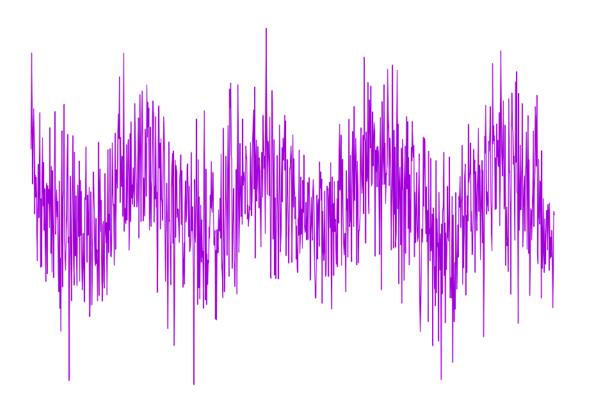
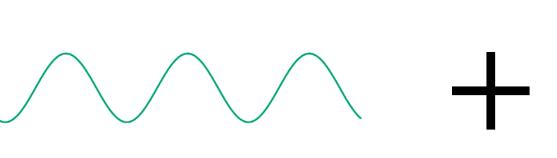
LISA Data Analysis - Global Fit

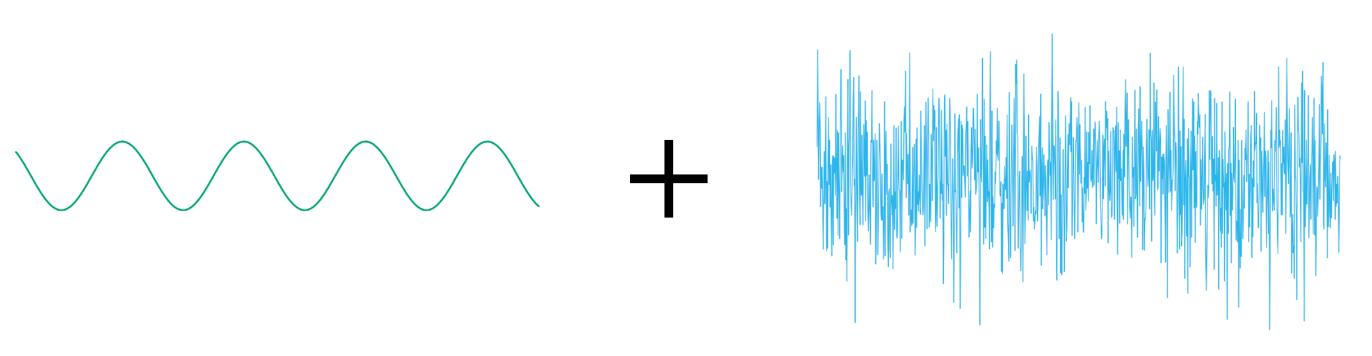
Neil J. Cornish

e treme Gravity Institute

Data analysis 101

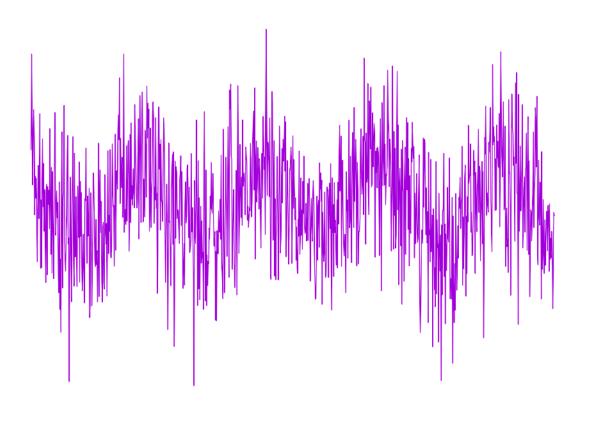




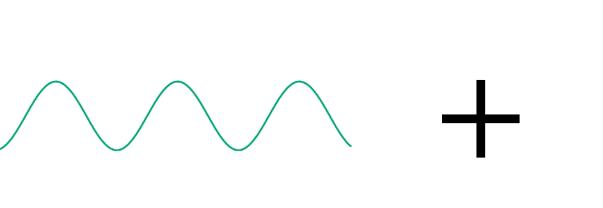


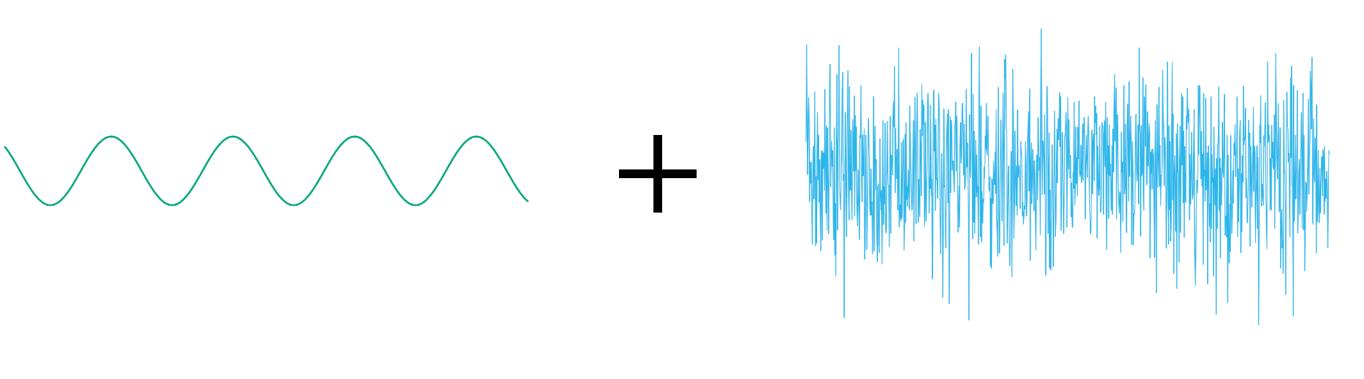
Data analysis 101

h

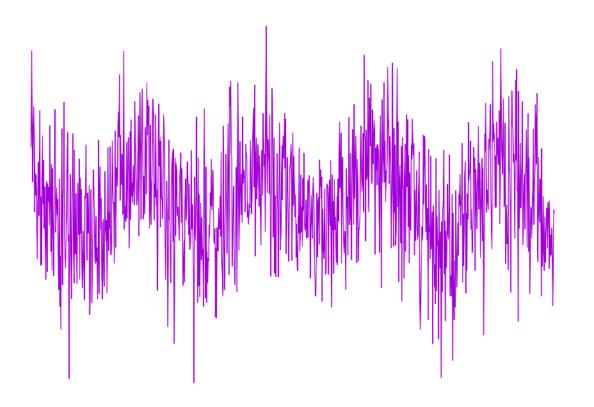


d

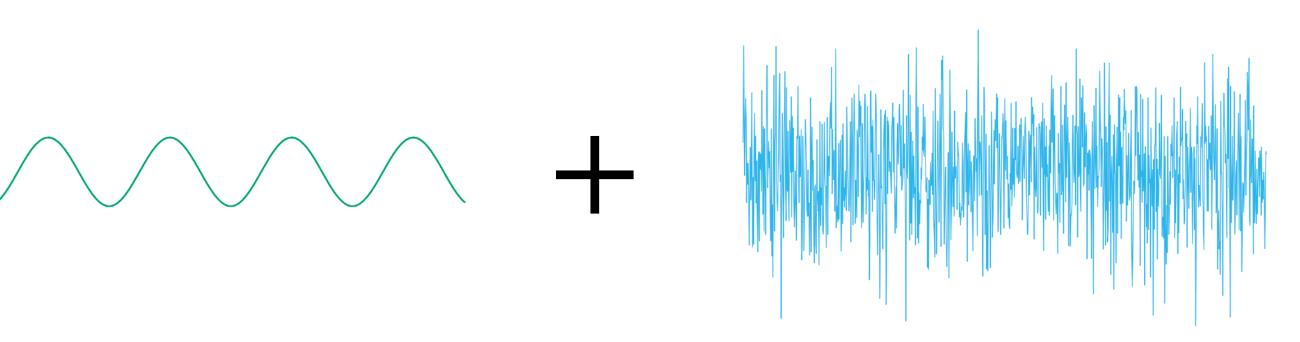




$\mathbf{n} = \mathbf{d} - \mathbf{h}$



Noise model



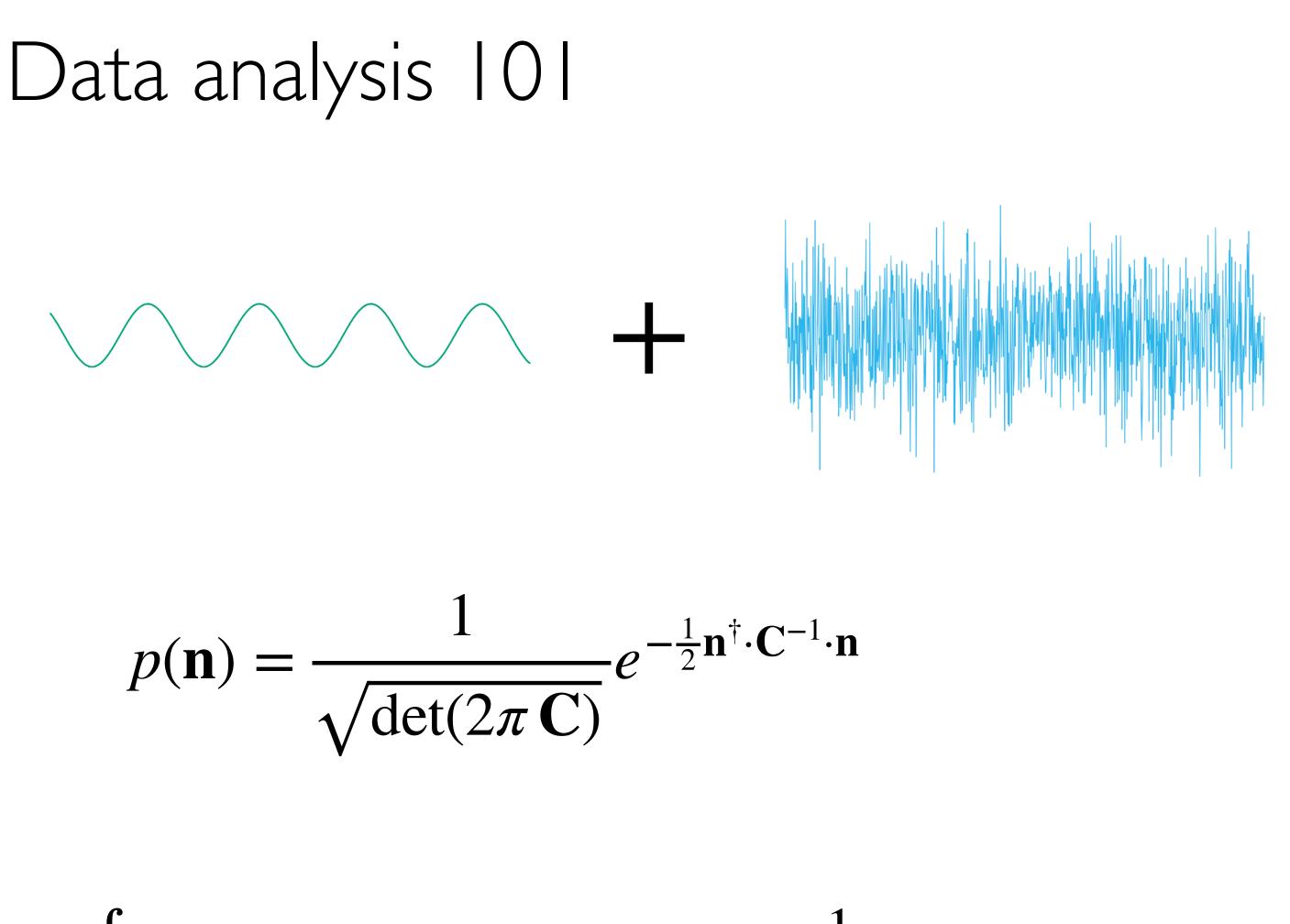
 $p(\mathbf{n}) = \frac{1}{\sqrt{\det(2\pi \mathbf{C})}} e^{-\frac{1}{2}\mathbf{n}^{\dagger} \cdot \mathbf{C}^{-1} \cdot \mathbf{n}}$



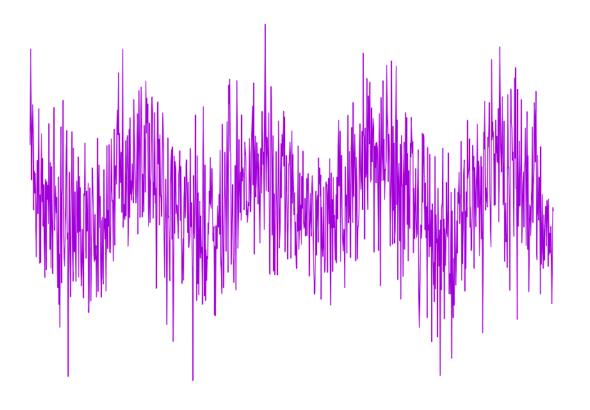
Noise model

Integrate over noise realizations

 $p(\mathbf{d} | \mathbf{h}) = \int p(\mathbf{n}) \delta(\mathbf{n} - (\mathbf{d} - \mathbf{h})) d\mathbf{n} = \frac{1}{\sqrt{\det(2\pi \mathbf{C})}} e^{-\frac{1}{2}(\mathbf{d} - \mathbf{h})^{\dagger} \cdot \mathbf{C}^{-1} \cdot (\mathbf{d} - \mathbf{h})}$

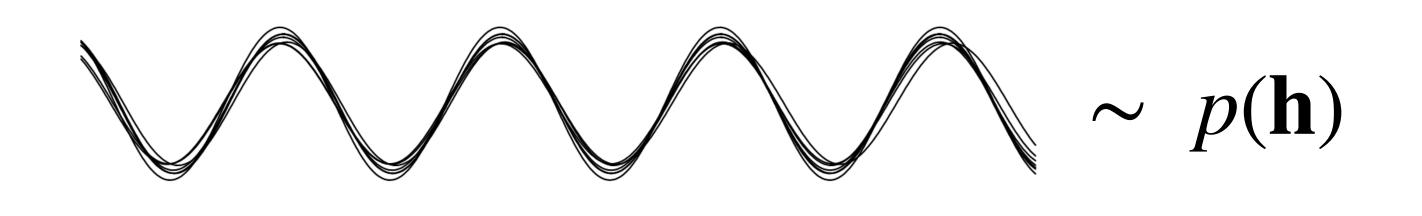


Likelihood



Bayes Theorem

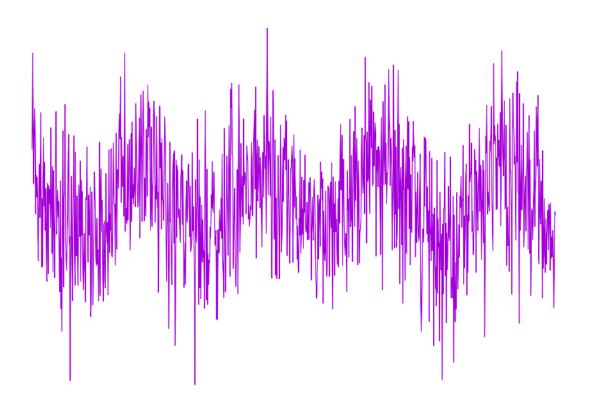
Posterior draws



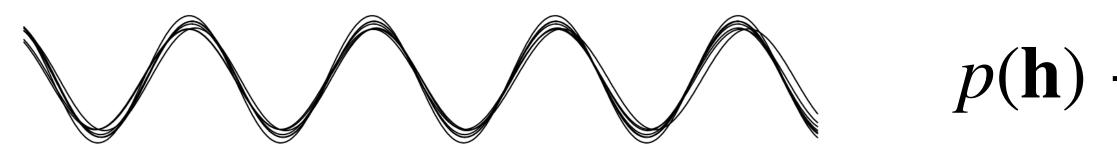
╉

$p(\mathbf{d} \mid \mathbf{h}) p(\mathbf{h})$ *p*(**h**) = $p(\mathbf{d})$

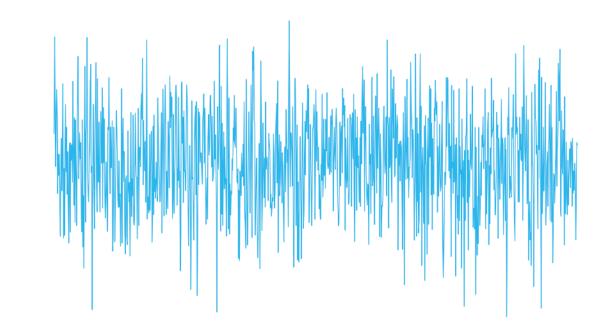
Data analysis 101



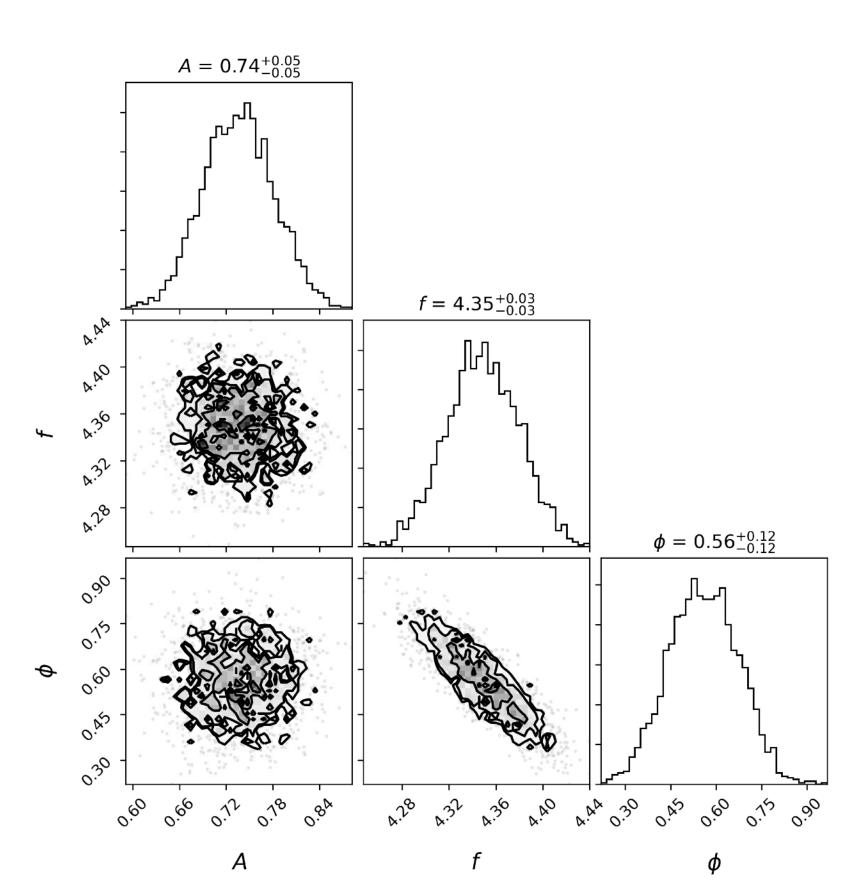
$h(t, \vec{\lambda}) = A \cos(2\pi f t + \phi)$



