$

Graphical Models

Use Bayesian techniques to obtain $\mathrm{P}(\theta \mid \mathrm{X})$

Bernoulli

Graphical Models

Use Bayesian techniques to obtain $\mathrm{P}(\theta \mid \mathrm{X})$

The posterior is a distribution Over all latent variables of the model

Graphical Models

Few remarks

- Access the internal structure of the data

Graphical Models

Few remarks

- Access the internal structure of the data
- Very complex data can be constructed from simple PDFs

Graphical Models

Few remarks

- Access the internal structure of the data
- Very complex data can be constructed from simple PDFs
- Identify many signals just by using some prior knowledge on their shape

Graphical Models

Few remarks

- Access the internal structure of the data
- Very complex data can be constructed from simple PDFs
- Identify many signals just by using some prior knowledge on their shape

This is all in signal region (you don't need control region!)

Graphical Models

Few remarks

- Access the internal structure of the data
- Very complex data can be constructed from simple PDFs
- Identify many signals just by using some prior knowledge on their shape
- Parameters pursue maximization of the probability of the data
- Recent numerical techniques, such as Stochastic Variational Inference, or Black Box Inference, etc.
- If you can construct $P(X \mid \theta)$, you're all set
- They are like Feynman Diagrams in Statistics

Graphical Models

Few remarks

This happens in collider physics much more often than what we think!

- They are like Feynman Diagrams in Statistics

Applications:

quark- Vs gluon-jet

Four tops

$$
\text { hh } \rightarrow \text { bbyy }
$$

hh \rightarrow bbbb

Applications:

quark- Vs gluon-jet

Shapes

Four tops

hh \rightarrow bbyy

Shapes + correlation
hh \rightarrow bbbb
Shapes (arbitrary) + many correlations
(In preparation)

Applications:

quark- Vs gluon-jet

2112.11352
E.Alvarez
M.Spannowsky
M.Szewc

Quark and gluon jet

Light Quark jet

Quark and gluon jet

Light Quark jet

SoftDrop $\left(\mathrm{n}_{\text {so }}\right)$ is an integer number for any jet. At leading-log:

Quark and gluon jet

SoftDrop $\left(\mathrm{n}_{\text {sD }}\right)$ is an integer number for any jet. At leading-log:

$\mathrm{n}_{\mathrm{SD}} \sim \operatorname{Poisson}\left(\lambda_{\mathrm{q}, \mathrm{g}}\right)$

Very well defined shape each class!

Quark and gluon jet

Graphical Model (or PDF)

Quark and gluon jet

> Get n_{SD} from a simulated sample using Pythia and/or Hergiw

Graphical Model (or PDF)

Quark and gluon jet

Graphical Model (or PDF)

Extract a posterior distribution over parameters $P(\theta \mid X)$

Quark and gluon jet

Results:

Quark and gluon jet

Results:

Robust to simple detector effects

Smearing η and φ with a $N(0, \sigma)$

Results:

Smearing η and φ with a $N(0, \sigma)$

Applications:

Four tops

Four tops

Four tops

Four tops

Four tops

Four tops

Four tops

Multinomials are too flexible, but $N_{j}-N_{b}$ correlation fixes the issue

Four tops

Multinomials are too flexible, but $N_{j}-N_{b}$ correlation fixes the issue

Signal (tttt) expects larger N_{j} and N_{b}

Background (ttW) expects smaller N_{J} and N_{b}

Four tops

Results:

Four tops

Results:

Four tops

Each parameter approaches the true values with the posterior!

