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Data analysis 101
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Data analysis 10
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Data analysis 10
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h(t, 1) = A cos2aft + )

p(h) = p(A)

Same Idea for LISA, just with hundreds of thousands of parameters
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LISA Sources
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LIGO/NVirgo

® Short duration, non overlapping

® | ow Latency Search
® Maximum likelihood inspired
® Analyze short time segments

® (rid based search, simple templates

® | onger latency Bayesian follow up

® Also Continuous Wave, Un-
modeled and Stochastic searches

LISA

® Millions of overlapping signals

® High dimensional search space

® Grid based searches impractical

® Stochastic search methods

® Signal duration often
comparable to mission lifetime

® Need a Global Fit: Binaries of all
kinds, stochastic signals and un-
modeled signals. All together




Because of the signal overlaps, a global fit to all the signals has to be performed
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ABSTRACT -
The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands
of low-frequency gravitational wave signals. This presents a data analysis challenge that is very O

different to the one encountered in ground based gravitational wave astronomy. LISA data analysis
requires the identification of individual signals from a data stream containing an unknown number of
overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed
in order to avoid biasing the solution. However, performing such a global fit requires the exploration of

an enormous parameter space with a dimension upwards of 50000. Markov Chain Monte Carlo
(MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms 5



The Global Solution

_:_ikelihooc. functipn p(d|X) — 1 6—%(d—h)-C_1-(d—h)
or Gaussian noise \/(ZW)MdetC
N
h = Z hi = GW Signal model N unknown, mix of signal types
1=1
C' — noise correlation matrix Jointly inferred with signal model . Up to M? cost to invert

—

A = model parameters Signal and noise ©(10°) parameters



The Global Solution

<elihood function p(d‘X) 1 e —1(d—h)-C™"-(d—h)

for Gaussian noise

v/ (2m)MdetC

log L = (d\h)——(h\h) = ZlogL ——Z(h )
7]

Signal overlaps - why we need

Per-source likelihood :
a global solution



Example: SMBHB-GB Signal Overlaps
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Example: SMBHB-GB Signal Overlaps

"] (hemihos) = (

Instantaneous Random phase
BH SNR mismatch

l

v

PGB COS 0

SBH(fx)>1/2
Sn(fX)

~ 107" OBH PGB COS 0

>

l

Individual overlaps are small, but there will be tens of thousands of them

Z(hBH\hGB) ~ \/NGB 10~ pBH PGB ~ 0.2 pBH PGB

GB

Significant bias if not solved for simultaneously

[see Cutler & Harms (2008), Robson & Cornish (2018)]



Global Fit via Blocked Sampling

New Dat i i |
ew Lata » Transdimensional Markov Chain

Stochastic MOnte CarIO (RJMCMC)

\i * Blocked Metropolis Hastings —
\ / update each component of the
UCB signal/noise model in circular
sweeps
* Only pass residuals - decouples
UGW / the analysis types

new data arrives

SMBH
\/ * Update the fit every ~week as
SOBH



How does the stochastic background fit into all this”

4 1 1 —1
d|)\) = e~ 2(d—h)-C~"-(d—h)
P = S aeic
N
h = h; = GW signal model
i=1

h . ~ 2mift Just another template to be
— le € included in the signal model
f

[Cornish & Romano, PRD 87, 122003 (2013)] [Lentati et al, PRD 87, 104021 (2013)] [Romano & Cornish, LRR 20 (2017)]



How does the stochastic background fit into all this”

h o ~ 2mift Just another template to be
— le € iIncluded in the signal model
f

“Stochastic template”. Gaussian prior with spectrum Sj,(f)

—dy c'l"]iI<

= TT——exp [ -2
P = rfI 225\ Sih)

[Cornish & Romano, PRD 87, 122003 (2013)] [Lentati et al, PRD 87, 104021 (2013)] [Romano & Cornish, LRR 20 (2017)]



How does the stochastic background fit into all this”

_ 1 — Ay dy
— 27Z'lft p(a ) — I eXP -
h=dape =11z Si(/) Si(f)

ypically we are not interested in the particular realization of the random amplitudes so we
can integrate them out. e.qg. for stationary data in the frequency domain we get

— I (A 7 % -1/3 7
PA) = S exp | =) ~ RGP ) = )

Overlap reduction function (LIGO), Hellings-Downs Curve (PTAS)

G,i(f) = 05, :())+7;(f) 5p(f) Yii (f) = ﬁ /(F+( VE () + F () F) (7)) 2/ F 500 4y,

[Cornish & Romano, PRD 87, 122003 (2013)] [Lentati et al, PRD 87, 104021 (2013)] [Romano & Cornish, LRR 20 (2017)]



f preferred, can instead subtract the stochastic background signal

(This is for Germano and Chiara, who at the cosmology working group meeting in Hamburg,
October 2016 kept on talking about subtracting the stochastic background)

residuals (s)
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Pulsar Timing example.

