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Figure 3.10: Left panel, SI 7.2a: the detection of a cosmological SGWB. Here the presence of the injected FOPT
SGWB (green line) can be identified in the simulated LISA data imposing a hard prior on the instrument noise, for
two tested values of the relative uncertainty on the noise + astrophysical signals: " = 5% and 30%. The frequency
region over which the signal is identified (Bayes factor logBFOPT > 50) is shown as the coloured regions: orange,
" = 30% and yellow, " = 5%. Right panel, SI 7.2b: The outcome of a signal reconstructing procedure based on
searching for the FOPT SGWB (green, dashed line: injected signal) as a series of power laws in frequency bins. The
SGWBinner code has been run on simulated data (red dots) containing the FOPT SGWB, the astrophysical signals
(sBHBs SGWB in dark blue and Galactic foreground in ligth blue), and the instrument noise (black). The code has
iterativelly merged several initial frequency bins in two final ones. The presence of a break in the FOPT SGWB can
be reconstructed piece-wise, with two power laws (green, solid). The 2� error on the reconstructed signals and noise
are shown as shaded areas (invisible fore the astrophysical signals and the instrument noise).

the bin i ). Simultaneously, a template-based search is performed both for the astrophysical signals
(sBHBs SGWB and GB foreground) and for the instrument noise. The noise template has two
parameters: A (mass acceleration noise) and P (optical metrology system noise) [102]. The prior
for the noise parameters is established using the T -channel. The posterior for the A-channel noise
and signals is minimised independently in each bin, over the full set of parameters: the two noise
parameters (A, P ), the two astrophysical signals’ parameters (AGB,AsBHB) (the spectral index of
the sBHBs SGWB is fixed to 2/3), and the two FOPT SGWB parameters per bin i (log⌦i , ni ).
For all pairs of neighbouring bins, the code iteratively checks whether merging them is statistically
favoured. The result is shown in the right panel of figure 3.10: the merging procedure gives two
final bins (horizontal dashed grey lines), allowing to recognise the presence of a break in the FOPT
SGWB spectral shape (solid green lines). In table 3.12 we report the SNR and the marginalised 2�
errors on the FOPT SGWB parameter set for each bin, as well as on the other parameters of the
search.

Determining the cosmological SGWB spectral shape constitutes the first step for the identifi-
cation of the early universe process that generated it. LISA can reconstruct basic features in
the spectral shape of physically motivated cosmological SGWBs.

3.7.3 Characterise the large-scale anisotropy of the SGWB

Similarly to the CMB, the SGWB is expected to be statistically homogeneous and isotropic in the
cosmological frame, and therefore to feature a dipole fluctuation [101], induced by the motion of
the detector. This guaranteed SGWB dipole anisotropy is potentially detectable by LISA [41], if
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Talk outline

❖ LISA mission status

❖ Parameter estimation for SGWBs with LISA

❖ Status of LISA SGWB characterisation

❖ Some outstanding challenges

- Lack of noise knowledge

- Astrophysical foregrounds

- Source confusion

- Instrumental data gaps and glitches



LISA mission status
❖ LISA expected to be adopted in January 2024. Red Book, Science Management 

Plan and Science Implementation Requirements Document being prepared now.

❖ Red Book (among other things) describes science objectives of mission. There are 
three relating to SGWB
❖ Characterise the astrophysical SGWB

- What is the amplitude and spectral tilt of the astrophysical SGWB?

- What does it tell us about its source population?

❖ Measure, or set upper limits on, the spectral shape of the cosmological 
SGWB

- Is there a SGWB of stochastic origin in the LISA data?

- Can we reconstruct the cosmological SGWB spectral shape, to gather information about 
the process generating it? 

❖ Characterise the large-scale anisotropy of the SGWB

- Is the SGWB frame the same as the SMB one?