- Excerpt from Corner-plot panels
$\left(500 \mathrm{fb}^{-1}\right)$

Four tops

Four tops has large discrepancies between data and MC.
We considerably reduce MC impact

Four tops

Four tops has large discrepancies between data and MC.
We considerably reduce MC impact

- $\mathrm{N}_{\mathrm{j}} \mathrm{N}_{\mathrm{b}}$ at the event-by-event level
- Use prior info
- Bayesian Inference techniques

Applications:

Di-Higgs

Simplified for the sake of the algorithm
2210.07358 (hh \rightarrow bbyy)
E.Alvarez

+ in preparation (hh $\rightarrow \mathrm{bbbb}$)
A.Alvarez,L. Da Rold,
S.Tanco, T.Tarutina,
M.Szewc, A.Szynkman

Di-Higgs: hh \rightarrow bbyy
-b

Di-Higgs: hh \rightarrow bbyy

Di-Higgs: hh \rightarrow bbyy

Versus continuum exponentially decaying background (plus semi-resonant, and others)

Di-Higgs: hh \rightarrow bbyy

Observables are (approx) independent once they are conditioned on the class
$m_{b b}$ and $m_{y y}$ correlation in the data is the key!

Di-Higgs: hh \rightarrow bbyy

Di-Higgs: hh \rightarrow bbyy

PDF

Signal (10\%) + background
(MG5+Pythia+Delphes)

Di-Higgs: hh \rightarrow bbyy

Di-Higgs: hh \rightarrow bbyy

Di-Higgs: hh \rightarrow bbyy

Generate 1k events (MG5+Pythia+Delphes). Use a biased prior to emulate an inaccurate Montecarlo

Di-Higgs: hh \rightarrow bbyy

Di-Higgs: hh \rightarrow bbyy

Correct inference for signal fraction

Di-Higgs: hh \rightarrow bbyy

This is what we actually see

(here with labels)

Di-Higgs: hh \rightarrow bbyy

Hard to recognize something

Di-Higgs: hh \rightarrow bbyy

Hard to recognize something

Di-Higgs: hh \rightarrow bbyy

What we see

With Labels

Posterior

Di-Higgs: hh \rightarrow bbyy

What we see

With Labels

Posterior

Posterior predictive check

Probability of the data
\rightarrow Leave some heldout data aside, and then check the probability of having sampled those datapoints with the inferred PDF

Posterior predictive check

Probability of the data

\rightarrow Leave some heldout data aside, and then check the probability of having sampled those datapoints with the inferred PDF

Posterior predictive check

1. Sample replicate data with the posterior
2. Compute the predictive score
$p\left(p\left(X_{\text {rep }} \mid X_{o b s}\right)<p\left(X_{\text {held }} \mid X_{\text {obs }}\right)\right)$
Probability that probability of replicate data is less than the probability of held-out data

Posterior predictive check

1. Sample replicate data with the posterior
2. Compute the predictive score
$p\left(p\left(X_{\text {rep }} \mid X_{o b s}\right)<p\left(X_{\text {held }} \mid X_{\text {obs }}\right)\right)$
Probability that probability of replicate data is less than the probability of held-out data

Score: 0.5 +/- 0.03

ATLAS @ hh \rightarrow bbyy

Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $p \boldsymbol{p}$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

4 Object and event selections

Variable	Definition
Photon-related kinematic variables	
$p_{\mathrm{T}} / m_{\gamma \gamma}$	Transverse momentum of each of the two photons divided by the diphoton invariant mass $m_{\gamma \gamma}$ Pseudorapidity and azimuthal angle of the leading and subleading photon
Jet-related kinematic variables	
b and ϕ	Tightest fixed b-tag working point (60\%, 70\%, or 77\%) that the jet passes
p_{T}, η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest b-tagging score
$p_{\mathrm{T}}^{b \bar{b}, \eta_{b \bar{b}} \text { and } \phi_{b \bar{b}}}$Transverse momentum, pseudorapidity and azimuthal angle of the b-tagged jets system Invariant mass of the two jets with the highest b-tagging $m_{b \bar{b}}$	
H_{T}	score Scalar sum of the p_{T} of the jets in the event
Single topness	For the definition, see Eq. (1)

7 Results

The statistical framework used to derive the results for both the nonresonant and resonant searches is described in the following.
7.1 Statistical framework

For both the nonresonant and resonant searches, the results of the analysis are obtained from a maximumlikelihood fit of the $m_{\gamma \gamma}$ distribution in the range $105<m_{\gamma \gamma}<160 \mathrm{GeV}$, performed simultaneously over all relevant categories described in Section 4.2. The likelihood function is defined in Eq. (3):

$$
\begin{equation*}
\mathcal{L}=\prod_{c}\left(\operatorname{Pois}\left(n_{c} \mid N_{c}(\boldsymbol{\theta})\right) \cdot \prod_{i=1}^{n_{c}} f_{c}\left(m_{\gamma \gamma}^{i}, \boldsymbol{\theta}\right) \cdot G(\boldsymbol{\theta})\right), \tag{3}
\end{equation*}
$$

ATLAS: first selects using $m_{b b}$ and then uses m_{vy} to make the analysis. No correlation info.

