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Unfolding

Deconvolution (“unfolding”):
correcting for detector effects

Key aspect of all cross section
measurements, across particle/
nuclear/astro physics (!)

Why “unfold” instead of “fold”?

Unfolding is ill-posed, BUT only
way to compare different
experiments and to compare with
Particle/Nuclear/Astro Physics Experiments non fully exclusive predictions.
Data also survive much longer.
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M. Arratia, D. Britzger, O. Long,
BPN, JINST 17 (2022) PO7009

(see also A. Glazov, 1712.01814)
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Inference-Aware Binning

Optimal binning depends on
downstream task. Not possible
with current setup.

What about moments?
(see also K. Desai, BPN, J. Thaler, [paper])

For a community white paper, see JINST 17 (2022) P01024, 2109.13243
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Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on Derivative Measurements
downstream task. Not possible
with current setup. With binned measurements,
What about moments? essentially impossible _to re-
(see also K. Desai, BPN, J. Thaler, [paper]) use results for a function of

the phase space.
Higher Dimensions

Some phenomena can'’t be
probed in a few dimensions.

What about observables that
are not per-event?

For a community white paper, see JINST 17 (2022) P01024, 2109.13243


https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data
likelihood ratio w.r.t. simulation

I'll focus here today because:

Learn a small correction
(start close to the right answer)

&

Prior independent
(if maximum likelihood)

Density-Based Methods

Learn (unfolded) data probably
density implicitly or explicitly.

| won't talk about these at all,
but there has been a lot of work
with GANs, VAEs, NFs, ...

GANSs: K. Datta, D. Kar, D. Roy, 1806.00433;
M. Bellagente, A. Butter, G. Kasieczka, T. Plehn,
R. Winterhalder, SciPost Phys. 8 (2020) 070, ...

VAEs: J. Howard, S. Mandt, D. Whiteson, Y. Yang,
Sci. Rep. 12 (2022) 7567, ...

NFs: M. Bellagente et al., SciPost Phys. 9 (2020) 074;
M. Vandegar, M. Kagan, A. Wehenkel, G. Louppe,
PMLR 11 (2021) 2107; M. Backes, A. Butter,

M. Dunford, B. Malaescu, 2212.08674, ...

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)



Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data
likelihood ratio w.r.t. simulation

I'll focus here today because:

Learn a small correction
(start close to the right answer)

& My focus will be on a

_ Prior indepenaent method called OmniFold.
(if maximum likelihood)

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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Unfold by iterating: OmniFold
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Reweighting

How do to the reweighting without binning”

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.

What if we don't (and can't easily) know g and p?

(and don’t want to estimate them by binning)



Classification for reweighting

Fact: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)



Neural reweighing: works very well!
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Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001
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Full phase-space unfolding

A. Andreassen, P. Komiske, E. Metodiev, BPN, J. Thaler, PRL 124 (2020) 182001
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Full phase-space unfolding

OmniFold is:

- Unbinned

- Maximum likelihood”

- Improves the resolution from correlations with
detector response

*when binned, OmniFold converges to Lucy-
Richardson (aka lterative Bayesian Unfolding)

In fact, OmniFold can also work on low-level inputs
(e.qg. energy flow particles). In that case, you can
construct observables after the measurement.



Some technical details

Please ask if you are interested, but briefly, OmniFold...

- Can accommodate backgrounds (unbinned) via neural
positive reweighing

- Can accommodate acceptance effects

- Has a number of choices for how to update weights

and/or keep track of acceptance effects

hitps://github.com/hep-Ibdl/OmniFold

See A. Andreassen et al., ICLR SimDL for details [https://simdl.github.io/files/12.pdf]



https://simdl.github.io/files/12.pdf
https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2007.11586

First Results

I'll now spend a few minutes flashing the
first unbinned measurement results

There is no time to give the physics
content justice, so I'll be brief, but please
let me know if you have any guestions!



First result: from ep

M. Arratia, BPN, and our H1 collaborators
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Re-using and extending
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Looking inside jets

V. Mikuni, BPN, and our H1 collaborators

1/0 do/dQq
w

N

Rel. diff. [%)]
4

| I L I I -
Lo Ba R C T H1 Preliminary -
B Rapgap <] Pythia + Vincia ) .
. gp  Djangoh > Pythia + Dire 150 BCZJ < 36(5) GeV
- >  Herwig ] Total unc LA X
I . | ' P 10Gev |
- H1prelim-22-034 kr,R=10
: L :
? o> G :
;_m v e e ml |I | ml l_

O

50 F

| | | | | e

2 00 02 04 06 08
Jet Charge

'1|111111|111
-0.8 -06 -04 -0

We have also studied
high-dimensional data via
graph neural networks®

(particle-level is low-D, but detector-level is high-D)

K Charge information
K ﬂvﬂ included
Charge independent
2
2 <) (piD)
1 < -Charge
Broadening Thrust
NC
0 - I I >
| |
1 2

*M. Guo et al., CVM 7 (2021) 187; V. Mikuni, F. Canelli, MLST 2 (2021) 035027



Other studies + measurements w/data
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https://meetings.aps.org/Meeting/DNP22/Session/KF.8
https://meetings.aps.org/Meeting/DNP22/Session/KF.8
https://meetings.aps.org/Meeting/DNP22/Session/KF.8
https://meetings.aps.org/Meeting/DNP22/Session/KF.8
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https://indico.cern.ch/event/1034469/contributions/4434631/attachments/2280482/3874590/DPF2021-AdiSuresh-ATLASOmniFold.pdf

Future + challenges

So far, OmniFold seems to work as designed!
Exciting to see where this will take us.

There are still some challenges we need to overcome:

 OmniFold is computationally expensive (need to train many
networks, especially with ensembling to reach precision)

 How to publish an unbinned result? (all results so far are
presented as binned) - see 2109.13243. Breaks HEPData!

 Modeling/closure uncertainties in high dimensions (not a
new problem, but perhaps more acute)

* \What about profiling? See 2302.05390 for a partial solution.



Conclusions and Outlook

A new measurement paradigm is possible,
enabled by ML-based unfolding methods

We can analyze our
data holistically and
future-proof it using
unbinned technigques

More R&D Is required, but in
parallel, these tools are already
starting to deliver science results!
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Simultaneous for free!
(binning is for illustration)
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Stat. Uncertainty
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