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Data analysis 101

= +

Bayes Theorem p(h) =
p(d |h) p(h)

p(d)

∼ p(h)Posterior draws



Data analysis 101

= +

p(h) → p( ⃗λ)

h(t, ⃗λ) = A cos(2πft + ϕ)

Same idea for LISA, just with hundreds of thousands of parameters





LISA Sources

?

SMBHB

Stochastic

EMRI UCB

SOBHB



LIGO/Virgo

• Short duration, non overlapping

• Low Latency Search

• Maximum likelihood inspired

• Analyze short time segments

• Grid based search, simple templates

• Longer latency Bayesian follow up

• Also Continuous Wave, Un-
modeled and Stochastic searches

LISA

• Millions of overlapping signals

• High dimensional search space

• Grid based searches impractical

• Stochastic search methods

• Signal duration often 
comparable to mission lifetime

• Need a Global Fit: Binaries of all 
kinds, stochastic signals and un-
modeled signals.  All together





Likelihood function 
for Gaussian noise

The Global Solution

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)

C = noise correlation matrix

h =
NX

i=1

hi = GW signal model

~� = model parameters (signals, noise) Signal and noise 𝒪(106) parameters

N unknown, mix of signal types

Jointly inferred with signal model . Up to M3 cost to invert



Likelihood function 
for Gaussian noise

The Global Solution

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)

log L = (d |h) −
1
2

(h |h) =
N

∑
i

log Li −
1
2 ∑

i≠j

(hi |hj)

Signal overlaps - why we need 
a global  solutionPer-source likelihood



Example:  SMBHB-GB Signal Overlaps
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Individual overlaps are small, but there will be tens of thousands of them
X
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(hBH|hGB) ⇡
p
NGB 10�3 ⇢BH ⇢GB ⇡ 0.2 ⇢BH ⇢GB

Significant bias if not solved for simultaneously

[see Cutler & Harms (2008), Robson & Cornish (2018)] 

Example:  SMBHB-GB Signal Overlaps



Global Fit via Blocked Sampling

• Transdimensional Markov Chain 
Monte Carlo (RJMCMC)


• Blocked Metropolis Hastings— 
update each component of the 
signal/noise model in circular 
sweeps


• Only pass residuals - decouples 
the analysis types


• Update the fit every ~week as 
new data arrives



How does the stochastic background fit into all this?

p(d|~�) = 1p
(2⇡)MdetC

e�
1
2 (d�h)·C�1·(d�h)

hs = ∑
f

ãf e2πi f t Just another template to be 
included in the signal model

h =
NX

i=1

hi = GW signal model

[Cornish & Romano, PRD 87, 122003 (2013)] [Romano & Cornish, LRR 20 (2017)][Lentati et al, PRD 87, 104021 (2013)]



How does the stochastic background fit into all this?

hs = ∑
f

ãf e2πi f t Just another template to be 
included in the signal model

“Stochastic template”. Gaussian prior with spectrum Sh( f )

p(ãf) = ∏
f

1
2π Sh( f )

exp (
−ãf ã*f
Sh( f ) )

[Cornish & Romano, PRD 87, 122003 (2013)] [Romano & Cornish, LRR 20 (2017)][Lentati et al, PRD 87, 104021 (2013)]



How does the stochastic background fit into all this?

[Cornish & Romano, PRD 87, 122003 (2013)] [Romano & Cornish, LRR 20 (2017)][Lentati et al, PRD 87, 104021 (2013)]

hs = ãf e2πi f t p(ãf) = ∏
f

1
2π Sh( f )

exp (
−ãf ã*f
Sh( f ) )

Typically we are not interested in the particular realization of the random amplitudes so we 
can integrate them out. e.g. for stationary data in the frequency domain we get 

p(d) =
1

det(2πG)
exp [−(d̃( f ) − h̃( f ))*i Gij( f )−1(d̃( f ) − h̃( f ))j]

Gij( f ) = δij Sn,i( f )+γij( f ) Sh( f ) �ij(f) =
1

4⇡

Z
(F+

i (n̂)F+
j (n̂) + F⇥

i (n̂)F⇥
j (n̂)) e2⇡if(~xi�~xj)·n̂ d⌦n̂

Overlap reduction function (LIGO), Hellings-Downs Curve (PTAs)



If preferred, can instead subtract the stochastic background signal

1

2

3

4

5

NANOGrav 15 yr Pulsar Timing example.