Just 5 frequency components needed to

subtract stochastic signal




residuals (s)

Draws from the MCMC

log10(PSD)
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| ISA Data Challenge: Sangria Edition
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L ISA Global Fit (One approach)

® [rans-dimensional modeling using Reversible Jump MCMC
e Build highly informative jump proposal from initial search stage

® Secarches typically use stochastic hill climbing, approximate likelihoods,
ohenomenological models, likelihood maximization etc (anything goes)

® [Ime annealing - build up solution as new data arrives. Posteriors become
proposals for next stage

[Litttenberg & Cornish, arXiv: 2301.0367 3]



Trans-dimensional Inference
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L ow latency single-source search results used as proposals in global fit

F-statistic maps for GBs

f = 18.311 mHz f—18.313 mHz

[Littenber, Cornish, Lackeos & Robson, arXiv:2004.08464]
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Building up the solution - “time annealing”

AJ_\ ﬁ
1 week N, posteriors N, Multivariate Gaussian Proposals 2 weeks

N, posteriors

Etcetera

3 weeks N, Multivariate Gaussian Proposals

We used 1 month -> 3 months -> 6 months -> 12 months



cos @

Building up the solution - “time annealing”

—21.9 - 1 '

< a2 '
5 00g | 0 ) ¢
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We used 1 month -> 3 months -> 6 months -> 12 months



12 months of Sangria data - A TDI channel

10—18 :

10—19 -

10—20 -

i 10—21

10722 -
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[Litttenberg & Cornish, arXiv: 2301.0367 3]



12 months of Sangria data - A TDI channel
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12 months of Sangria data - A TDI channel




12 months of Sangria data - A TDI channel




12 months of Sangria data - A TDI channel

Run time ~ 2 days on AWS, $12K
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Sangria data - Galactic Binaries
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All candidate sources at 12 months Example of how a source resolves with time



GB matches over time for 90+% confident detections

Theory: M ~ 1
Y 2 SNR2

fraction of counts < match

= G000 12 months

§ 6 months

‘?2

g 1.5 months

S 00— \
S

3 months \

{4 T T T T T T i i T
0.0 (.1 .2 (.3 (.4 (.5 (.6 0.7 (.8 (1.9 1.0




Galactic Binaries - what went wrong at 12 months?

One to Many Many to One

N/

Can be the right answer in a Bayesian sense Never the right answer - poor sampling
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Galactic Binaries - what went wrong at 12 months”?
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How to do better?

® Better proposals - easliest fix is to Increment by smaller amounts in time
® [ime-frequency modeling of signals and noise
e |[nclude all three data channels, A, E & T

® [reat the unresolved binaries as a stochastic background (signal), and model
the noise component by component

® [nclude a galaxy shape prior with hyper-parameters for bulge radius, disk
radius, disk height etc



How to do better?

® Better proposals - easiest fix is to Increment by smaller amounts in time
® [me-frequency modeling of signals and noise
e |nclude all three data channels, A, E & T

® [reat the unresolved binaries as a stochastic background (signal), and model
the noise component by component

® [nclude a galaxy shape prior with hyper-parameters for bulge radius, disk
radius, disk height etc



Non-Stationary Data
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f (mHz)
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Fast wavelet transforms of the signals for
computational efficiency

Faster than frequency domain, \/N scaling

[Cornish, Phys Rev D 102, 124038 (2020)]



How to do better?

® Better proposals - easiest fix is to Increment by smaller amounts in time
® [Ime-frequency modeling of signals and noise
e |nclude all three data channels, A, E & T

® [reat the unresolved binaries as a stochastic background (signal), and model
the noise component by component

® [nclude a galaxy shape prior with hyper-parameters for bulge radius, disk
radius, disk height etc



Multiple Data LISA Channels
Z
XAY

X =
Sensitive to GWs

Sx = 5 (X +2Y) = \/

} Insensitive to GWSs



109,4(SNR for h = 10~%)

LISA Sensitivity - T channel as noise monitor

Two decades of
attenuation

Key to detecting a stochastic background

Prince et al, Phys. Rev. D66 (2002)]

Tinto, Armstrong & Estabrook, Phys.Rev.D63 (2001)]
[Hogan & Bender, Phys. Rev. D64 (2001)]

‘Adams & Cornish, Phys. Rev. D86 (2010)]
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How to do better?

® Better proposals - easiest fix is to Increment by smaller amounts in time
® [Ime-frequency modeling of signals and noise
e |nclude all three data channels, A, E & T

® [reat the unresolved binaries as a stochastic background (signal), and model
the noise component by component

® |nclude a galaxy shape prior with hyper-parameters for bulge radius, disk
radius, disk height etc



Galaxy shape prior with hyper-parameters
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