CMS @ hh \rightarrow bbyy

Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

CMS-HIG-19-018
Table 2: Summary of the analysis categories. Two VBF- and tw

6 Analysis strategy

To improve the sensitivity of the search, MVA techniques are used to distinguish the ggF and VBF HH signal from the dominant nonresonant background. The output of the MVA classifiers is then used to define mutually exclusive analysis categories targeting VBF and ggF HH production. The HH signal is extracted from a fit to the invariant masses of the two Higgs boson candidates in the ($m_{\gamma \gamma}, m_{\mathrm{ij}}$) plane simultaneously in all categories.

They do take into account correlation at the event-by-event level!
They rely on MVA over the Montecarlo
are defined based on the output of the MVA classifiers and the n system $\widetilde{M}_{\mathrm{X}}$. The VBF and ggF categories are mutually exclusive.

Category	MVA	$\tilde{M}_{\mathrm{X}}(\mathrm{GeV})$
VBF CAT 0	$0.52-1.00$	>500
VBF CAT 1	$0.86-1.00$	$250-500$
ggF CAT 0	$0.78-1.00$	>600
ggF CAT 1		$510-600$
ggF CAT 2		$385-510$
ggF CAT 3		$250-385$
ggF CAT 4	$0.62-0.78$	>540
ggF CAT 5		$360-540$
ggF CAT 6		$330-360$
ggF CAT 7		$250-330$
ggF CAT 8	$0.37-0.62$	>585
ggF CAT 9		$375-585$
ggF CAT 10		$330-375$
ggF CAT 11		$250-330$

In preparation

h h \rightarrow bbbb

Di-Higgs: hh \rightarrow bbbb

A review of Higgs boson pair production

Maxime Gouzevitch ${ }^{\text {a }} \boxtimes$, Alexandra Carvalho ${ }^{\text {b }}{ }^{\circ}$ ©
Reviews in Physics (2020), 100039

Di-Higgs: hh \rightarrow bbbb

A review of Higgs boson pair production

Maxime Gouzevitch ${ }^{\text {a }} \boxtimes$, Alexandra Carvalho ${ }^{\text {b }}{ }^{\circ}$ 『 Reviews in Physics (2020), 100039

Explore improvements to bbbb is important

Di-Higgs: hh \rightarrow bbbb

Very difficult to simulate and model, ATLAS \& CMS go data-driven. Large backgrounds.

Di-Higgs: hh \rightarrow bbbb

Search for Higgs boson pair production in the four b quark final state in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

hep-ex/2202.09617

The large multijet background that originates from QCD and $t \bar{t}$ hadronic processes is estimated from the data using background-dominated regions. Analysis signal $\left(A_{\mathrm{SR}}\right)$ and control $\left(A_{\mathrm{CR}}\right)$ regions are defined by requiring $\chi<25 \mathrm{GeV}$ and $25 \leq \chi<50 \mathrm{GeV}$, respectively, where χ is the distance from the expected peak position of the two Higgs boson candidates' invariant masses and is defined as $\chi=\sqrt{\left(m_{\mathrm{H}_{1}}-c_{1}\right)^{2}+\left(m_{\mathrm{H}_{2}}-c_{2}\right)^{2}}$, where c_{1} and c_{2} are as defined for