Just 5 frequency components needed to 

subtract stochastic signal 

(This is for Germano and Chiara, who at the cosmology working group meeting in Hamburg, 
October 2016 kept on talking about subtracting the stochastic background) 



Draws from the MCMC

Integrated out 
model

Subtracted 
off model

Analysis by Aiden 
Gundersen



LISA Data Challenge: Sangria Edition



[Litttenberg & Cornish,  arXiv: 2301.03673]

LISA Global Fit (One approach)

• Trans-dimensional modeling using Reversible Jump MCMC


• Build highly informative jump proposal from initial search stage 


• Searches typically use stochastic hill climbing, approximate likelihoods, 
phenomenological models, likelihood maximization etc (anything goes)


• Time annealing - build up solution as new data arrives. Posteriors become 
proposals for next stage



Trans-dimensional Inference
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Explore model space and 
parameter space of the models
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[Cornish,  arXiv: 2110.06238]

Low latency single-source search results used as proposals in global fit

[Littenber, Cornish, Lackeos & Robson,  arXiv:2004.08464]

F-statistic maps for GBs Low latency BH search



Building up the solution  - “time annealing”

1 week N1 posteriors

N2 Multivariate Gaussian Proposals

2 weeks

N2 posteriors

N1 Multivariate Gaussian Proposals

3 weeks

We used 1 month -> 3 months -> 6 months -> 12 months

Etcetera



Building up the solution  - “time annealing”

We used 1 month -> 3 months -> 6 months -> 12 months



12 months of Sangria data - A TDI channel

[Litttenberg & Cornish,  arXiv: 2301.03673]



12 months of Sangria data - A TDI channel
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12 months of Sangria data - A TDI channel



12 months of Sangria data - A TDI channel

Run time ~ 2 days on AWS, $12K



12 months of Sangria data - MBHBs



Sangria data - Galactic Binaries

All candidate sources at 12 months Example of how a source resolves with time



GB matches over time for 90+% confident detections

1.5 months

3 months

6 months

12 months

Theory:  M ≈ 1 −
D

2 SNR2



Galactic Binaries - what went wrong at 12 months?

Template Template Template Template

SignalSignal Signal Signal

One to Many Many to One

Can be the right answer in a Bayesian sense Never the right answer - poor sampling



Galactic Binaries - what went wrong at 12 months?

A

f (mHz)

Injections

Templates



• Better proposals - easiest fix is to increment by smaller amounts in time


• Time-frequency modeling of signals and noise 


• Include all three data channels, A, E & T


• Treat the unresolved binaries as a stochastic background (signal), and model 
the noise component by component


• Include a galaxy shape prior with hyper-parameters for bulge radius, disk 
radius, disk height etc

How to do better?
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Non-Stationary Data



Cyclostationary Noise

Whitening using constant PSD and dynamic PSD



p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

Fast wavelet transforms of the signals for 
computational efficiency 

[Cornish,  Phys Rev D 102, 124038 (2020)] 

Wavelet domain waveforms

Faster than frequency domain,  scalingN

42



• Better proposals - easiest fix is to increment by smaller amounts in time


• Time-frequency modeling of signals and noise 


• Include all three data channels, A, E & T


• Treat the unresolved binaries as a stochastic background (signal), and model 
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LISA Sensitivity - T channel as noise monitor

[Hogan & Bender, Phys. Rev. D64 (2001)]
[Tinto, Armstrong & Estabrook, Phys.Rev.D63 (2001)]
[Prince et al, Phys. Rev. D66 (2002)]

Two decades of 
attenuation

[Adams & Cornish, Phys. Rev. D86 (2010)]

Key to detecting a stochastic background



• Better proposals - easiest fix is to increment by smaller amounts in time
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the noise component by component
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ρ(x, y, z) = ρ0 (Abe−r2/R2
b + (1 − Ab)e

− x2 + y2/Rd sech2(z /Zd))

Galaxy shape prior with hyper-parameters

[Adams, Cornish & Littenberg, PRD 86, 124032 (2012) 

100
1000

5000

Crowder & Cornish (2007) 

90% had matches above 0.8 