Same idea for LISA, just with hundreds of thousands of parameters

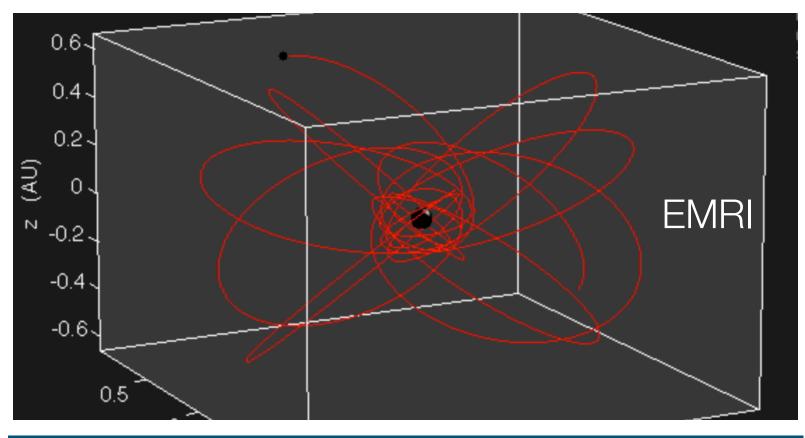


 $p(\mathbf{h}) \rightarrow p(\vec{\lambda})$



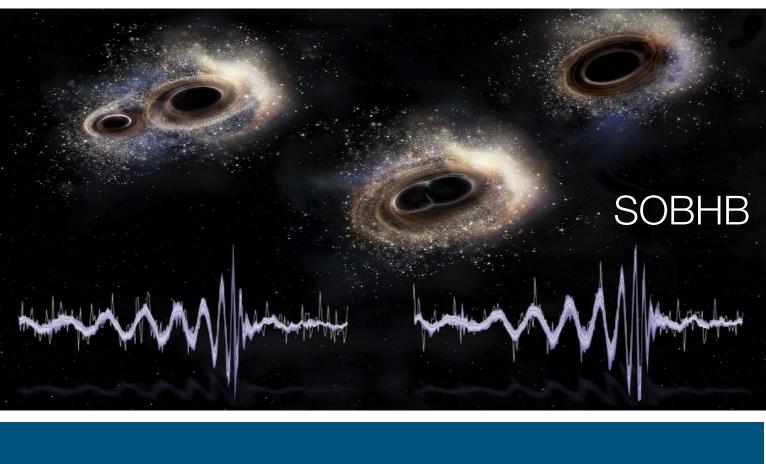
۰. ۲. 1.1.1

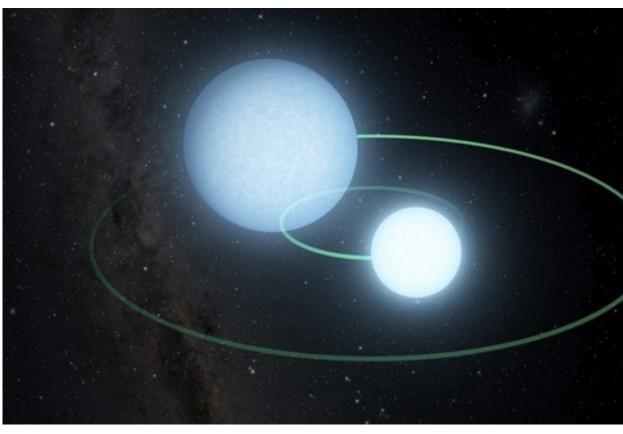
LISA Sources

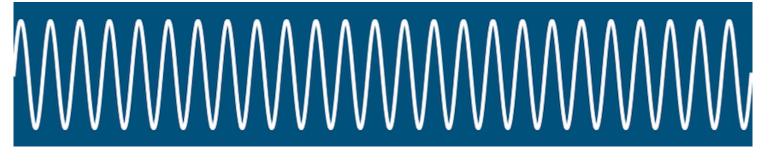


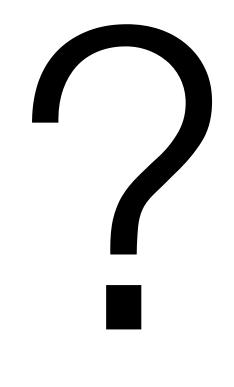
Stochastic

MWWWWWWWWWWWWWWWWWW









LIGO/Virgo

- Short duration, non overlapping
- Low Latency Search
 - Maximum likelihood inspired
 - Analyze short time segments
 - Grid based search, simple templates
- Longer latency Bayesian follow up
- Also Continuous Wave, Unmodeled and Stochastic searches

LISA

- Millions of overlapping signals
- High dimensional search space
 - Grid based searches impractical
 - Stochastic search methods
- Signal duration often comparable to mission lifetime
- Need a Global Fit: Binaries of all kinds, stochastic signals and unmodeled signals. All together



Because of the signal overlaps, a global fit to all the signals has to be performed

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

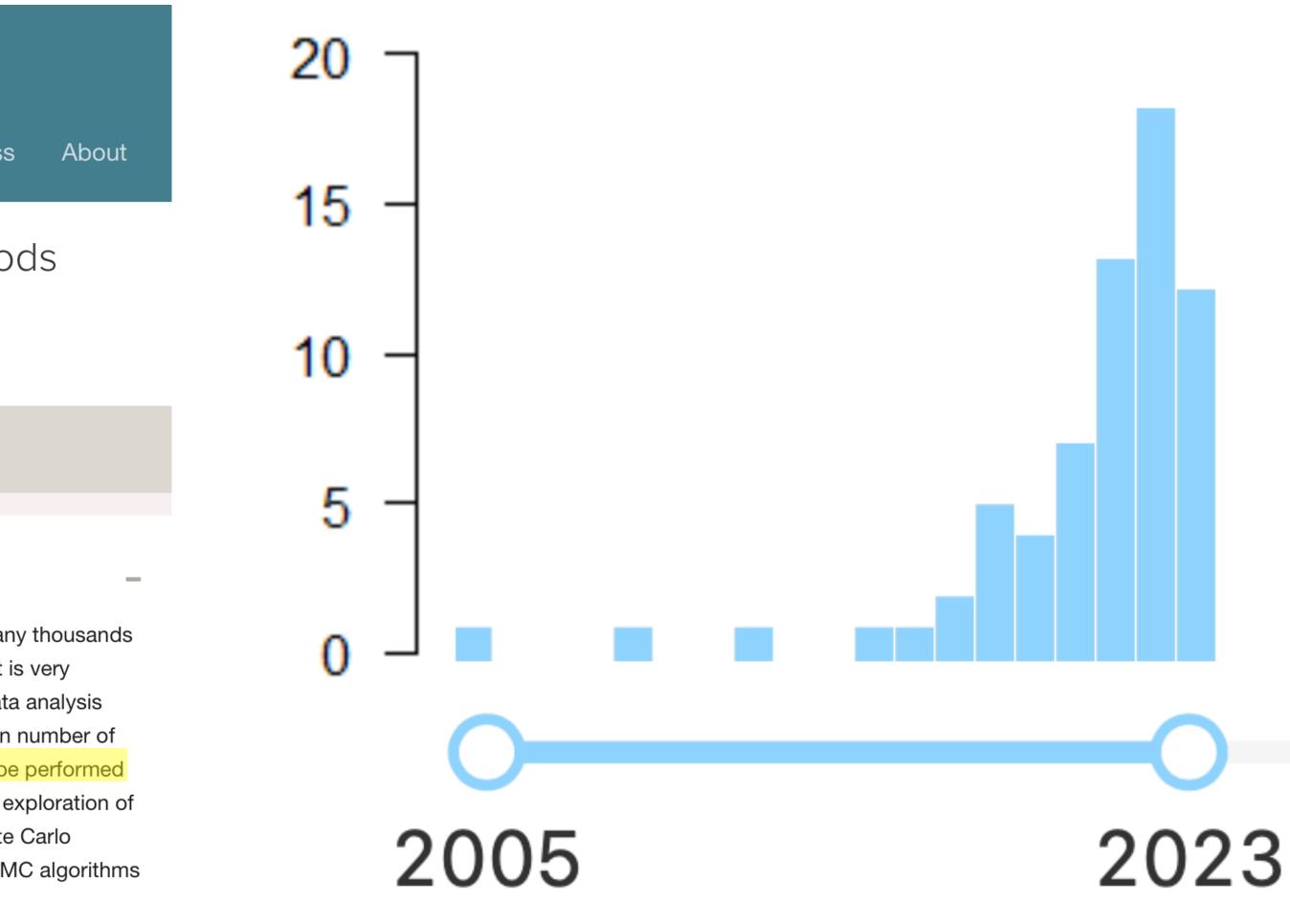
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press

LISA data analysis using Markov chain Monte Carlo methods

Neil J. Cornish and Jeff Crowder Phys. Rev. D **72**, 043005 – Published 22 August 2005

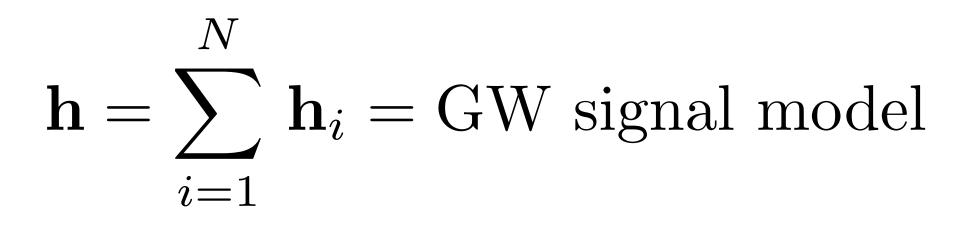
Article	References	Citing Articles (85)	PDF	HTML	Export Citation				
>	ABSTI	RACT							
	of low-fre different t	The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many of low-frequency gravitational wave signals. This presents a data analysis challenge that is different to the one encountered in ground based gravitational wave astronomy. LISA data							

requires the identification of individual signals from a data stream containing an unknown number of overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed in order to avoid biasing the solution. However, performing such a global fit requires the exploration of an enormous parameter space with a dimension upwards of 50000. Markov Chain Monte Carlo (MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms



The Global Solution

Likelihood function for Gaussian noise



 \mathbf{C} = noise correlation matrix

 $\vec{\lambda} = \text{model parameters}$

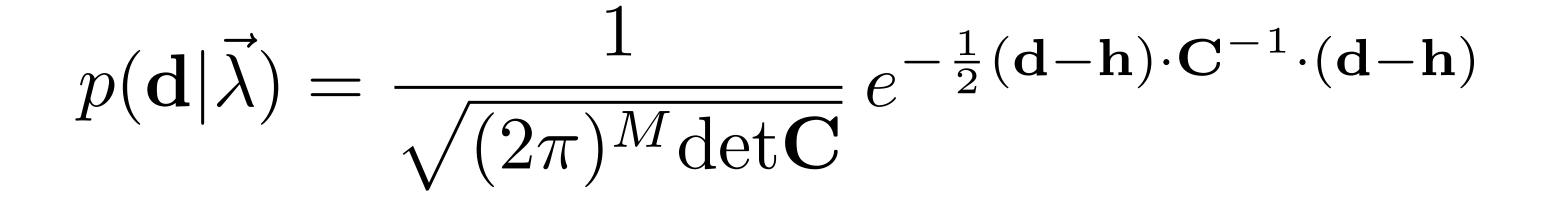
$p(\mathbf{d}|\vec{\lambda}) = \frac{1}{\sqrt{(2\pi)^M \det \mathbf{C}}} e^{-\frac{1}{2}(\mathbf{d}-\mathbf{h}) \cdot \mathbf{C}^{-1} \cdot (\mathbf{d}-\mathbf{h})}$

N unknown, mix of signal types

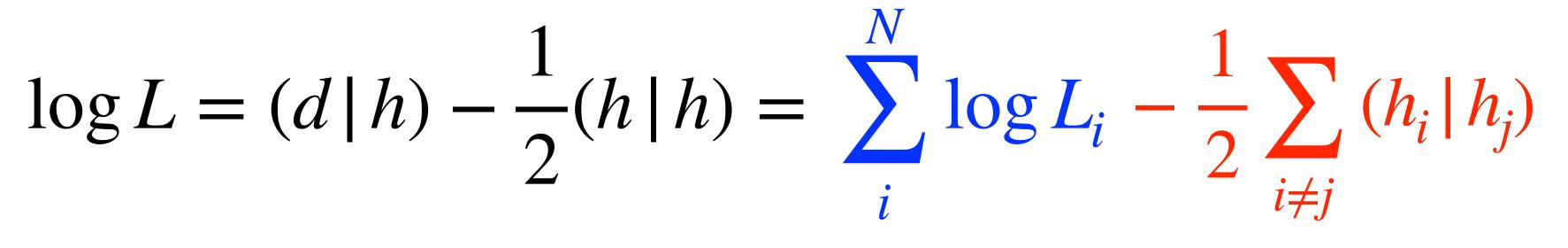
Jointly inferred with signal model. Up to M^3 cost to invert

Signal and noise $\mathcal{O}(10^6)$ parameters

Likelihood function for Gaussian noise



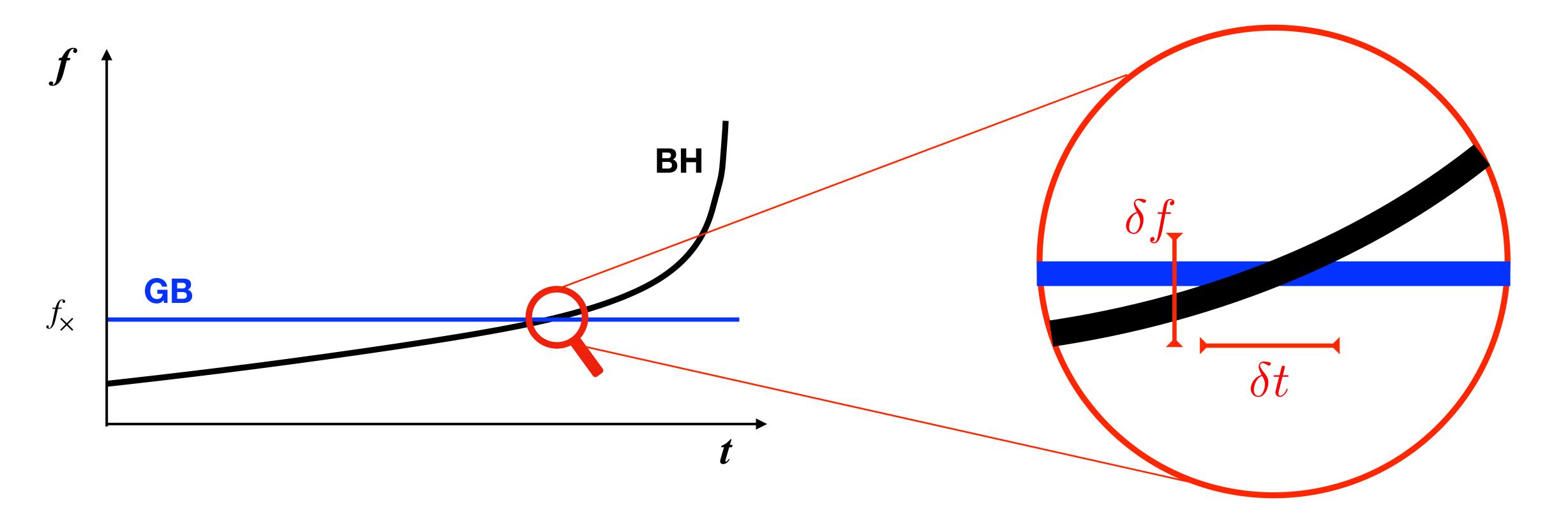
The Global Solution



Per-source likelihood

Signal overlaps - why we need a global solution

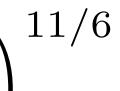
Example: SMBHB-GB Signal Overlaps



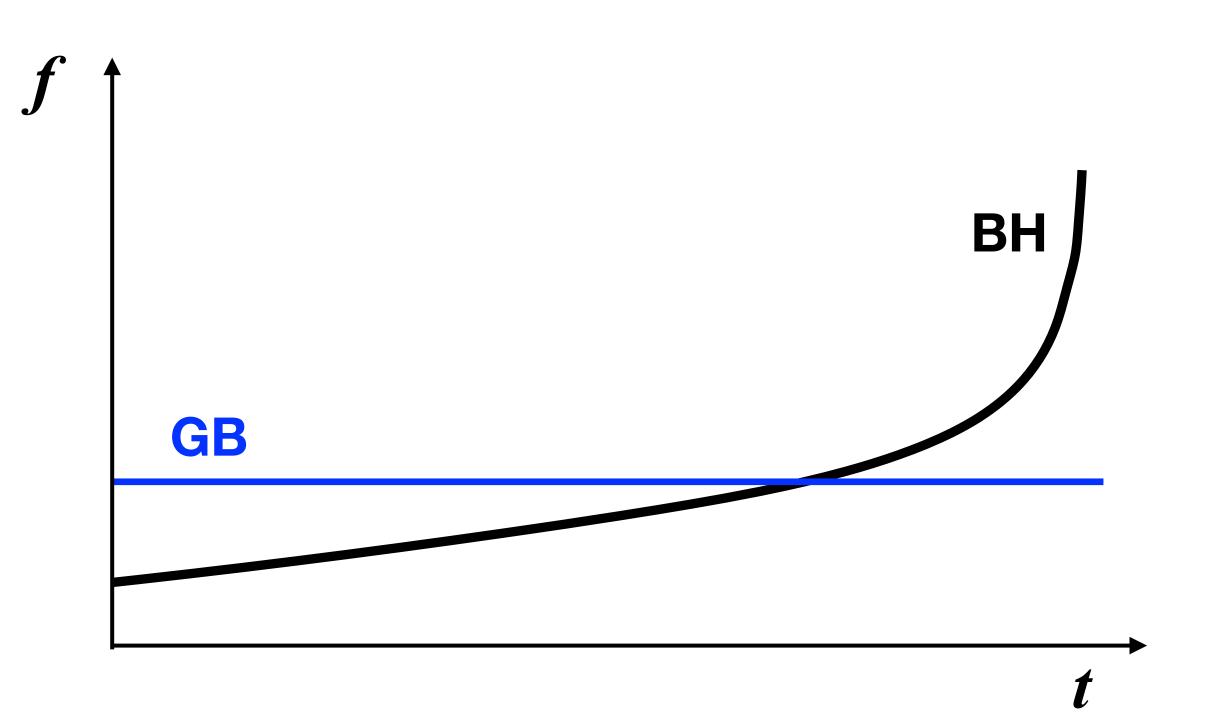
$$\delta f = 3 \times 10^{-7} \,\mathrm{mHz} \left(\frac{\mathcal{M}_{\mathrm{GB}}}{0.25 M_{\odot}}\right)^{5/6} \left(\frac{f_{\times}}{1 \,\mathrm{mHz}}\right)^{1}$$