- What are the host galaxies of sBHBs?
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Figure 3.10: Left panel, SI 7.2a: the detection of a cosmological SGWB. Here the presence of the injected FOPT
SGWB (green line) can be identified in the simulated LISA data imposing a hard prior on the instrument noise, for
two tested values of the relative uncertainty on the noise + astrophysical signals: " = 5% and 30%. The frequency
region over which the signal is identified (Bayes factor logBFOPT > 50) is shown as the coloured regions: orange,
" = 30% and yellow, " = 5%. Right panel, SI 7.2b: The outcome of a signal reconstructing procedure based on
searching for the FOPT SGWB (green, dashed line: injected signal) as a series of power laws in frequency bins. The
SGWBinner code has been run on simulated data (red dots) containing the FOPT SGWB, the astrophysical signals
(sBHBs SGWB in dark blue and Galactic foreground in ligth blue), and the instrument noise (black). The code has
iterativelly merged several initial frequency bins in two final ones. The presence of a break in the FOPT SGWB can
be reconstructed piece-wise, with two power laws (green, solid). The 2� error on the reconstructed signals and noise
are shown as shaded areas (invisible fore the astrophysical signals and the instrument noise).

the bin i ). Simultaneously, a template-based search is performed both for the astrophysical signals
(sBHBs SGWB and GB foreground) and for the instrument noise. The noise template has two
parameters: A (mass acceleration noise) and P (optical metrology system noise) [102]. The prior
for the noise parameters is established using the T -channel. The posterior for the A-channel noise
and signals is minimised independently in each bin, over the full set of parameters: the two noise
parameters (A, P ), the two astrophysical signals’ parameters (AGB,AsBHB) (the spectral index of
the sBHBs SGWB is fixed to 2/3), and the two FOPT SGWB parameters per bin i (log⌦i , ni ).
For all pairs of neighbouring bins, the code iteratively checks whether merging them is statistically
favoured. The result is shown in the right panel of figure 3.10: the merging procedure gives two
final bins (horizontal dashed grey lines), allowing to recognise the presence of a break in the FOPT
SGWB spectral shape (solid green lines). In table 3.12 we report the SNR and the marginalised 2�
errors on the FOPT SGWB parameter set for each bin, as well as on the other parameters of the
search.

Determining the cosmological SGWB spectral shape constitutes the first step for the identifi-
cation of the early universe process that generated it. LISA can reconstruct basic features in
the spectral shape of physically motivated cosmological SGWBs.

3.7.3 Characterise the large-scale anisotropy of the SGWB

Similarly to the CMB, the SGWB is expected to be statistically homogeneous and isotropic in the
cosmological frame, and therefore to feature a dipole fluctuation [101], induced by the motion of
the detector. This guaranteed SGWB dipole anisotropy is potentially detectable by LISA [41], if
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LISA mission status
❖ SMP will stipulate (TBC) that there is an initial closed data period of ~18 

months. After that data will be released regularly (~once per year).

❖ Science on closed data will be done by Science Topical Panels focussing on 
specific science objectives.

❖ All data releases will include both TDI data and catalogues. After DR1, 
these will be accompanied by minimal science interpretation.

LISA Consortium Board | 8 May 20236

Data Release Policy

• Periodic Data Releases will be made throughout the mission (~once per year after ERST) 

• Scientific validation papers will be published with the data, ala Gaia 

• After DR1, science interpretation papers will not be published before the Data Release 

• See next chart for ERST and DR1
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DR1
Hardware commissioning during Cruise Phase

Data taking period - L1 produced daily DR2

L2 data production by LMC and NASA GS

L2 consolidation and L3 data Production
DR3

Consolidated L0-L3 data released on public archive

DR4

EARLY RELEASE SCIENCE TIME

Instrument and constellation commissioning

Launch and Cruise Phase Commissioning Nominal Science Phase
18 months 6 months 54 months (4.5 years)



LISA mission status
❖ Catalogues will include 

- parameter posteriors for all resolvable sources;

- a description of the stochastic component of the data streams; 

- (at best) minimal separation into instrumental, astrophysical and cosmological 
components.