Background events in the $A_{\mathrm{SR}}^{4 \mathrm{~b}}$ region are modeled from events in the $A_{\mathrm{SR}}^{3 \mathrm{~b}}$ region. The former represents the sensitive region of the analysis, while the latter provides a sample enriched in multijet background events with similar kinematic properties. Events in $A_{\mathrm{SR}}^{4 \mathrm{~b}}$ were analyzed only after all the methods were defined and validated. The normalization is determined by scaling the observed number of events in $A_{\mathrm{SR}}^{3 \mathrm{~b}}$ by a transfer factor computed as the ratio of the number of events in the $A_{\mathrm{CR}}^{4 \mathrm{~b}}$ and $A_{\mathrm{CR}}^{3 \mathrm{~b}}$ regions. Variations of the transfer factor depending on the position in the ($m_{\mathrm{H}_{1}}, m_{\mathrm{H}_{2}}$) plane are accounted for by measuring it as a function of $\mathbf{m}_{\|}$, defined as the projection of the point in the plane on the line $m_{\mathrm{H}_{1}}=\left(c_{1} / c_{2}\right) m_{\mathrm{H}_{2}}$ that is used for the H candidate reconstruction. Higher values of $\mathrm{m}_{\|}$are correlated with a higher average p_{T} of the selected jets.

ABCD Vs Bayesian techniques

Regions should be

- Close by to maintain similarity
- Separated to avoid contamination

ABCD Vs Bayesian techniques

ABCD Vs Bayesian techniques

Two observables \& must be independent

ABCD Vs Bayesian techniques

Two observables \& must be independent \qquad - Any number of observables \& independent

ABCD Vs Bayesian techniques

Two observables \& must be independent \qquad - Any number of observables \& independent

Each observable has two outcomes

ABCD Vs Bayesian techniques

Two observables \& must be independent
 Any number of observables \& independent

Each observable has two outcomes

Each observable can have any number of Outomes. Usually continuous is better

ABCD Vs Bayesian techniques

Two observables \& must be independent
$\square \longrightarrow$ Any number of observables \& independent

Each observable has two outcomes

Each observable can have any number of Outomes. Usually continuous is better

Two classes: signal \& background

ABCD Vs Bayesian techniques

Categorical (~multinomial)

Two observables \& must be independent
Each observable has two outcomes

Two classes: signal \& background

Any number of observables \& independent
Each observable can have any number of Outomes. Usually continuous is better

It can have many classes. E.g. many backgrounds and use prior knowledge on them

ABCD Vs Bayesian techniques

Need control regions!

Two observables \& must be independent
Each observable has two outcomes

Two classes: signal \& background

Any number of observables \& independent

Each observable can have any number of Outomes. Usually continuous is better

It can have many classes. E.g. many backgrounds and use prior knowledge on them

Signal should be in only one region, usually D

ABCD Vs Bayesian techniques

Two observables \& must be independent

Any number of observables \& independent
Each observable can have any number of Outomes. Usually continuous is better

It can have many classes. E.g. many backgrounds and use prior knowledge on them
S \& B mixed in different shape and proportions everywhere. No control region. No hard cuts!

ABCD Vs Bayesian techniques

Are there real cases of many independent observable?

Two observables \& must be independent
Each observable has two outcomes

Two classes: signal \& background

Signal should be in only one region, usually D
Any number of observables \& independent
Each observable can have any number of Outomes. Usually continuous is better It can have many classes. E.g. many backgrounds and use prior knowledge on them
S \& B mixed in different shape and proportions everywhere. No control region. No hard cuts!

ABCD Vs Bayesian techniques

DeepJet PDFs according to class!

$\mathrm{hh} \rightarrow \mathrm{bbbb}$

ABCD Vs Bayesian techniques

Ultimate goal:

DeepJet PDFs according to class!

- Arbitrary priors with uncertainty (usually MC)
- Not arbitrarily flexible
- Model observed variables as being sampled from there
- Infere everything!
- Calibration (?)