1/6

$$\delta t = 1.7 \times 10^3 \,\mathrm{s} \left(\frac{10^6 M_{\odot}}{\mathcal{M}_{\rm BH}}\right)^{5/6} \left(\frac{1 \,\mathrm{mHz}}{f_{\rm X}}\right)$$



Example: SMBHB-GB Signal Overlaps



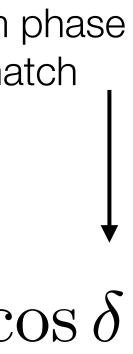
Individual overlaps are small, but there will be tens of thousands of them

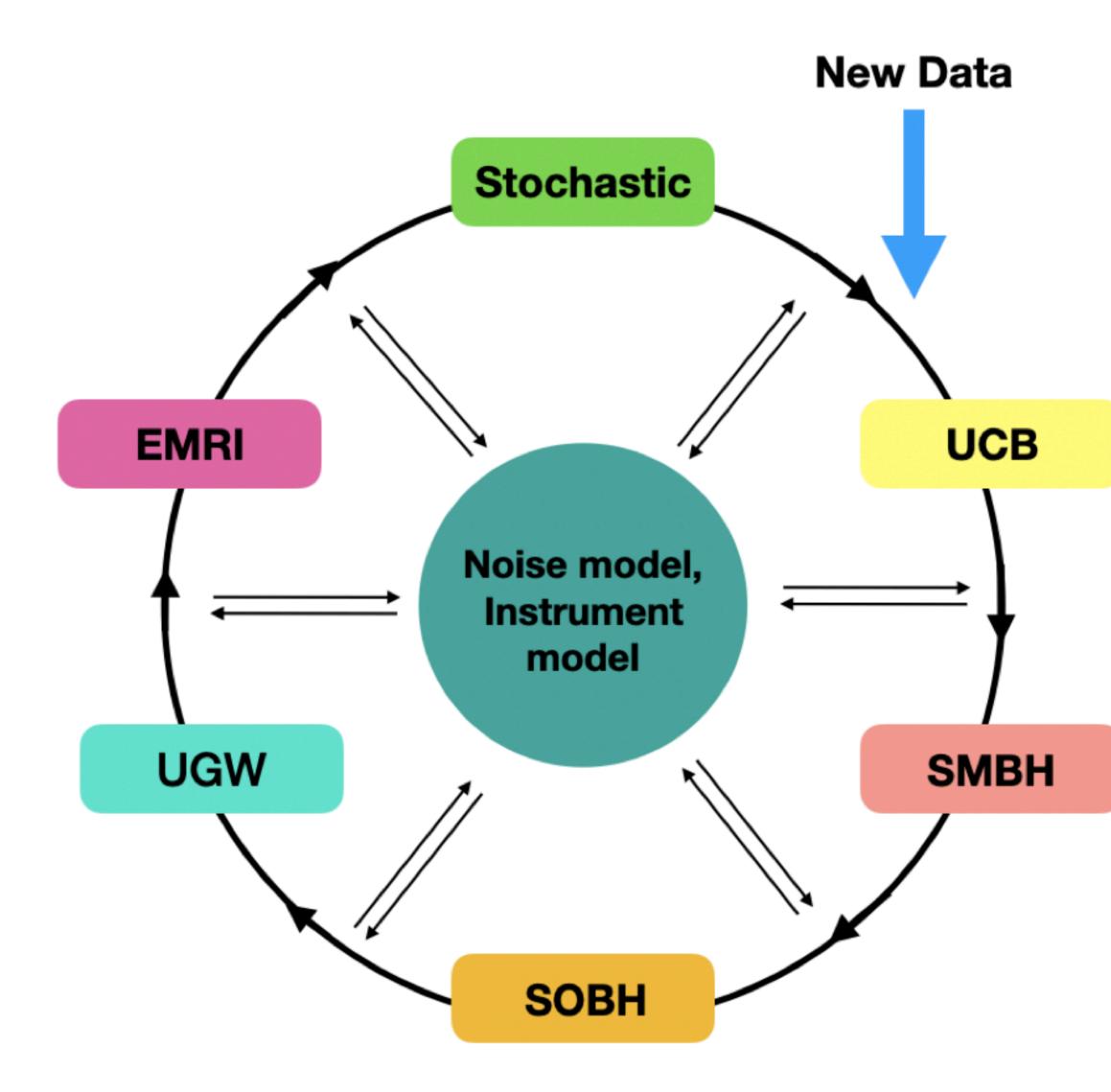
$$\sum_{\rm GB} (\mathbf{h}_{\rm BH} | \mathbf{h}_{\rm GB}) \approx \sqrt{N}_{\rm GB} \, 10^{-3} \, \rho_{\rm BH} \, \rho_{\rm GB} \approx 0.2 \, \rho_{\rm BH} \, \rho_{\rm GB}$$

Significant bias if not solved for simultaneously

$$(\mathbf{h}_{\rm BH}|\mathbf{h}_{\rm GB}) = \left(\frac{S_{\rm BH}(f_{\times})}{S_{\rm n}(f_{\times})}\right)^{1/2} \rho_{\rm GB} \ \mathrm{c}$$
$$\approx 10^{-3} \rho_{\rm BH} \rho_{\rm GB} \ \mathrm{cos} \, \delta$$

[see Cutler & Harms (2008), Robson & Cornish (2018)]



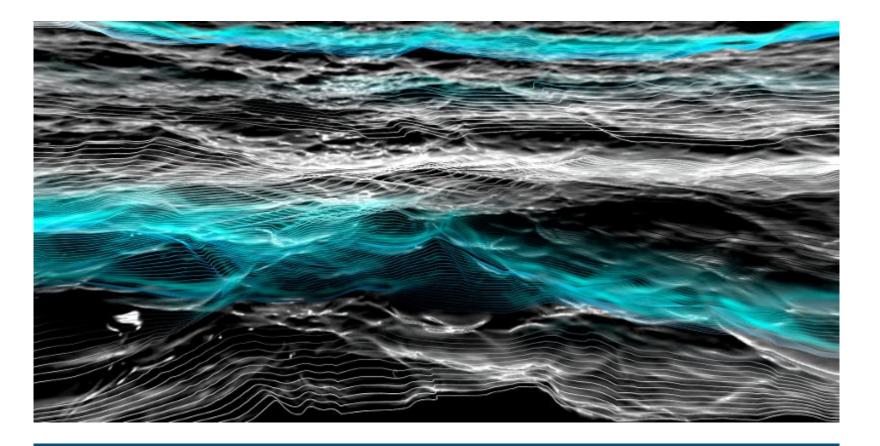


Global Fit via Blocked Sampling

- Transdimensional Markov Chain Monte Carlo (RJMCMC)
- Blocked Metropolis Hastings update each component of the signal/noise model in circular sweeps
- Only pass residuals decouples the analysis types
- Update the fit every ~week as new data arrives

How does the stochastic background fit into all this?

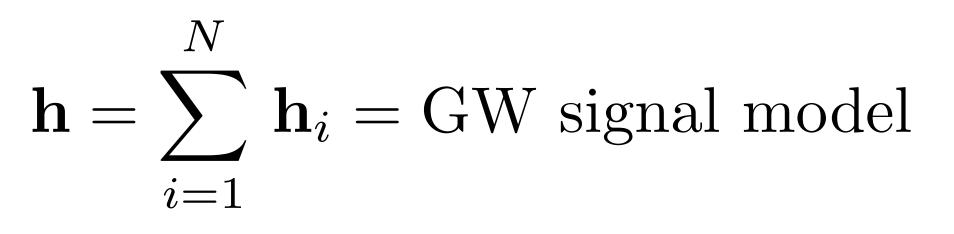
 $p(\mathbf{d}|\vec{\lambda}) = \frac{1}{\sqrt{(2\pi)^M}}$



[Cornish & Romano, PRD 87, 122003 (2013)]

[Lentati et al, PRD 87, 104021 (2013)]

$$\frac{1}{\det \mathbf{C}} e^{-\frac{1}{2}(\mathbf{d}-\mathbf{h})\cdot\mathbf{C}^{-1}\cdot(\mathbf{d}-\mathbf{h})}$$



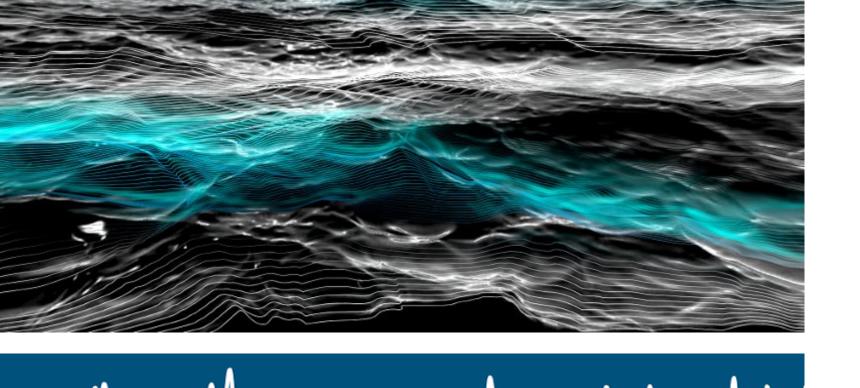
 $\mathbf{h}_s = \sum \tilde{a}_f e^{2\pi i f t}$

Just another template to be included in the signal model

[Romano & Cornish, LRR 20 (2017)]

How does the stochastic background fit into all this?

"Stochastic template". Gaussian prior with spectrum $S_h(f)$



[Cornish & Romano, PRD 87, 122003 (2013)]

[Lentati et al, PRD 87, 104021 (2013)]

 $\mathbf{h}_s = \sum \tilde{a}_f e^{2\pi i f t}$

Just another template to be included in the signal model

$$p(\tilde{a}_f) = \prod_f \frac{1}{2\pi S_h(f)} \exp\left(\frac{-\tilde{a}_f \tilde{a}_f^*}{S_h(f)}\right)$$

[Romano & Cornish, LRR 20 (2017)]

How does the stochastic background fit into all this?

 $\mathbf{h}_s = \tilde{a}_f e^{2\pi i f t}$

Typically we are not interested in the particular realization of the random amplitudes so we can integrate them out. e.g. for stationary data in the frequency domain we get

$$p(\mathbf{d}) = \frac{1}{\det(2\pi\mathbf{G})} \exp\left[-(\tilde{d}(f) - \tilde{h}(f))_i^* G_{ij}(f)^{-1} (\tilde{d}(f) - \tilde{h}(f))_j\right]$$

$$G_{ij}(f) = \delta_{ij} S_{n,i}(f) + \gamma_{ij}(f) S_h(f) \qquad \gamma_{ij}(f) = \delta_{ij} S_{n,i}(f) + \gamma_{ij}(f) S_h(f) \qquad \gamma_{ij}(f) = \delta_{ij} S_{n,i}(f) + \delta_{ij}(f) = \delta_{ij} S_{n,i}(f) + \delta_{ij}(f) S_{n,i}(f) = \delta_{ij} S_{n,i}(f) + \delta_{ij}(f) S_{n,i}(f) = \delta_{ij} S_{n,i}(f) + \delta_{ij}(f) S_{n,i}(f) + \delta_{ij}(f) S_{n,i}(f) = \delta_{ij} S_{n,i}(f) + \delta_{ij}(f) = \delta_{ij} S_{n,i}(f) = \delta_{ij} S_{n,i}$$

[Cornish & Romano, PRD 87, 122003 (2013)]

[Lentati et al, PRD 87, 104021 (2013)]

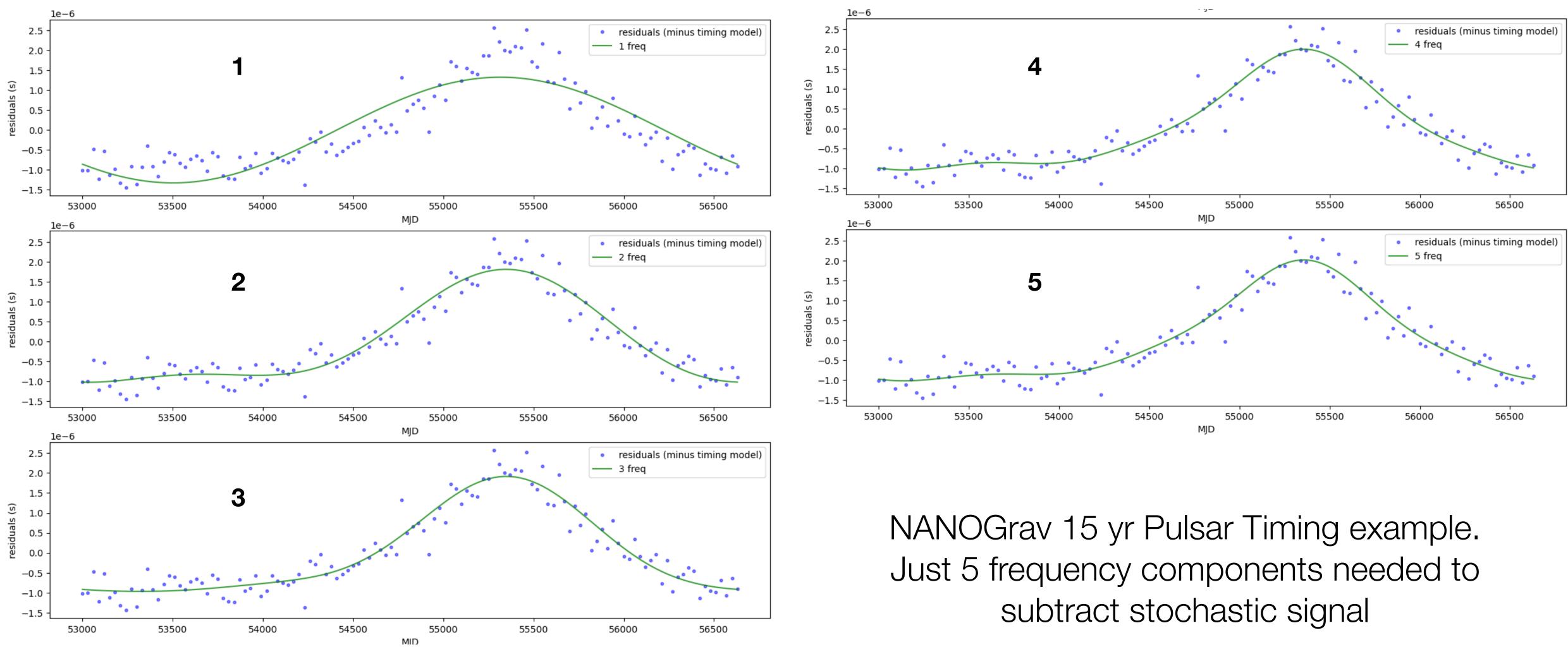
$$p(\tilde{a}_f) = \prod_f \frac{1}{2\pi S_h(f)} \exp\left(\frac{-\tilde{a}_f \tilde{a}_f^*}{S_h(f)}\right)$$

Overlap reduction function (LIGO), Hellings-Downs Curve (PTAs) $_{j}(f) = \frac{1}{4\pi} \int (F_{i}^{+}(\hat{n})F_{j}^{+}(\hat{n}) + F_{i}^{\times}(\hat{n})F_{j}^{\times}(\hat{n})) e^{2\pi i f(\vec{x}_{i} - \vec{x}_{j}) \cdot \hat{n}} d\Omega_{\hat{n}}$