❖ Current work on LISA data processing focuses on building the pipelines 
that will be used to construct the catalogues.

❖ SGWB community should

- prepare for science interpretation of measured backgrounds;

- lay groundwork for participation in STP(s) and in exploitation of open data;

- work with data analysts to ensure data products and associated tools produced 
by the ground segment are suitable for subsequent SGWB analysis.



 

•LISA Data Analysis requires a Global Fit of an unknown number of 
sources of all of these different types (see Cornish talk).

LISA Data Analysis

https://lisa-ldc.lal.in2p3.fr/ldc


LISA Data Analysis

 

•Typical strategy adopted is to 
iteratively update the solution 
for one source type and then 
move to the next.

•Solution will be continuously 
refined as new data is added.

•A key component of the 
analysis is variable 
dimensionality.

•SGWB and instrumental noise 
are components of the global fit.

https://lisa-ldc.lal.in2p3.fr/ldc


SGWB characterisation: likelihood
❖ One channel (Whittle) likelihood can be written

❖ With multiple channels (see, e.g., Adams & Cornish 2014)

❖ Can do maximum-likelihood estimation, or recover parameters of the 
background in a Bayesian analysis
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SGWB characterisation: unmodelled
❖ SGWBinner uses a flexible 

model for the signal 
component of the PSD, 
combined with a simple 2-
parameter model for the 
instrumental noise.

❖ Number of bins used for 
reconstruction allowed to vary 
to find optimal fit complexity.

❖ Successfully able to reconstruct  
a wide variety of background 
signals.

into longer data streams; conservatively, we analyze the chunks separately and combine

their reconstructed power spectra.

Simulation of the data stream. We start by Fourier transforming the data stream.

We consider frequencies ranging from a minimum frequency of fmin = 3 · 10�5Hz to a

maximum frequency fmax = 0.5Hz with a frequency spacing of �f ' 10�6Hz set by the

length of the time stream. Since the time stream is real, we shall work from now on with

positive frequencies only, and write the time data stream as

d(t) =
fmaxX

f=fmin

h
d(f)e�2⇡ift + d

⇤(f)e2⇡ift
i
. (3.7)

We assume that the stochastic gravitational wave background and the noise are stationary,

so that hd(t)d(t0)i = f(t � t
0), and have zero mean. The ensemble averages of the Fourier

coe�cients satisfy

hd(f)d(f 0)i = 0 and hd(f)d⇤(f 0)i = D(f)�ff 0 . (3.8)

The real and imaginary parts of d(f) are independent random variables with variance

D(f)/2. The same logic separately applies to the signal and noise. We further make the

hypothesis that the signal and the noise are Gaussian (so that the power spectra completely

characterize their statistical properties). To generate a realization of a simulated signal, at

each value of frequency the code generates the quantity
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In this expression Gi1 (M, �) , . . . , Gi4 (M, �) are 4 real numbers randomly drawn from

a Gaussian distribution of average M and variance �, representing the real and imaginary

parts of the Fourier coe�cients of signal and noise.

The values of the signal and noise powers are then added to form the data (under the

assumption of noise uncorrelated with the signal)

Di = Si +Ni , (3.10)

which corresponds to the relation (3.1). For each frequency fi, the code produces 94

values {Di1, . . . , Di94}, and it then computes their average D̄i and standard deviation �i.

The standard deviation �i is employed as an estimate of the error associated with the

measurement at the frequency fi. The likelihood function that we adopt is

L(~s,~n) / exp
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in greater detail. The procedure explained in this section is implemented in a Python3

code, SGWBinner.