Conclusions

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC
- Simplified examples show good perspectives
- q-g jet discrimination (2112.11352) \quad Unsupervised top-tagging (2212.13583)
- Four-tops (2107.00668) \quad hh \rightarrow bbyy (2210.07358)

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC
- Simplified examples show good perspectives
- q-g jet discrimination (2112.11352) \quad Unsupervised top-tagging (2212.13583)
- Four-tops (2107.00668) \quad hh \rightarrow bbyy (2210.07358)
- Potential enhancement hh \rightarrow bbbb (in preparation)

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC
- Simplified examples show good perspectives
- q-g jet discrimination (2112.11352) \quad Unsupervised top-tagging (2212.13583)
- Four-tops (2107.00668)
- hh \rightarrow bbyy (2210.07358)
- Potential enhancement hh \rightarrow bbbb (in preparation)
- Are some LHC analysis sub-optimal ?

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC
- Simplified examples show good perspectives
- q-g jet discrimination (2112.11352) \quad Unsupervised top-tagging (2212.13583)
- Four-tops (2107.00668) \quad hh \rightarrow bbyy (2210.07358)
- Potential enhancement hh \rightarrow bbbb (in preparation)
- Are some LHC analysis sub-optimal ?
- Bayesian ML techniques may yield improvement in observables

Conclusions

- ML-Industry and Statistics very successful tools in Bayesian framework
- Have not yet been adequately tested @ LHC
- Simplified examples show good perspectives
- q-g jet discrimination (2112.11352) \quad Unsupervised top-tagging (2212.13583)
- Four-tops (2107.00668) \quad hh \rightarrow bbyy (2210.07358)
- Potential enhancement hh \rightarrow bbbb (in preparation)
- Are some LHC analysis sub-optimal ?
- Bayesian ML techniques may yield improvement in observables

Thank you!

Backup Slides

ABCD Vs Bayesian techniques

DeepJet PDFs according to class!

b-jet if DJ > 0.7
$\mathrm{DJ}=0.69,0.99,0.99,0.99$
DJ $=0.1, \quad 0.71,0.71,0.71$
$\mathrm{DJ}=0.71,0.71,0.71,0.71$

Backup slides

Eur. Phys. J. C (2010) 76:11	THE EUROPEAN
DoI $10.1140 /$ epic/s $10052-015-3852-4$	

Regular Article - Experimental Physics

Measurements of fiducial cross-sections for $t \bar{t}$ production with one or two additional b-jets in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS detector

ATLAS Collaboration ${ }^{\star}$
malised to the NNLO+NNLL result [32-37]. PYtHIA 8 offers several options for modelling $g \rightarrow b \bar{b}$ splittings in the final-state parton showers, which may be accessed by varying the TIMESHOWER:WEIGHTGLUONTOQUARK (wgtq) parameter [75]. Differences between the models arise by neglecting (wgtq5) or retaining (wgtq3, wgtq6) the massdependent terms in the $g \rightarrow b \bar{b}$ splitting kernels. Differences also arise with respect to the treatment of the high$m_{b \bar{b}}$ region, with specific models giving an enhanced or suppressed $g \rightarrow b \bar{b}$ rate. The model corresponding to wgtq3 was chosen to maximise this rate. Finally, some of the models (wgtq5, wgtq6) offer the possibility to choose sgtq $\cdot m_{b \bar{b}}$ instead of the transverse momentum as the argument of α_{S} in the $g \rightarrow b \bar{b}$ vertices. Here sgtq refers to the TiMESHOWER:SCALEGLUONTOQUARK parameter, and is allowed to vary in the range $0.25 \leq$ sgtq ≤ 1, with larger values giving a smaller $g \rightarrow b \bar{b}$ rate and vice versa. For the model wgtq5, sgtq was set to 1 , a combination that minimises the $g \rightarrow b \bar{b}$ rate, while for wgtq6, sgtq was set to 0.25 .