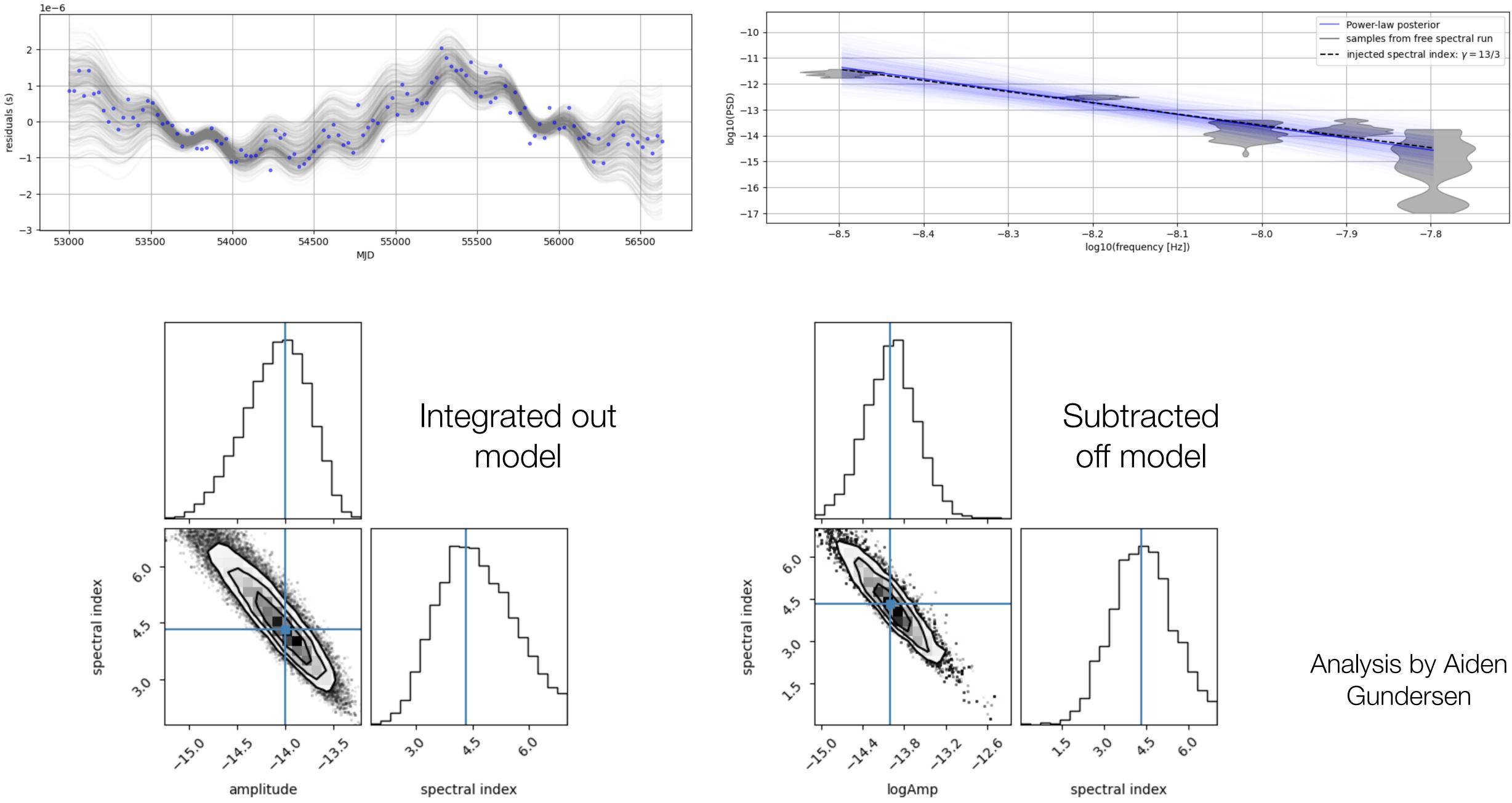
[Romano & Cornish, LRR 20 (2017)]

If preferred, can instead subtract the stochastic background signal

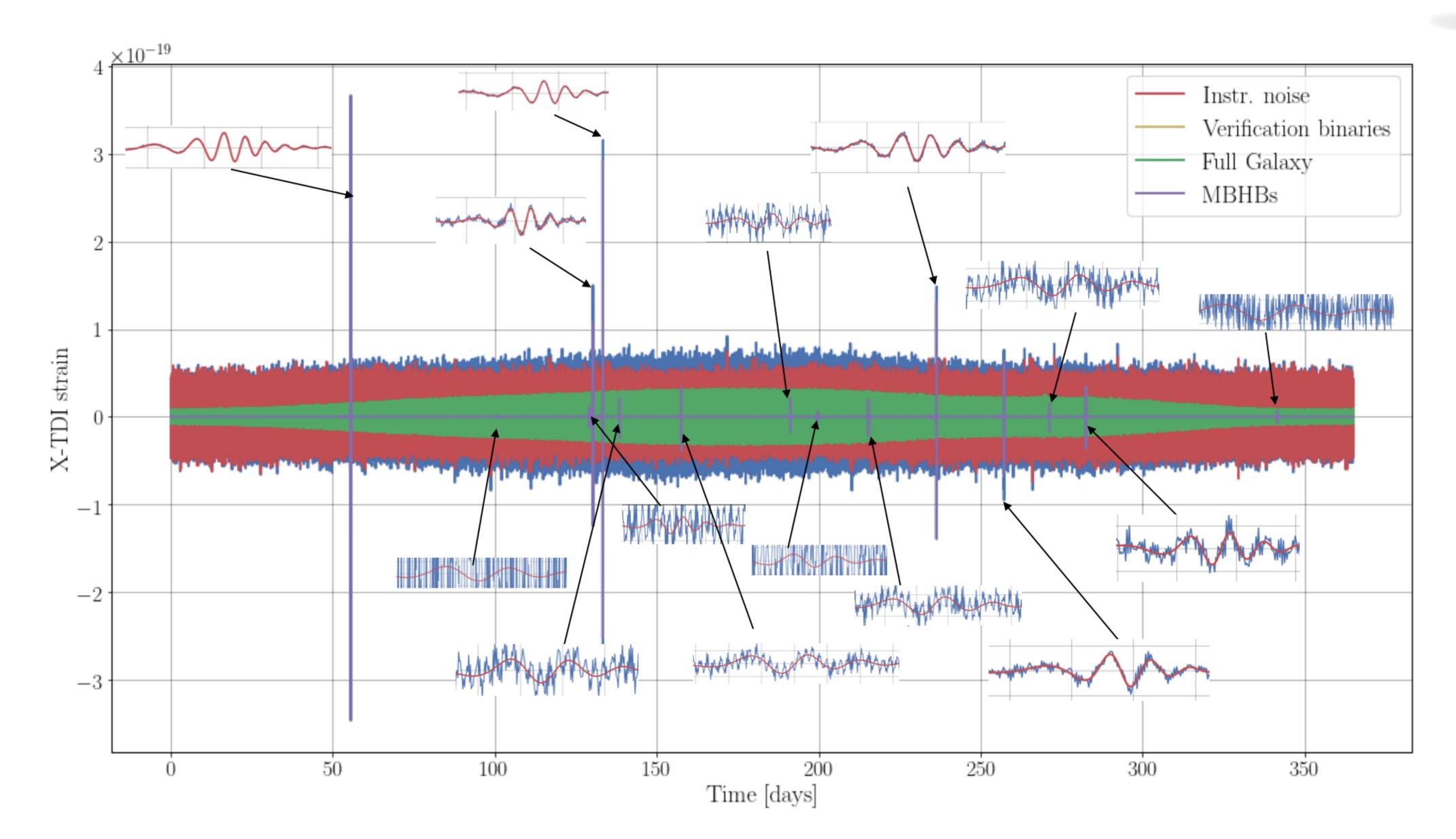
(This is for Germano and Chiara, who at the cosmology working group meeting in Hamburg, October 2016 kept on talking about subtracting the stochastic background)



Draws from the MCMC



LISA Data Challenge: Sangria Edition

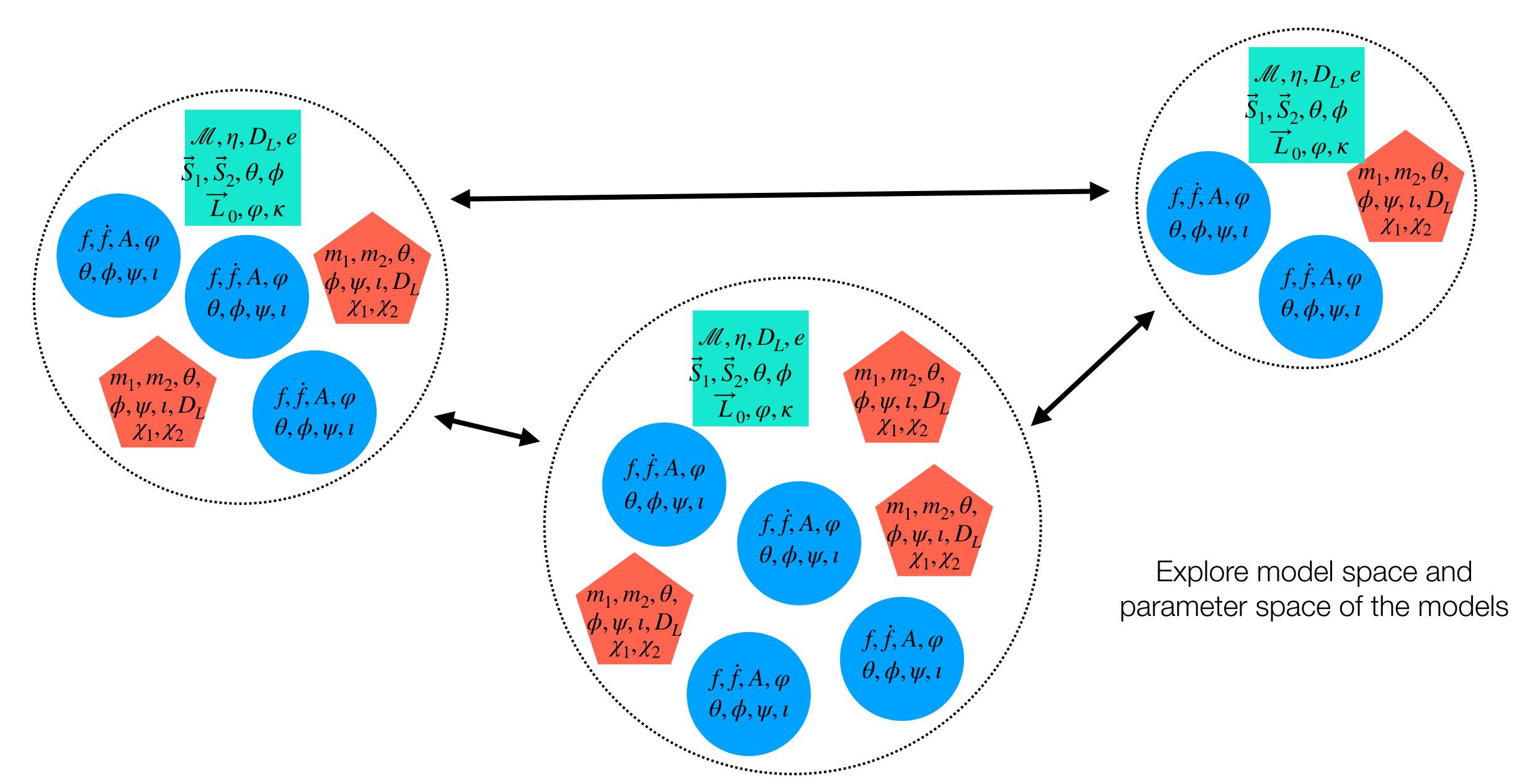


LISA Global Fit (One approach)

- Trans-dimensional modeling using Reversible Jump MCMC
- Build highly informative jump proposal from initial search stage
- Searches typically use stochastic hill climbing, approximate likelihoods, phenomenological models, likelihood maximization etc (anything goes)
- Time annealing build up solution as new data arrives. Posteriors become proposals for next stage

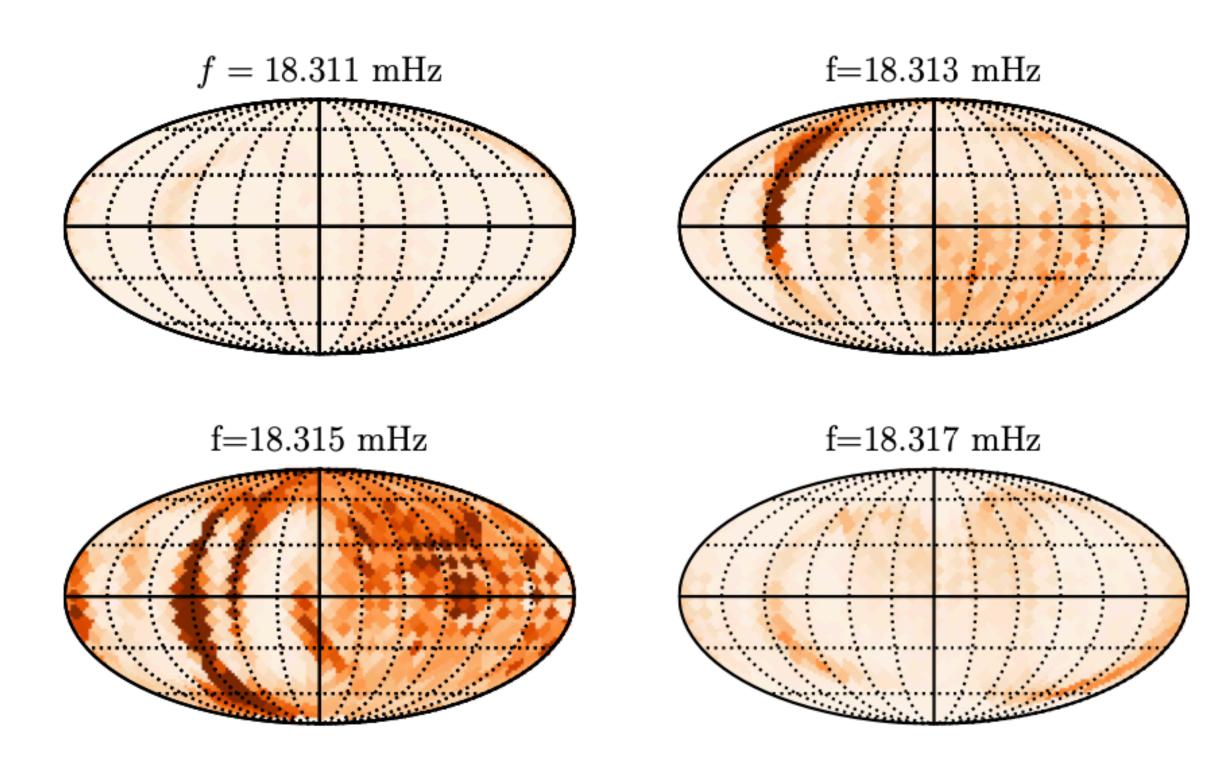
[Littlenberg & Cornish, arXiv: 2301.03673]

Trans-dimensional Inference



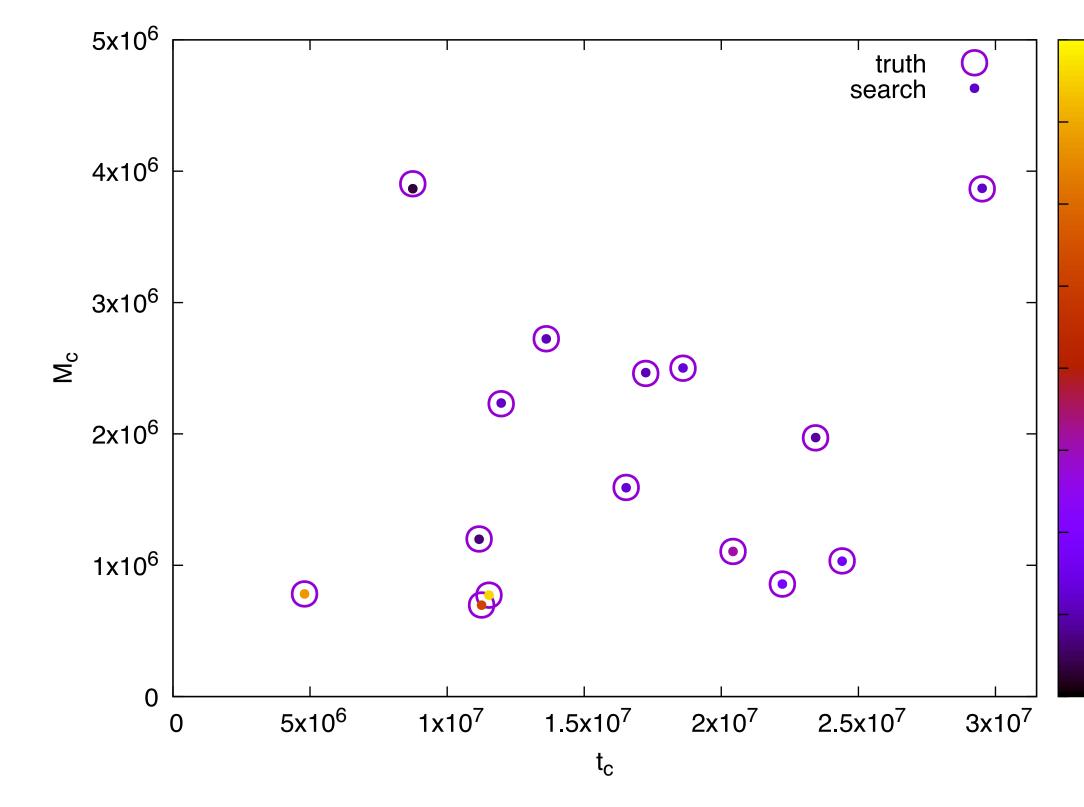
Low latency single-source search results used as proposals in global fit

F-statistic maps for GBs



[Littenber, Cornish, Lackeos & Robson, arXiv:2004.08464]