3.1 Methodology

We aim to reconstruct the frequency dependence of the gravitational wave energy density

⌦GW(f), for an arbitrary SGWB spectral shape. We divide the entire LISA frequency

band in bins, and we determine the signal frequency profile in each bin. We assume that

in each bin the signal is approximated in terms of a power law. The total signal measured

by the instrument is the uncorrelated sum of the gravitational wave signal ⌦GW and noise

⌦s,

h
2⌦tot = h

2⌦GW + h
2⌦s . (3.1)

The noise model determining ⌦s has been presented in section 2.1 (see also section 2.2).

We now briefly discuss the theoretical models adopted to reconstruct the signal ⌦GW.

Signal model: We consider a piece-wise signal characterized by two possible parameteri-

zations within the bins:

1. The first parametrization assumes that the signal is fitted in terms of an amplitude

and a slope within each bin, denoted by the index i (with ~si = (↵i, pi) indicating

amplitude and slope)

h
2⌦GW (f, ~si) = 10↵i

 
fp

fmin,i fmax,i

!pi

✓ (f � fmin,i) ✓ (fmax,i � f) , (3.2)

where ✓ is the Heaviside step function, fmin,max are the bin extremal frequencies, and

we use the geometrical mean of the endpoints of each bin to determine the pivot scale

for the slope in each bin.

2. The second parametrization assumes a constant amplitude and zero slope (pi = 0)

in each bin:

h
2⌦GW (f, ~si) = 10↵i ✓ (f � fmin,i) ✓ (fmax,i � f) . (3.3)

We denote these two parameterizations as the “2-parameter” “1-parameter” fits, respec-

tively.

Our method of reconstruction will be based on a procedure of maximization of the

likelihood function. We generate a random realization for noise and signal; we then divide

the entire LISA frequency band into a number of equally log-spaced intervals, the bins,

and we coarse grain over our data: the procedure we follow is discussed in more detail in

the next subsection. The posterior probability describing the distribution of our theoretical

parameters is given by the expression (up to a normalization factor independent of the

signal and noise parameters, and hence irrelevant for the reconstruction procedure)

Ltot (~s, ~n) / pN (~n) pS (~s) ⇥ L (~s, ~n) , (3.4)

where pN and pS are, respectively, our priors on the noise and on the signal parameters,

while L is the likelihood (the explicit form of which is given in subsection 3.2). The signal
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Figure 4. Simulated data, sensitivity curves, input signal (not visible as it is covered by the error
band of the reconstructed signal), and reconstructed signal and sensitivity by means of the SGWBinner
code. See the main text for a detailed explanation.

(amplitude only), it is immediate to draw a line corresponding to the best fit amplitude

in each bin, together with the 1� and the 2� bands around this amplitude. For the 2-

parameter fit (amplitude and slope), consider the points along the 1 and 2� contour lines.

Each point is specified by one value of the amplitude and one value of the slope, and so

it is associated to a power law power spectrum (within its bin) given by eq. (3.2). The

set of all these power law power spectra (one per point in the contour) covers a region

in the
�
f, h

2⌦GW

 
plane, that surrounds the line that corresponds to the best-fit power

spectrum (the one specified by the values ↵ and p that minimize the �
2). The region

covered by these lines is the 1� and 2� region for that bin.

The result of this procedure is shown in fig. 4, 5. In fig. 4, the simulated data appear

as a blue thick band (due to their large number, these points cannot be distinguished

individually in the figure). The LISA sensitivity curve in energy density h
2⌦s (calculated

with the analytical noise model of section 2.1 with P = 15 and A = 3) is shown with a red

curve. The input signal is a power law with slope 2/3 and with amplitude 1.3 · 10�12 at

the frequency 0.001Hz. The vertical lines placed at fL = 0.00021 Hz and at fR = 0.07125

Hz are the boundaries between the two external regions used to obtain priors on the noise

parameters, and the three internal regions used to analyze the signal. (These frequencies

correspond to 1/5th and 4/5th of the total interval in log units, within the numerical

precision).