Backup slides

Eur. Phys. J. C (2016) 76:379	THE EUROPEAN
DOI 10.1140/epjc/s10052-016-4105-x	PHYSICAL JOURNAL C

Measurement of $\mathrm{t} \overline{\mathrm{t}}$ production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at $\sqrt{s}=8 \mathrm{TeV}$

CMS Collaboration*
11. CMS Collaboration, Measurement of the cross section ratio $\sigma_{\mathrm{tt} \mathrm{b}} / \sigma_{\mathrm{t} \text { tij }}$ in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$. Phys. Lett. B 746, 132 (2015). doi:10.1016/j.physletb.2015.04.060. arXiv:1411.5621
(see discussion in 1701.04427)

PYTHIA6 and HERWIG6. The normalization factors applied to the MADGRAPH and POWHEG predictions are found to be about 1.3 for results related to the leading additional b jet. The predictions from both generators underestimate the $\overline{t t} \bar{b} \bar{b}$ cross sections by a factor 1.8 , in agreement with the results from Ref. [11]. The normalization factors applied to MC@NLO are approximately 2 and 4 for the leading and subleading additional b jet quantities, respectively, reflecting the observation that the generator does not simulate sufficiently large jet multiplicities. All the predictions have slightly harder p_{T} spectra for the leading additional b jet than the data, while they describe the behaviour of the $|\eta|$ and m_{bb} distributions within the current precision. The predictions favour smaller ΔR_{bb} values than the measurement, although the differences are in general within two standard deviations of the total uncertainty.

Backup slides

7.2 Sequential kinematic reweighting

Following the flavour rescaling, a sequential reweighting is used to mitigate the kinematic mismodelling observed in $t \bar{t}+$ jets MC. The reweighting corrects for the distributions of $N_{\text {jets }}$, the number of large- R jets ($N_{\mathrm{LR}-\mathrm{jets}}$), the scalar sum of all jet and lepton p_{T} in the event ($H_{\mathrm{T}}^{\text {all }}$), and the average ΔR between any two jets ($\Delta R_{\text {avg. }}^{\mathrm{ij}}$). These variables are related to the overall jet activities in the events and are observed to be mismodelled, especially the $N_{\text {jets }}$ and $H_{\mathrm{T}}^{\text {all }}$ spectra. These variables capture the most representative global kinematics of the events, as well as kinematic properties of the individual jets such as p_{T} and their angular distributions.

The $t \bar{t}+\mathrm{jets}$ events in $\geq 3 b$ regions are reweighted according to the discrepancy between data and MC in the 2 b regions. The reweighting factors are derived such that the overall MC prediction matches the data in the 2 b regions. This is done based on the assumption that the deficiency of the radiation modelling in the parton shower is independent of the flavour of the radiated jets. Systematic variations on the $t \bar{t}+$ jets modelling cover possible deviations from such assumption.

Backup slides

Accuracy $=0.71$

Another feature of Bayesian computation is that we can compute the probability of a given measurement n_{SD} belonging to class z integrated over the λ_{g}, λ_{q} and π_{g} posterior distribution. Using our Monte Carlo samples, we calculate

$$
\begin{equation*}
p\left(z \mid n_{\mathrm{SD}}, X\right) \approx \frac{1}{T} \sum_{t=1}^{T} p\left(z \mid n_{\mathrm{SD}}, \pi_{g}^{(t)}, \lambda_{g}^{(t)}, \lambda_{q}^{(t)}\right) \tag{4.1}
\end{equation*}
$$

where X represents the training dataset and t is the posterior sample index. We show

Figure 7. Predictive check score distributions for the true inference and for a few artificially shifted replicate data sets. We indicate in the right panel which parameters have been artificially fixed/shifted for each case. From the plot it can be recognized that the replicate data set from the inference process has a good agreement with the held-out data since it is centered around 0.5 , as expected. We can also have a grasp on how much shift in the predictive check score is produced by different shifts in the parameters of the replicate data set PDF. As expected, in these cases the predictive score goes below 0.5 , indicating the (injected) bias in the replicate PDF. From the plot it can be recognized that the data set and problem is not much sensitive to variations in $\mu_{b \bar{b}}$ and $\sigma_{b \bar{b}}$, this is in agreement with the discussion in Sect. ШA and it is because of the very little variation that has the $m_{b \bar{b}}$ background in conjunction with large $\sigma_{b \bar{b}}$ and small signal fraction.