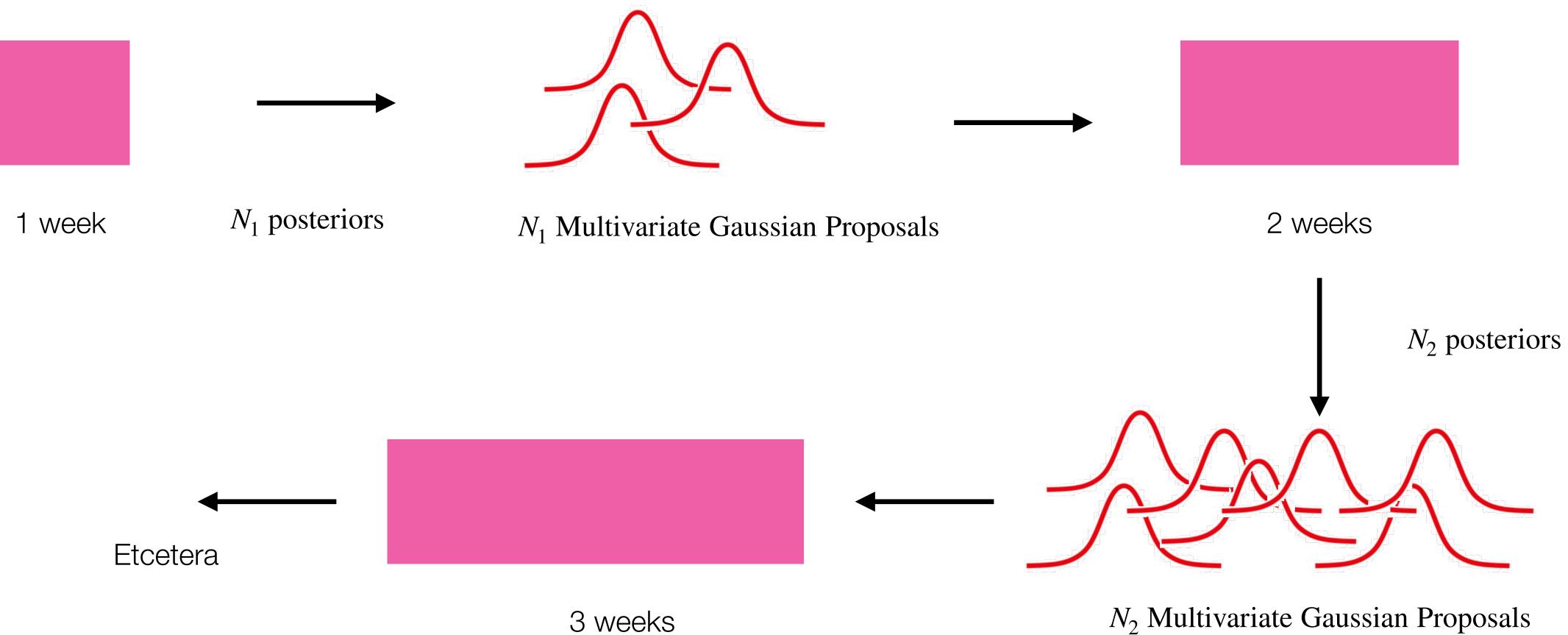
Low latency BH search



[Cornish, arXiv: 2110.06238]

0

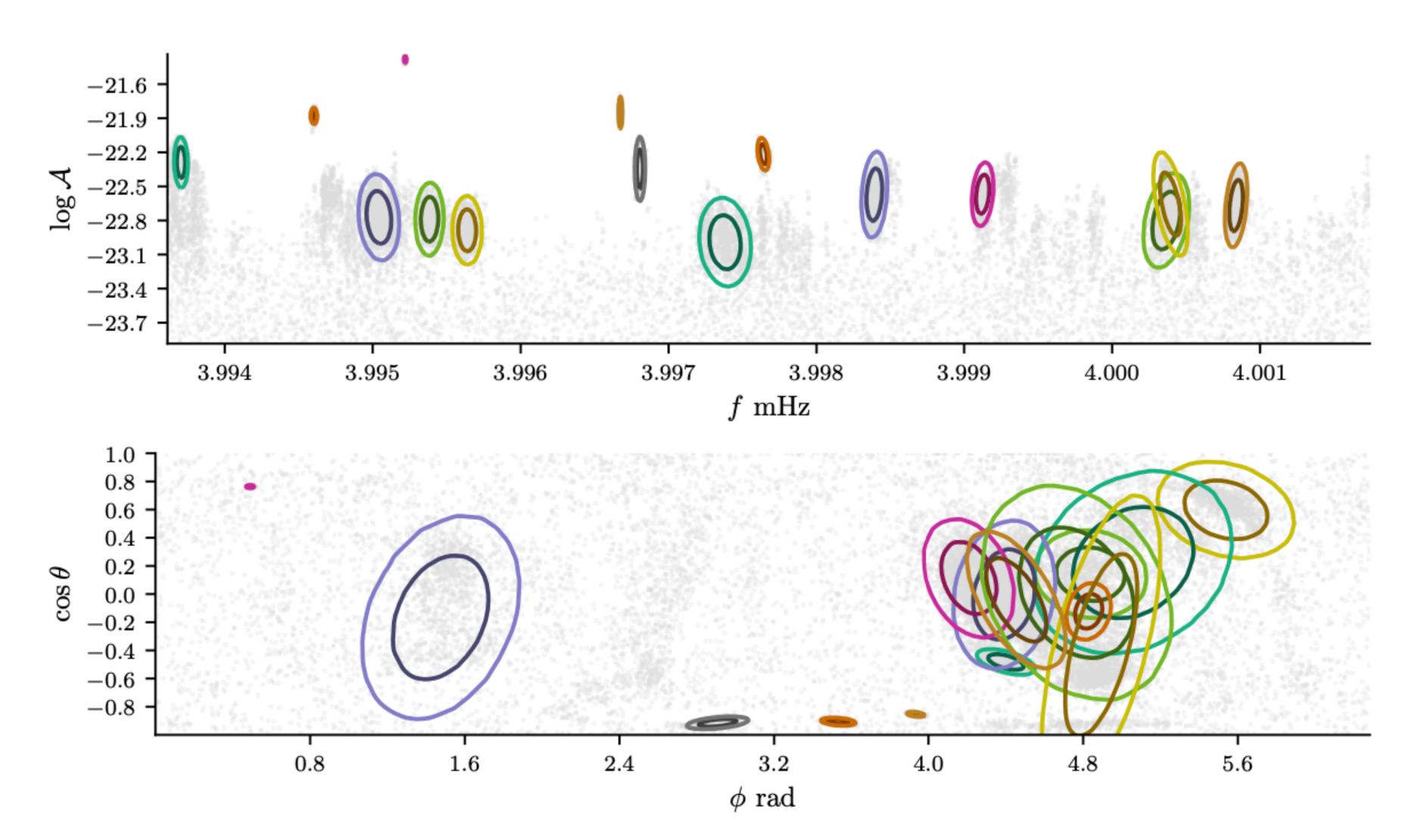
Building up the solution - "time annealing"



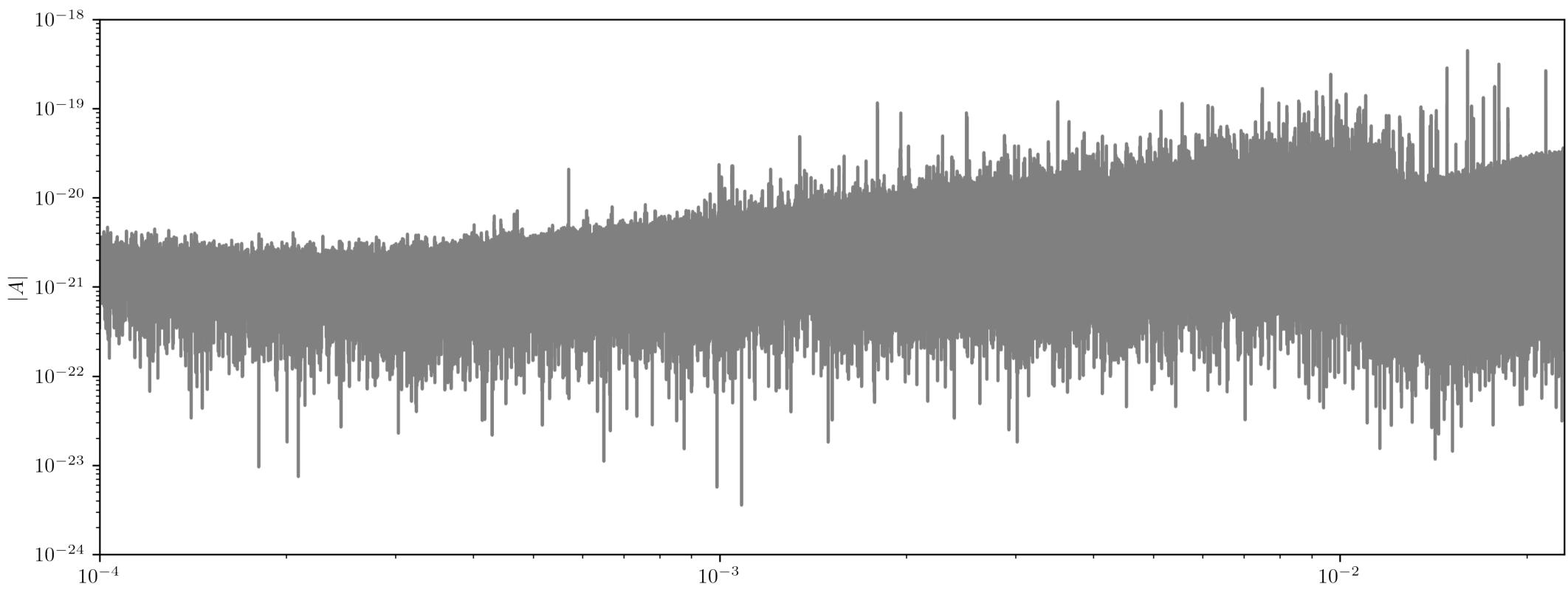
We used 1 month -> 3 months -> 6 months -> 12 months

 N_2 Multivariate Gaussian Proposals

Building up the solution - "time annealing"

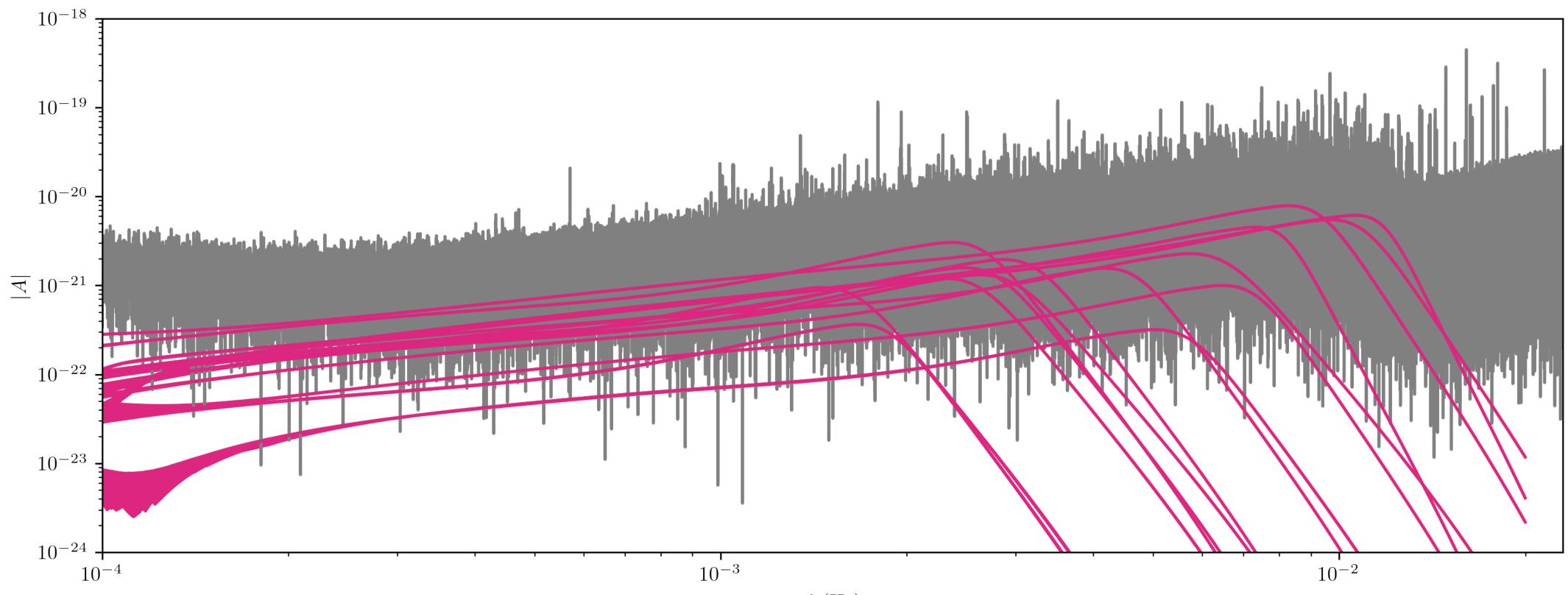


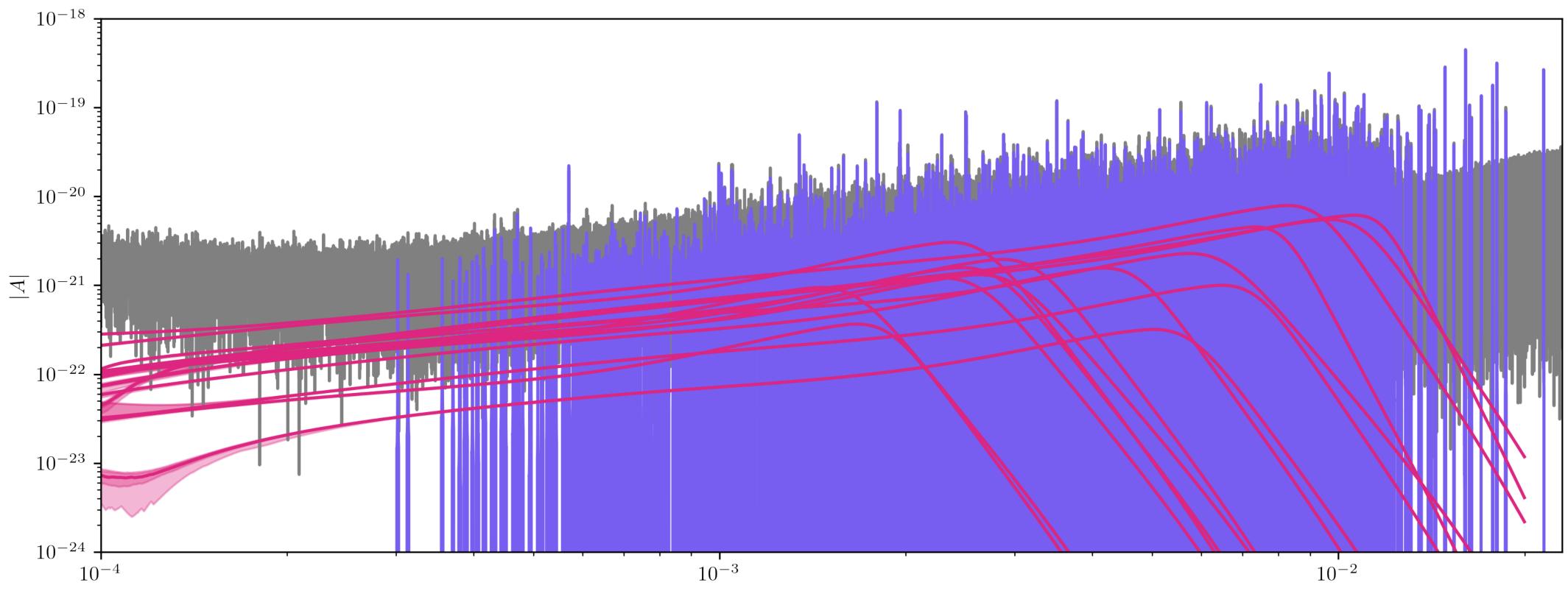
We used 1 month -> 3 months -> 6 months -> 12 months