We then divided the range included in the internal regions into N = 5 initial bins.

The merging procedure based on the AIC then found convenient to merge these bins into

a single bin, spanning the full range between fL and fR. The best fit signal reconstructed

by the code is the power law shown as a solid yellow line. The light blue band around this

– 17 –

Caprini et al. (2019)



Mock LISA Data Challenges

 

•MLDCs established in 2006 to demonstrate readiness for LISA data 
processing. Discontinued after Round 4, in 2010.

https://lisa-ldc.lal.in2p3.fr/ldc


Mock LISA Data Challenge 3.5

 

•MLDC data set 3.5 included a stochastic background

•with constant energy density and unknown amplitude.

•LISA response approximated by a rigidly-rotating triangle with equal 
constant arm lengths. Single link optical and test mass acceleration noises 
were uncertain at +/- 20%.

The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 18

Following the model used by the LIGO Science Collaboration, we define our cusp
waveforms in the Fourier domain according to

|h+(f)| = Af−4/3
(

1 + (flow/f)
2
)−4

, h× = 0, (16)

with exp(1−f/fmax) suppression above fmax. The amplitude A has dimensions Hz1/3;
flow sets the low-frequency cutoff of what is effectively a fourth-order Butterworth
filter, which prevents dynamic-range issues with the inverse Fourier transforms (for
Challenge 3 we set flow = 1 × 10−5 Hz). The phase of the waveform is set to
exp i(π−2πftC) before inverse-Fourier transforming to the time domain. See directory
MLDCwaveforms/CosmicStringCusp in LISAtools for the source code.

3.5. Stochastic background

Data set 3.5 contains the second GW source new to Challenge 3: an isotropic,
unpolarized, Gaussian and stationary stochastic background. Allen and Romano
[31] define a stochastic background as the “gravitational radiation produced by an
extremely large number of weak, independent, and unresolved gravity-wave sources,
[...] stochastic in the sense that it can be characterized only statistically.” Such
backgrounds are usually characterized by the dimensionless quantity

Ωgw(f) =
1

ρcrit

dρgw
d log f

, (17)

with ρgw the energy density in GWs, and ρcrit = 3c2H2
0/(8πG) the closure energy

density of the Universe, and they are idealized as the collective, incoherent radiation
of uncorrelated infinitesimal emitters distributed across the sky. If the background
is isotropic, unpolarized, Gaussian and stationary, the Fourier amplitude h̃A(f, Ω̂) of
each emitter (with A indexing the + and × polarizations, and Ω̂ the direction on the
two-sphere) is completely characterized by the power-spectral-density relation [31]

〈

h̃∗
A(f, Ω̂)h̃A′(f ′, Ω̂′)

〉

=
3H2

0

32π3
|f |−3Ωgw(|f |)× δAA′δ(f − f ′)δ2(Ω̂, Ω̂′). (18)

In Challenge 3, we assume a constant Ωgw(f), as appropriate for the primordial
background predicted in simple cosmological scenarios. We implement the
uncorrelated emitters as a collection of 192 pseudosources distributed at HEALPix
pixel centers across the sky. HEALPix (the Hierarchical Equal Area isoLatitude
Pixelization of spherical surfaces [32]) is often used to represent cosmic microwave
background data sets; 192 pixels correspond to a twice-refined HEALPix grid with
Nside = 22.

Each pseudosource consists of uncorrelated pseudorandom processes for h+ and
h×, generated as white noise in the time domain, and filtered to achieve the f−3

spectrum of (18), using the the recursive 1/f2 filtering algorithm proposed by
Plaszczynski [33], extended to spectral slope −3. The algorithm employs a chain
of 1/f2 infinite–impulse-response filters to reshape the white noise spectrum between
minimum and maximum frequencies flow and fknee, set to 10−5 and 10−2 Hz in this
Challenge (see the source file MLDCwaveforms/Stochastic.py in LISAtools for the
Synthetic LISA implementation).