Backup slides

A multi-dimensional search for new heavy resonances decaying to boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV

CMS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$

Abstract A search in an all-jet final state for new massive resonances decaying to WW, WZ, or ZZ boson pairs using a novel analysis method is presented. The analysis is performed on data corresponding to an integrated luminosity of $77.3 \mathrm{fb}^{-1}$ recorded with the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV . The search is focussed on potential narrow-width resonances with masses above 1.2 TeV , where the decay products of each W or Z boson are expected to be collimated into a single, large-radius jet. The signal is extracted using a three-dimensional maximum likelihood fit of the two jet masses and the dijet invariant mass, yielding an improvement in sensitivity of up to 30% relative to previous search methods. No excess is observed above the estimated standard model background. In a heavy vector triplet model, spin-1 Z^{\prime} and W^{\prime} resonances with masses below 3.5 and 3.8 TeV , respectively, are excluded at 95% confidence level. In a bulk graviton model, upper limits on cross sections are set between 27 and 0.2 fb for resonance masses between 1.2 and 5.2 TeV , respectively. The limits presented in this paper are the best to date in the dijet final state.

ABCDisCo: Automating the ABCD Method with Machine Learning

2007.1440

Decorrelated variables based on Montecarlo simulations.

Danger: catch patterns that are from MC and expect them to be in real data

Squark pair events and multijet events are generated with Pythia 8.230 [97, 98] at a center-of-mass-energy of $\sqrt{s}=13 \mathrm{TeV}$ interfaced with Delphes 3.4.1 [99] using the default CMS run card. Jets are clustered using the anti- k_{t} algorithm [100] with radius parameter $R=0.4$ implemented in FASTJET 3.2.1 [93, 101]. 1M signal events and 10 M background events were generated, of which about 100 k signal events and

For the Double Disco ABCD method, we use the loss function

$$
\begin{equation*}
\mathcal{L}[f, g]=\mathcal{L}_{\text {classifier }}[f(X), y]+\mathcal{L}_{\text {classifier }}[g(X), y]+\lambda \operatorname{dCorr}_{y=0}^{2}[f(X), g(X)], \tag{3.2}
\end{equation*}
$$

where now f and g are two neural networks that are trained simultaneously. When $\lambda=$ 0 , the loss will be minimized when $f=g$ is the optimal classifier (up to degeneracies).

Gregor Kasieczka, ${ }^{1}$ Benjamin Nachman, ${ }^{2}$ Matthew D. Schwartz, ${ }^{3}$ and David Shih, ${ }^{2,4,5}$
${ }^{1}$ Institut für Experimentalphysik, Universität Hamburg,
Luruper Chaussee 149, D-22761 Hamburg, Germany
${ }^{2}$ Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 , USA
${ }^{3}$ Department of Physics, Harvard University, Cambridge, MA 02138
${ }^{4}$ NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
${ }^{5}$ Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA
E-mail: gregor.kasieczka@uni-hamburg.de, bpnachman@lbl.gov,
shih@physics.rutgers.edu, schwartz@g.harvard.edu
Abstract: The ABCD method is one of the most widely used data-driven background estimation techniques in high energy physics. Cuts on two statistically-independent classifiers separate signal and background into four regions, so that background in the signal region can be estimated simply using the other three control regions. Typically, the independent classifiers are chosen "by hand" to be intuitive and physically motivated variables. Here, we explore the possibility of automating the design of one or both of these classifiers using machine learning. We show how to use state-of-the-art decorrelation methods to construct powerful yet independent discriminators. Along the way, we uncover a previously unappreciated aspect of the ABCD method: its accuracy hinges on having low signal contamination in control regions not just overall, but relative to the signal fraction in the signal region. We demonstrate the method with three examples: a simple model consisting of three-dimensional Gaussians; boosted hadronic top jet tagging; and a recasted search for paired dijet resonances. In all cases, automating the ABCD method with machine learning significantly improves performance in terms of ABCD closure, background rejection and signal contamination.

Backup slides

Figure 1. The ABCD method is used to estimate the background in region A as $N_{A}=$ $\frac{N_{B} N_{C}}{N_{D}}$. It requires the signal to be relatively localized in region A and the observables to be independent on background. The shaded planes (left) or lines (right) denote thresholds which isolate the signal in region A.

Backup slides

Backup slides

Backup slides