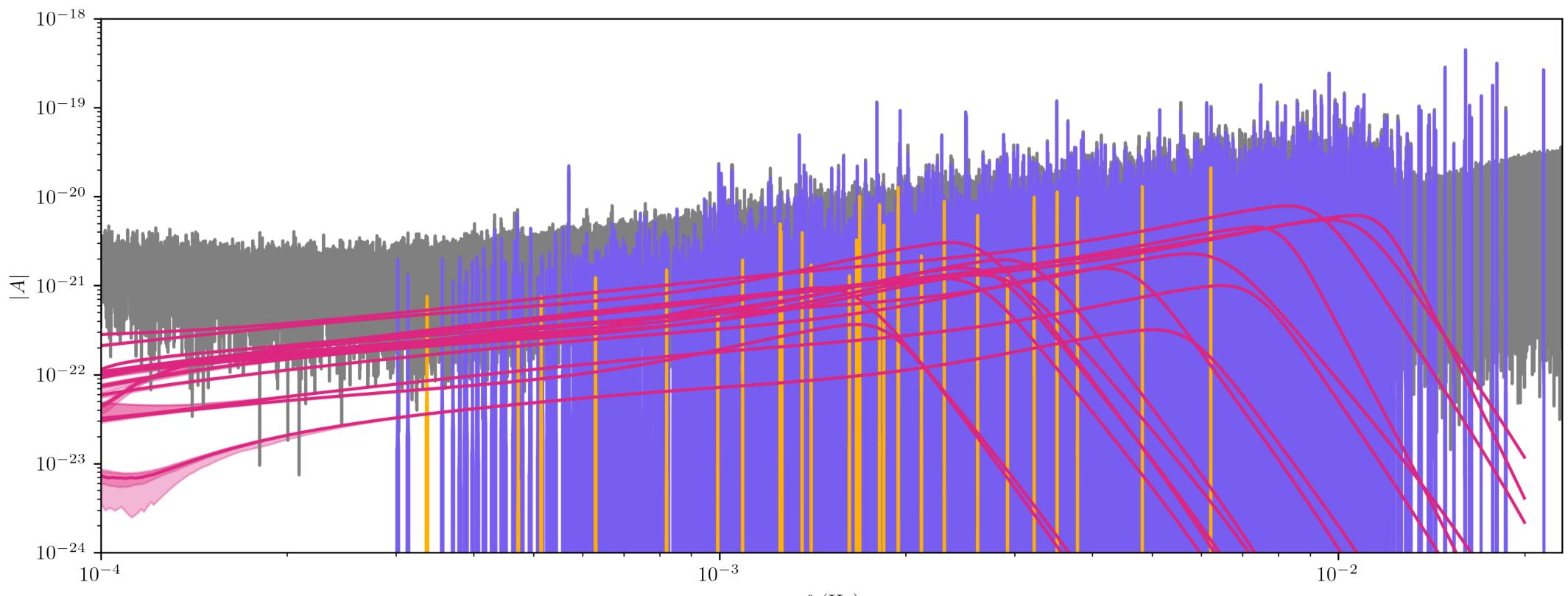


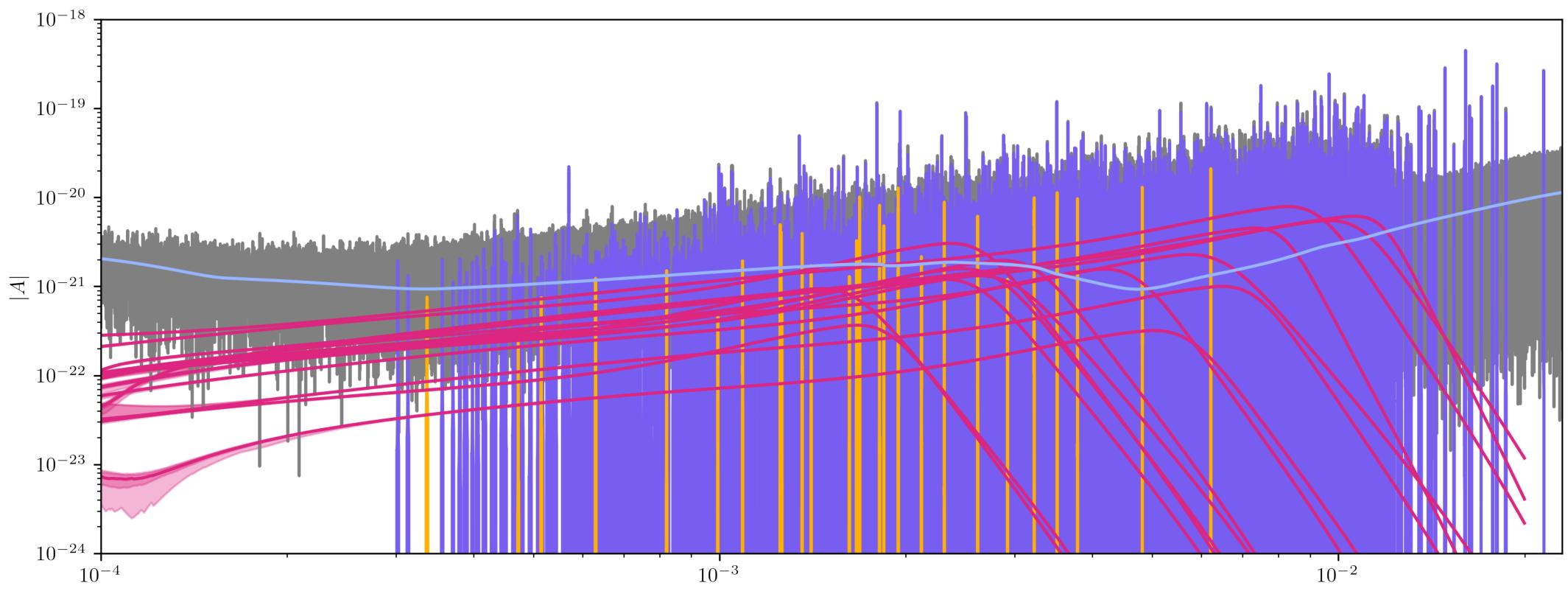
f (Hz)

[Litttenberg & Cornish, arXiv: 2301.03673]