The one-sided PSD of each single-polarization random process (which represents
the finite area of a pixel in the sky) is then given by Sh(f)/2 = 3H2

0/(32π
3)f−3Ωgw ×

(4π/192). In data set 3.5, we define Stot
h = (192 × 2)Sh and we set it so that, in the

The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 10

Table 5. Overlaps and recovered SNRs for TDI observables A, E and combined
recovered SNR for data sets 1B.3.1–5.

Group CA SNRA CE SNRE total SNR

1B.3.1 (SNRopt = 123.7)

BBGP 0.57 51.0 0.58 51.6 72.5
MT 0.998 86.1 0.997 88.3 123.4

1B.3.2 (SNRopt = 133.5)

BBGP 0.07 6.6 0.18 18.2 17.6
BBGPa 0.39 37.6 0.41 39.8 54.7
MT 0.54 49.5 0.54 50.8 70.9

1B.3.3 (SNRopt = 81.0)

BBGP −0.06 −4.2 −0.0003 −0.05 −3.0
BBGPa,c −0.2 −11.5 −0.32 −19.0 −21.5
MT 0.38 22.0 0.35 20.9 30.4

1B.3.4 (SNRopt = 104.5)

BBGPc 0.0007 2.1 −0.0002 −0.8 2.1
BBGPb 0.16 13.9 0.04 6.7 14.6

1B.3.5 (SNRopt = 57.6)

BBGP 0.09 3.4 0.1 4.2 5.3

a C and SNR after correcting the sign of β, lost on input to the MLDC webform.
b C and SNR after correcting phases at t = 0, to account for a BBGP bug.
c The BBGP SNRs can be negative because BBGP maximized likelihood
analytically over amplitude, which makes SNR sign-insensitive (a minus sign
corresponds to a change of π in the phase of the dominant harmonic). This
degeneracy is broken when all the harmonics are found correctly.

• Data set 3.1 contains a Galactic GW foreground from ∼ 60 million compact
binary systems. This data set is a direct descendant of Challenge 2.1, but it
improves on the realism of the latter by including both detached and interacting
binaries with intrinsic frequency drifts (either positive or negative). Section 3.1
gives details about the binary waveform models, about their implementation in
the LISAtools suite [16], and about the generation of the Galactic population.

• Data set 3.2 contains GW signals from 4–6 binaries of spinning MBHs, on top of
a confusion Galactic-binary background. This data set improves on the realism
of Challenges 1.2.1–2 and 2.2 by modeling the orbital precession (and ensuing
GW modulations) due to spin–orbit and spin–spin interactions. Section 3.2 gives
details about the MBH-binary waveforms.
Because this challenge focuses on the effects of spins rather than on the joint
search for MBH signals and for the brightest Galactic binaries, the background
is already partially subtracted—it is generated from the population of detached
binaries used for Challenge 3.1, withholding all signals with SNR > 5.

• Data set 3.3 contains five GW signals from EMRIs. As in Challenges 1.3.1–

the conversion to Synthetic LISA’s dimensionless fractional frequency fluctuations is described on
[19, p. 6]; the values actually used in the MLDCs are

Sacc(f) = 2.5× 10−48(f/Hz)−2[1 + (10−4 Hz/f)2] Hz−1;

Sopt(f) = 1.8× 10−37(f/Hz)2 Hz−1.

<latexit sha1_base64="Bi8sKHm/Pl+4mGLbnpAQ+YKrIm0="></latexit>
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Mock LISA Data Challenge 3.5

 

•Two groups analysed the data set correctly.The Mock LISA Data Challenges: from Challenge 3 to Challenge 4 10
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Figure 2. Plot on left: posterior PDFs for Ωgw reported by each analysis, their

modes Ω̂gw, and the corresponding fractional error w.r.t. the true Ωgw. The
horizontal-axis range corresponds to the “prior” MLDC range. Table on right:
estimated LISA noise levels (modes) in the MTGWAG analysis. The pmk and
pm∗

k are the proof mass noises introduced in the left and right optical assemblies
on LISA spacecraft k; likewise for photodetector noises pdk and pd∗

k. The
combinations of noises shown in the table are the only ones that are constrained
effectively by the data after laser phase noise has been removed with TDI.