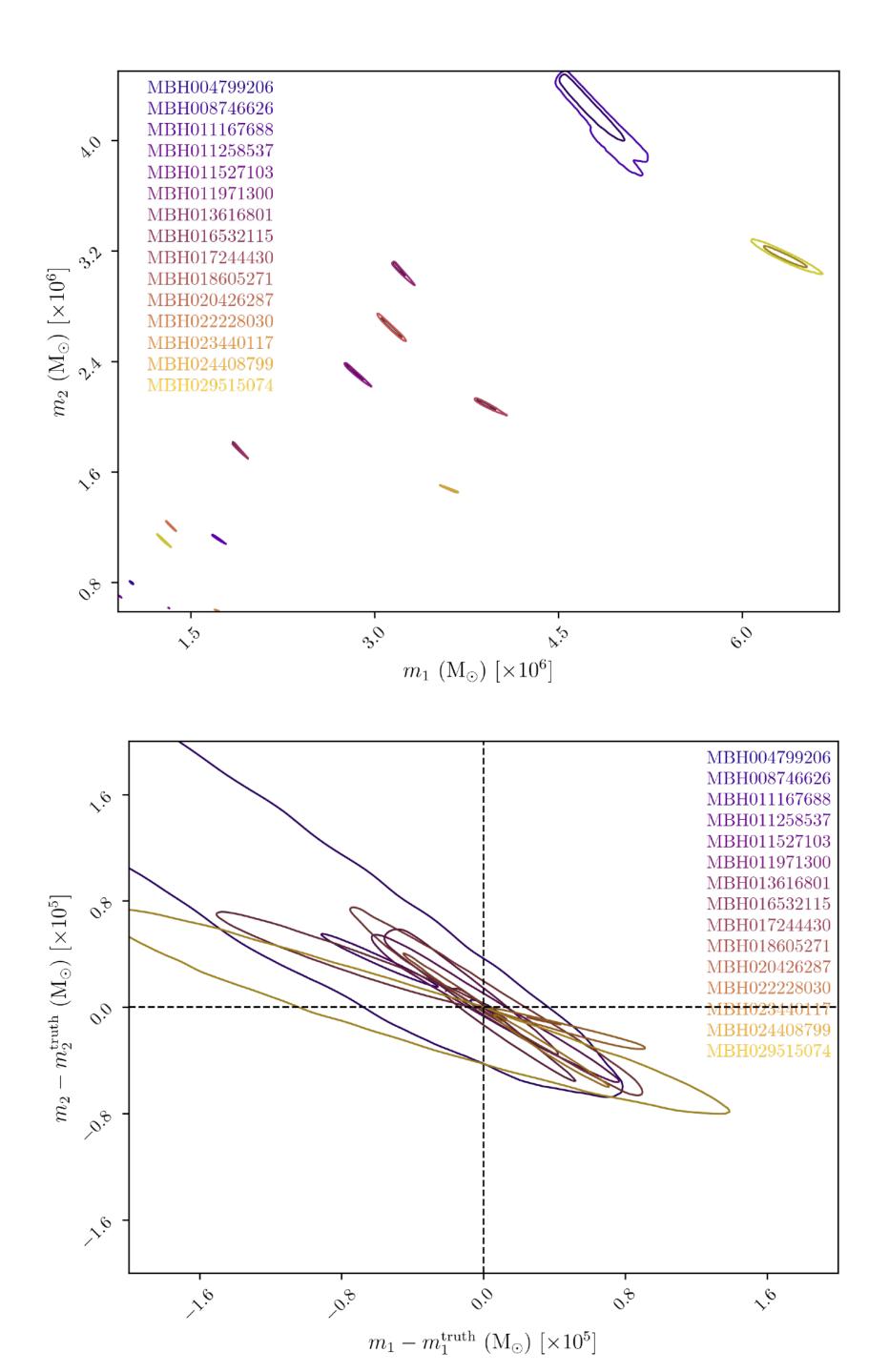




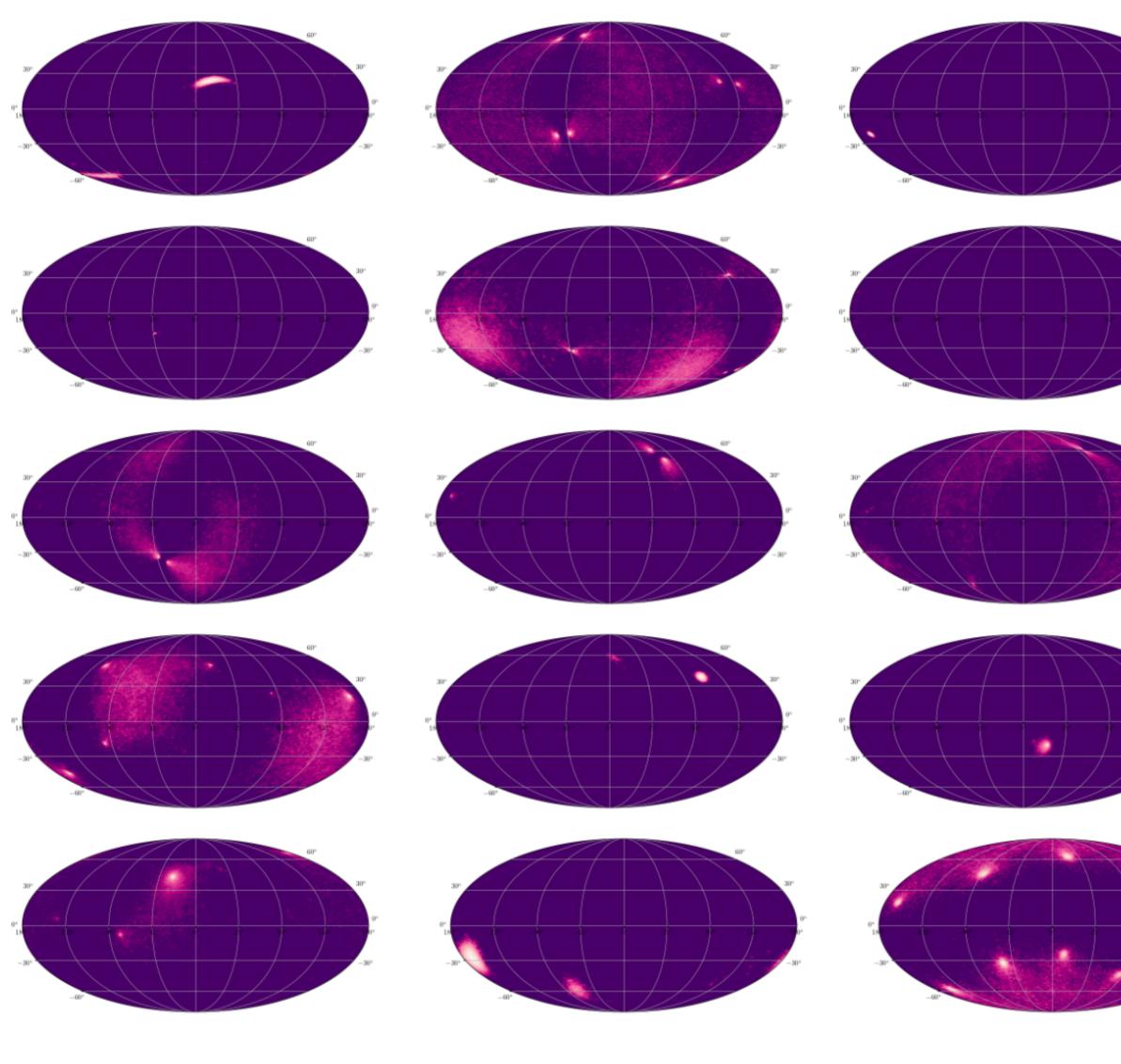


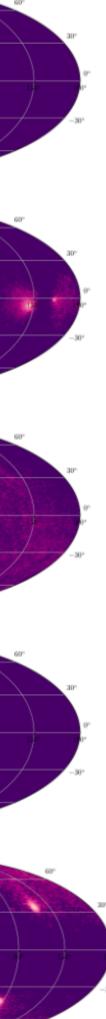


Run time ~ 2 days on AWS, \$12K

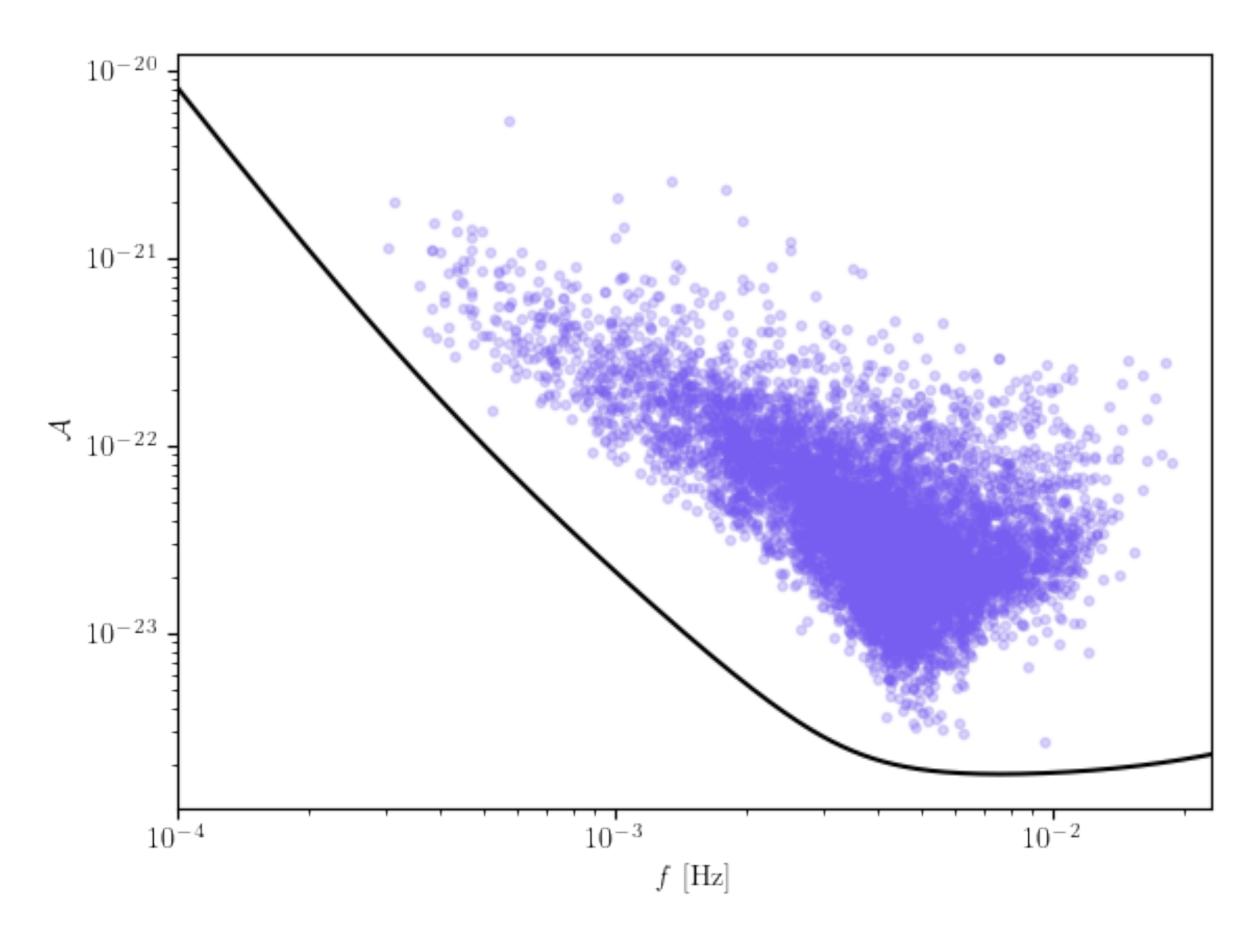


12 months of Sangria data - MBHBs

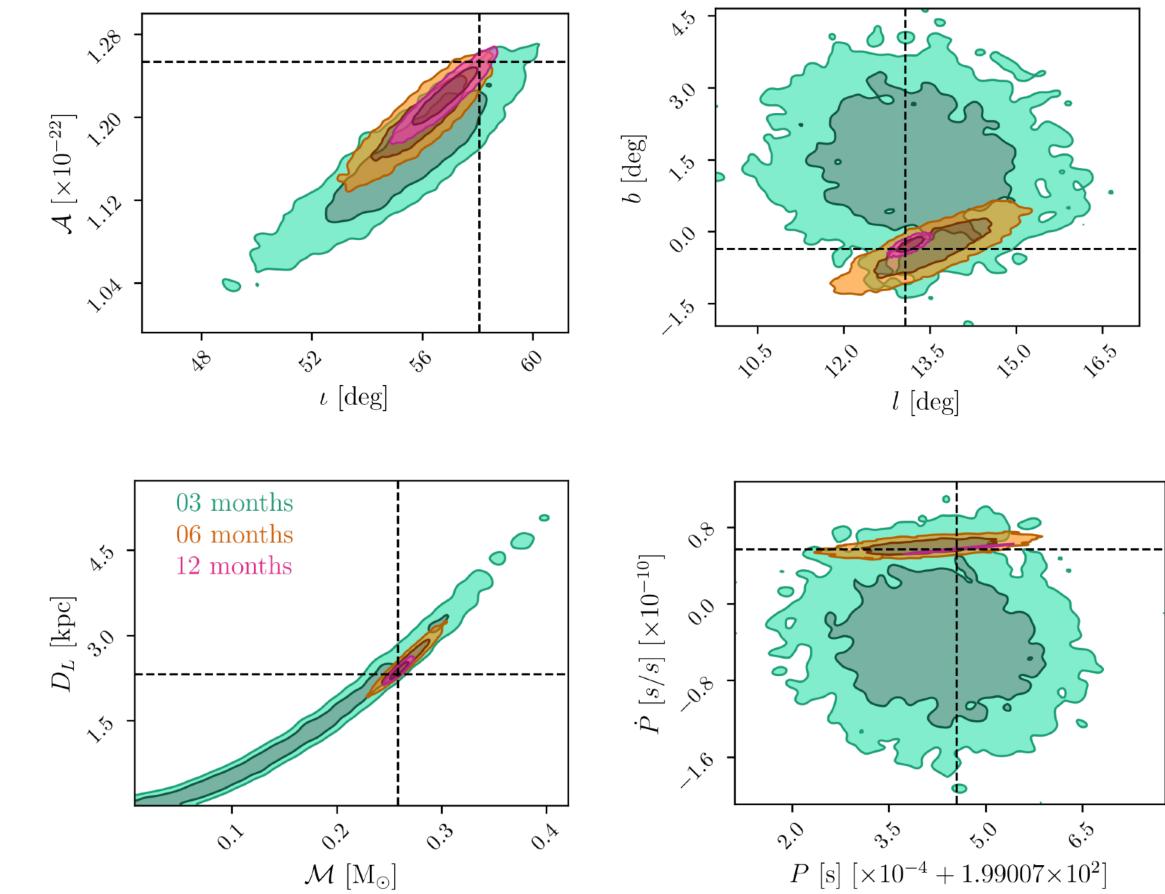




Sangria data - Galactic Binaries

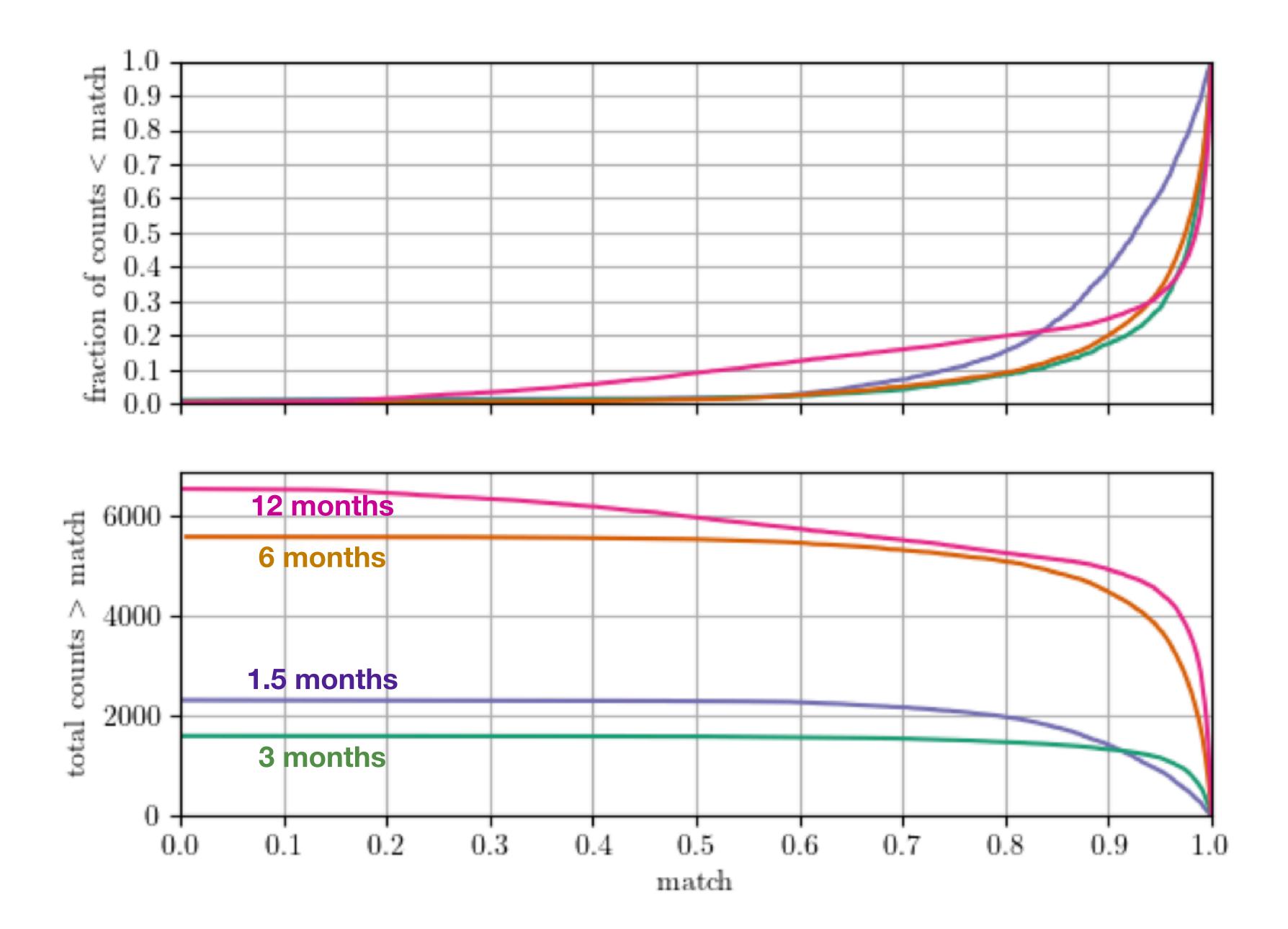


All candidate sources at 12 months



Example of how a source resolves with time

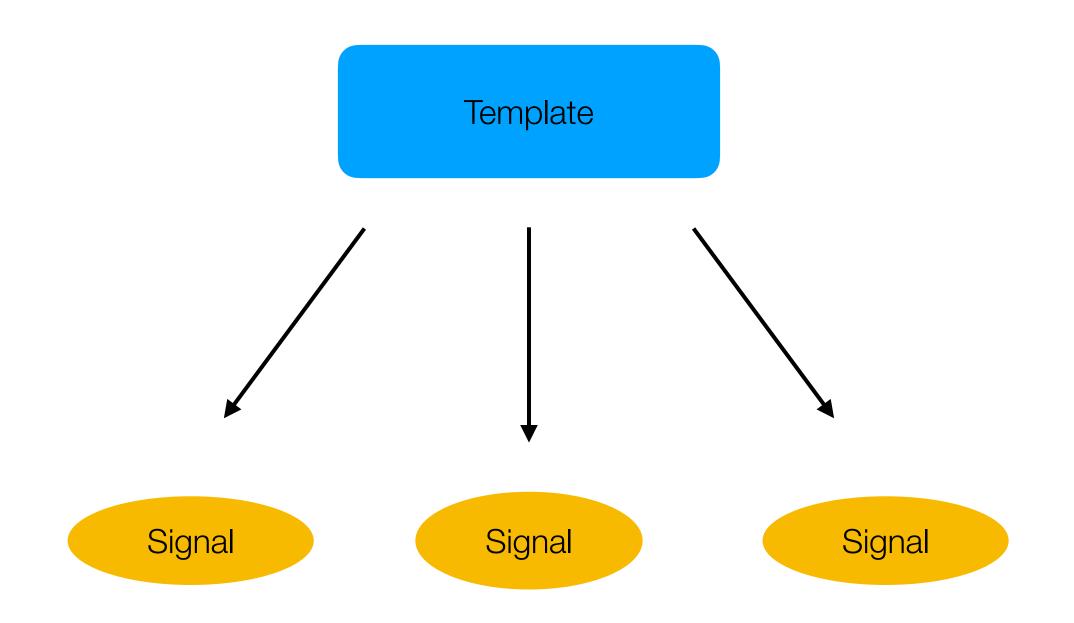
GB matches over time for 90+% confident detections



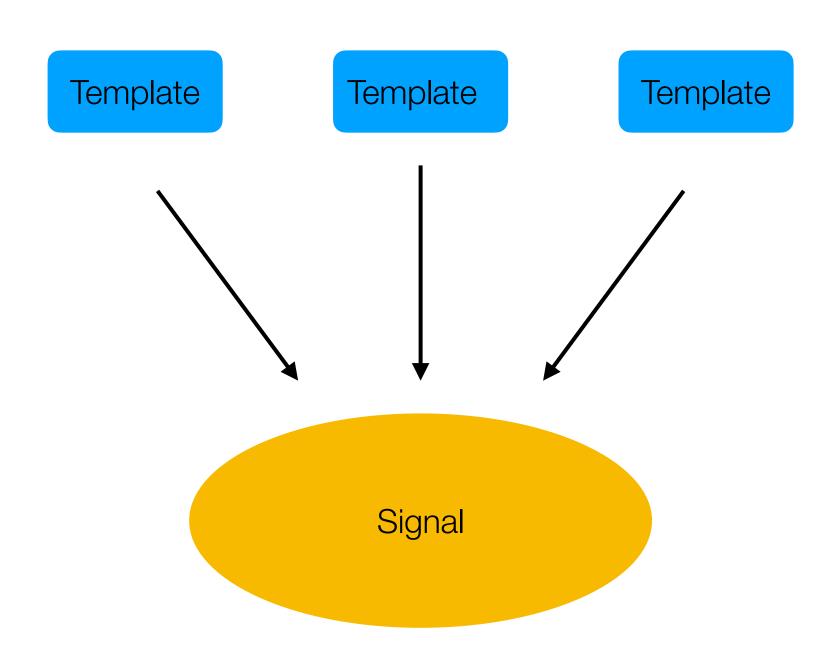
Theory: $M \approx 1 - \frac{D}{2 \, \text{SNR}^2}$

Galactic Binaries - what went wrong at 12 months?

One to Many

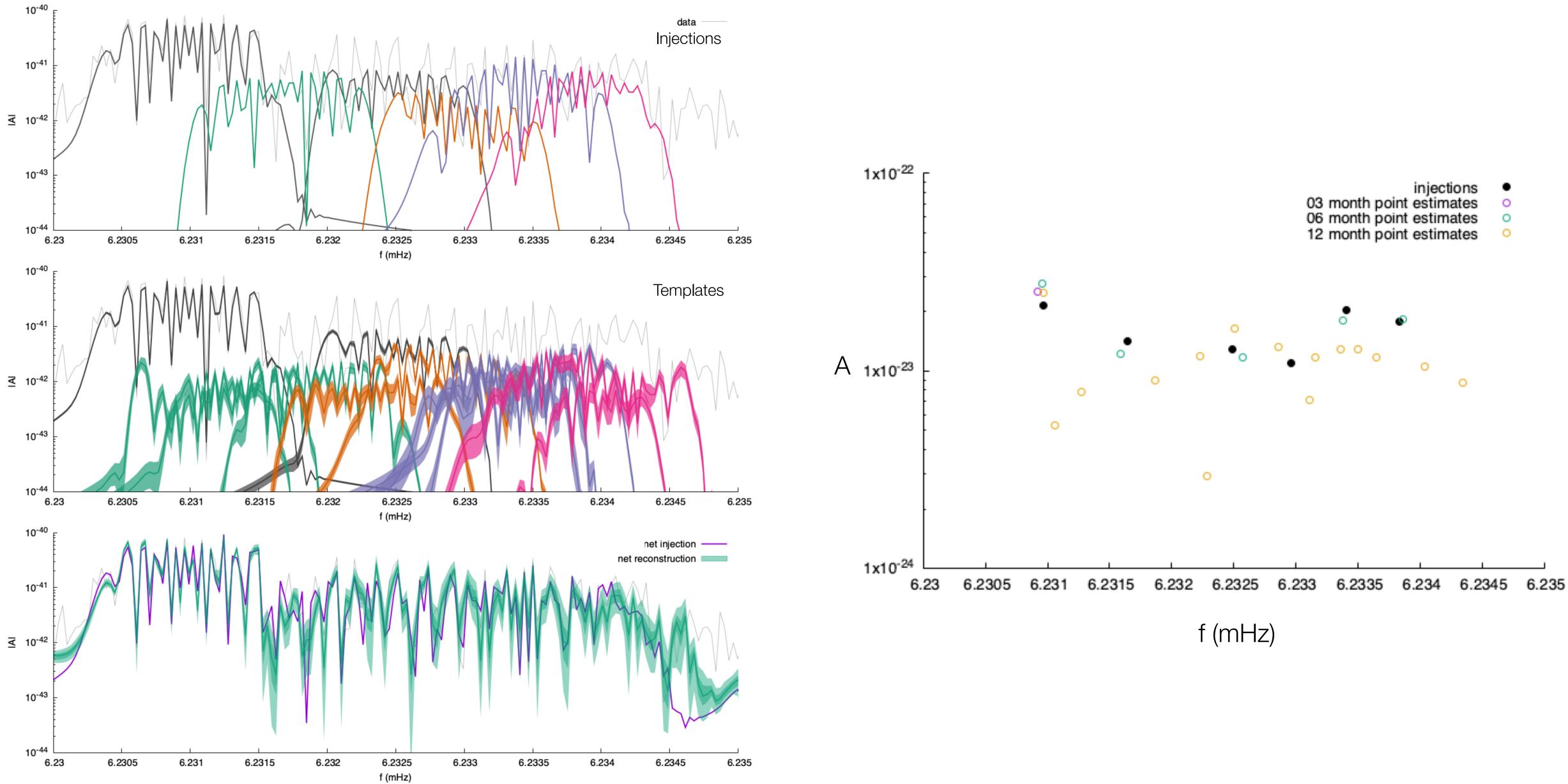


Can be the right answer in a Bayesian sense



Never the right answer - poor sampling

Galactic Binaries - what went wrong at 12 months?



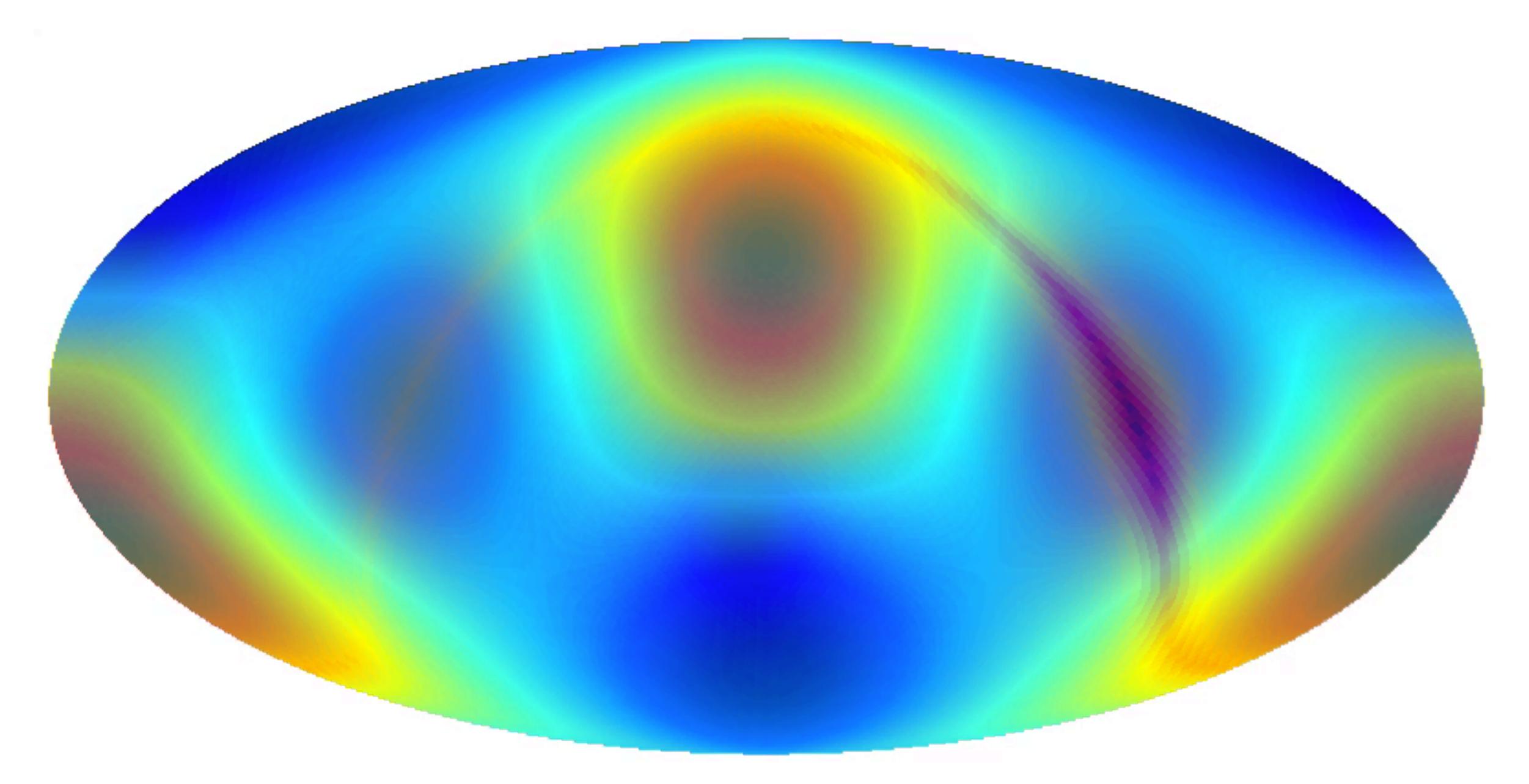
How to do better?

- Better proposals easiest fix is to increment by smaller amounts in time
- Time-frequency modeling of signals and noise
- Include all three data channels, A, E & T
- Treat the unresolved binaries as a stochastic background (signal), and model the noise component by component
- Include a galaxy shape prior with hyper-parameters for bulge radius, disk radius, disk height etc

How to do better?

- Better proposals easiest fix is to increment by smaller amounts in time
- Time-frequency modeling of signals and noise
- Include all three data channels, A, E & T
- Treat the unresolved binaries as a stochastic background (signal), and model the noise component by component
- Include a galaxy shape prior with hyper-parameters for bulge radius, disk radius, disk height etc

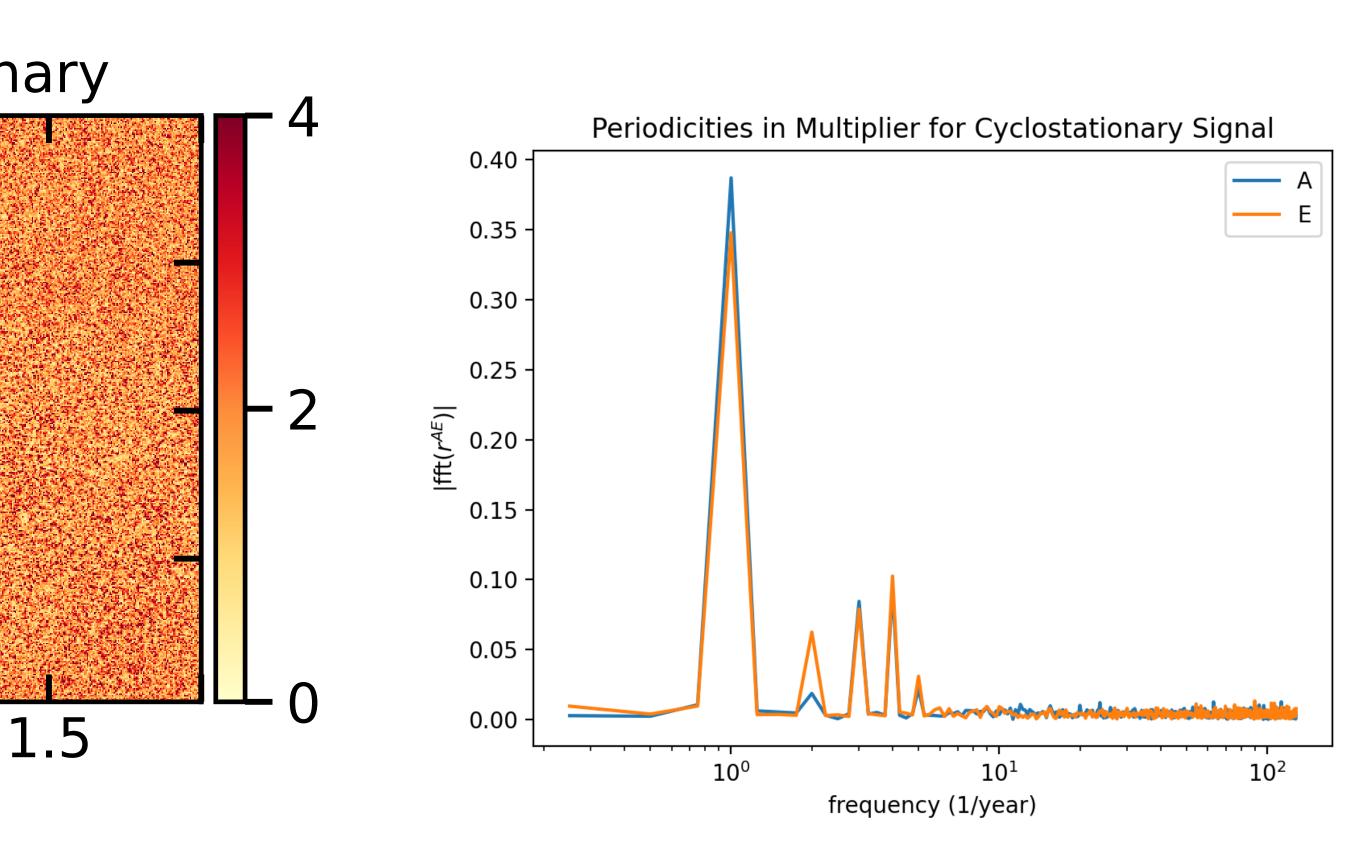
Non-Stationary Data



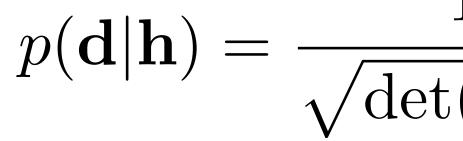
Cyclostationary Noise

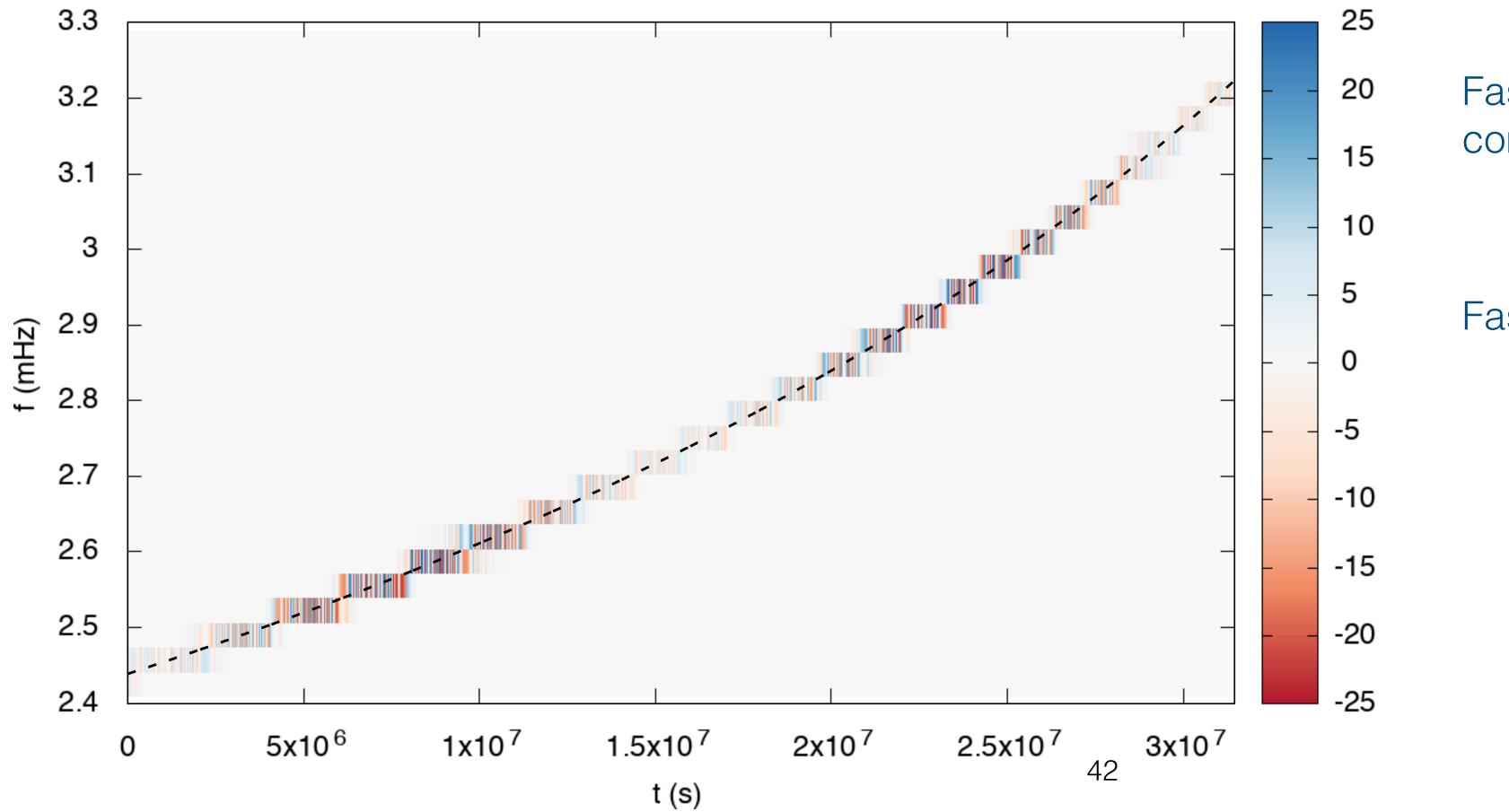
Constant Cyclostationary 3 (zHm) Ч— 1 0.5 1.5 0.5 1.0 t (yr) t (yr)

Whitening using constant PSD and dynamic PSD



Wavelet domain waveforms





$$\frac{1}{(2\pi\mathbf{C})}e^{-\frac{1}{2}(\mathbf{d}-\mathbf{h})^{\dagger}\mathbf{C}^{-1}(\mathbf{d}-\mathbf{h})}$$

Fast wavelet transforms of the signals for computational efficiency

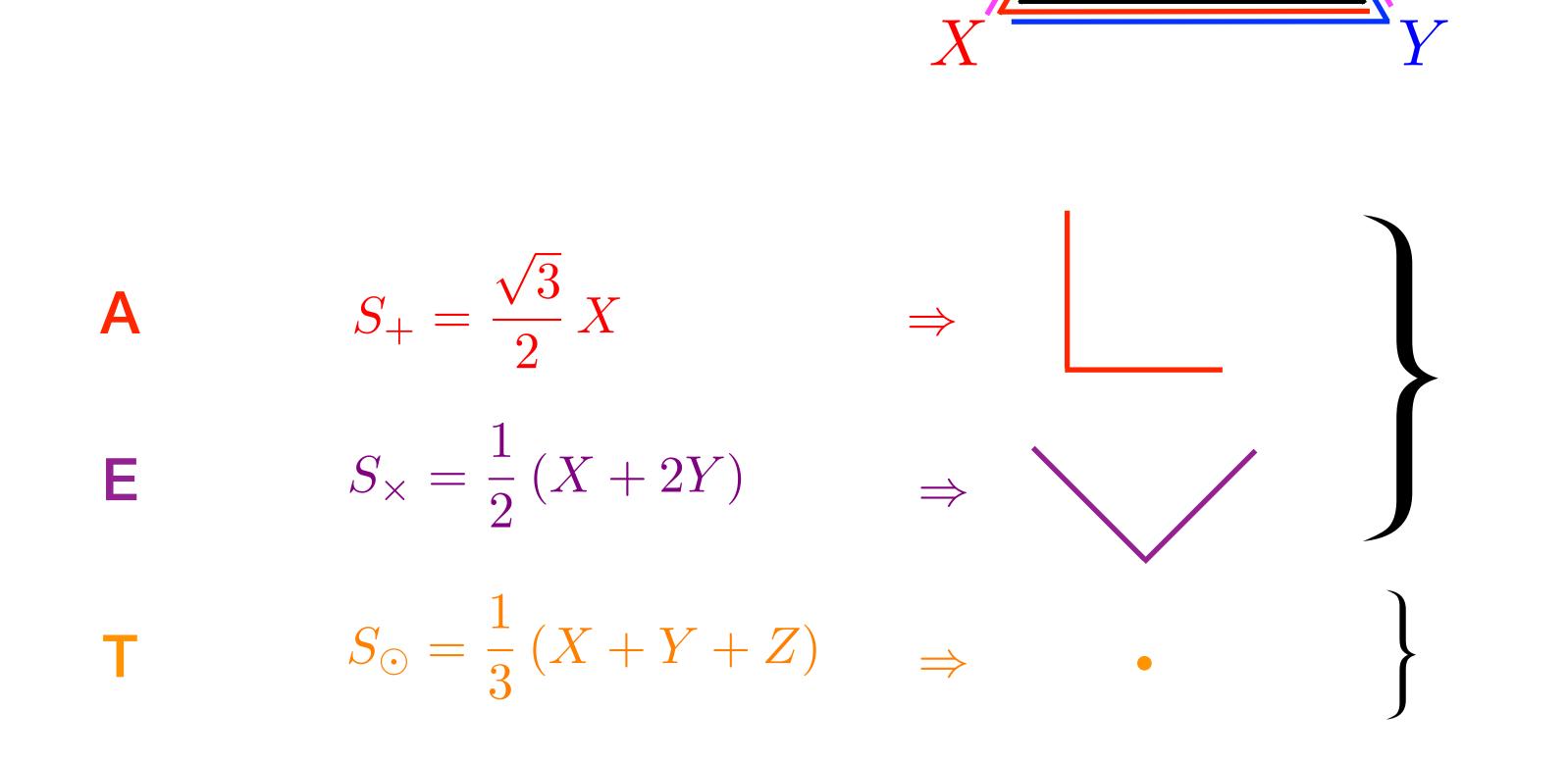
Faster than frequency domain, \sqrt{N} scaling

[Cornish, Phys Rev D **102**, 124038 (2020)]

How to do better?

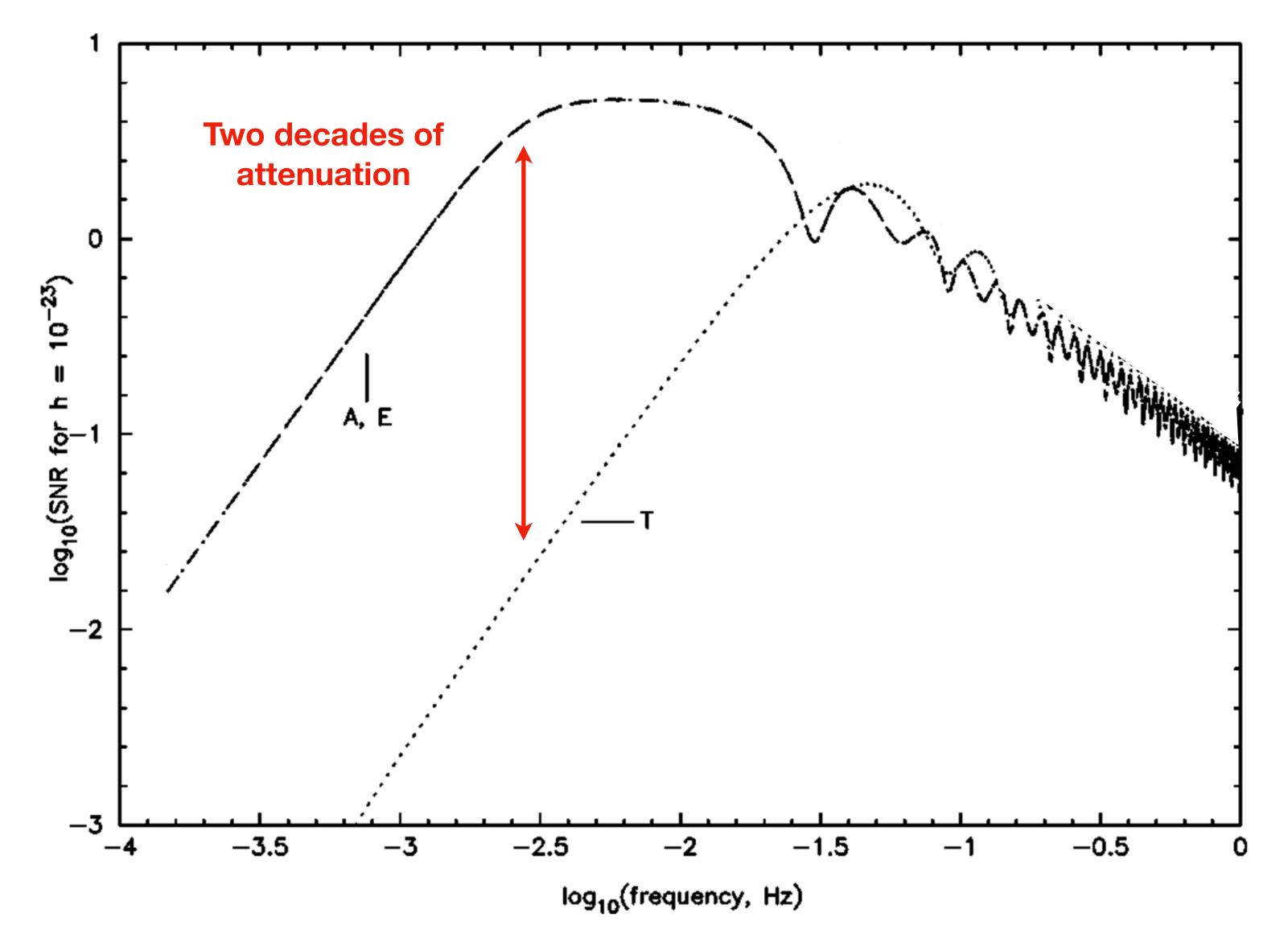
- Better proposals easiest fix is to increment by smaller amounts in time
- Time-frequency modeling of signals and noise
- Include all three data channels, A, E & T
- Treat the unresolved binaries as a stochastic background (signal), and model the noise component by component
- Include a galaxy shape prior with hyper-parameters for bulge radius, disk radius, disk height etc

Multiple Data LISA Channels



Sensitive to GWs

Insensitive to GWs



LISA Sensitivity - T channel as noise monitor

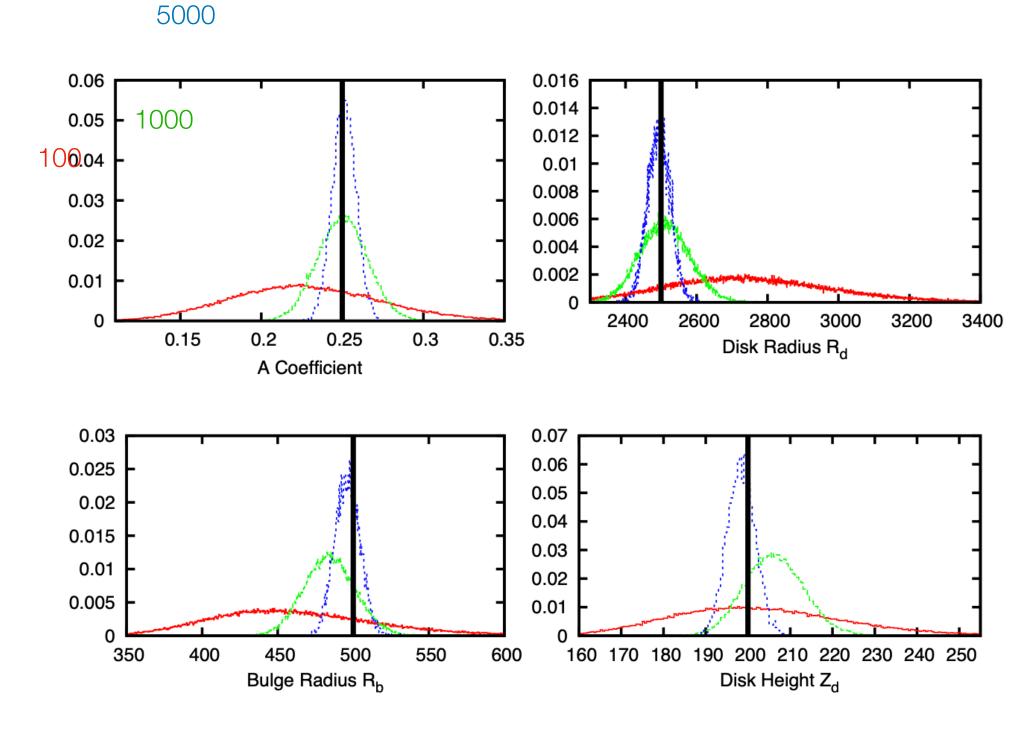
Key to detecting a stochastic background

[Prince et al, Phys. Rev. D66 (2002)] [Tinto, Armstrong & Estabrook, Phys.Rev.D63 (2001)] [Hogan & Bender, Phys. Rev. D64 (2001)] [Adams & Cornish, Phys. Rev. D86 (2010)]

How to do better?

- Better proposals easiest fix is to increment by smaller amounts in time
- Time-frequency modeling of signals and noise
- Include all three data channels, A, E & T
- Treat the unresolved binaries as a stochastic background (signal), and model the noise component by component
- Include a galaxy shape prior with hyper-parameters for bulge radius, disk radius, disk height etc

 $\rho(x, y, z) = \rho_0 \left(A_b e^{-r^2/R_b^2} + (1 - A_b) e^{-\sqrt{x^2 + y^2}/R_d} \operatorname{sech}^2(z/Z_d) \right)$



[Adams, Cornish & Littenberg, PRD 86, 124032 (2012)

Galaxy shape prior with hyper-parameters