Table 4. MLDC 4 source content and parameter priors (cf. Tables 7 and 8 of
[7]; the parameters in bold have changed compared to MLDC 3). Parameters
are always sampled uniformly from the ranges given below; angular parameters
are drawn from appropriate uniform distributions on the circle or sphere. Source
distances are set from the SNRs selected randomly in the ranges given below,
defining SNR =

√
2 × max{SNRX ,SNRY , SNRZ}. The notation Poisson(λ)

indicates a random number of sources distributed according to a Poisson
distribution with mean λ.

Galactic-binary background ∼ 34 × 106 interacting, ∼ 26 × 106 detached systems

4–6 MBH binaries m1 = 0.5–5 × 106 M#, m1/m2 = 1–10, a1/m1 = 0–1,
a2/m2 = 0–1, with tc and SNRs as in MLDC 3.2

an average of 6 EMRIs µ = 9.5–10.5M#, S = 0.5–0.7M2, eplunge = 0.05–0.25,
tplunge = 221–222 × 15 s, SNR = 25–50

. . . including Poisson(2) systems with M = 0.95–1.05 × 107M#

Poisson(2) systems with M = 4.75–5.25 × 106M#

Poisson(2) systems with M = 0.95–1.05 × 106M#

Poisson(20) cosmic-string bursts fmax = 10−3–1 Hz, tC = 0–222 × 15 s, SNR = 10–100

isotropic stochastic background Stot
h = 0.7–1.3 × 10−47(f/Hz)−3 Hz−1

[7] are used unchanged in MLDC 4, except for the following: the spectra of cosmic-
string bursts are truncated below 10−5 Hz; the stochastic-background spectrum is f−3

between 10−5 Hz and 33 mHz, and drops lower below and above that range; last, when
MBH binaries end within the duration of the dataset, they are terminated at the time
tmax when the frequency derivative changes sign, indicating that the PN expansion is
failing. To reduce spectral leakage, a half Hann window cos2[π(t− tmax +∆t)/2∆t] is
applied between tmax − ∆t and tmax, with ∆t = Q/fmax, fmax the frequency at time
tmax, and Q the quality factor (lisaXML parameter Q) set to 3 for MLDC 4 (setting
Q=0 yields the old r = 6M termination condition).

Challenges beyond MLDC 4 will feature ever more realistic datasets, including
more sophisticated waveform models, such as MBH coalescences with merger
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•MLDC round 4 included the “whole enchilada”, but MLDCs were 
discontinued before submissions were fully finalised/assessed.

https://lisa-ldc.lal.in2p3.fr/ldc


LISA Data Challenges
❖ The LDC group was established in 2018 to resume activities begun by the 

LISA Mock Data Challenges. There are telecons on Thursdays @ 4pm CEST.
❖ Ground segment pipeline development is being driven by the Data 

Challenges. Data sets are being constructed to address specific questions 
posed by the Science Group.

https://lisa-ldc.lal.in2p3.fr/ldc

https://lisa-ldc.lal.in2p3.fr/ldc


LISA Data Challenge 1-6



❖ Similar to MLDC 3.5. Data set versions with zero/known/unknown 
instrumental noise were created. Three groups successfully analysed the 
data.

LISA Data Challenge 1-6

Karnesis et al.



❖ One analysis used SGWBinner (Flauger et al.).

LISA Data Challenge 1-6

Flauger et al.



LISA Data Challenge 2a
•The Sangria dataset included a full galaxy of GBs, plus massive black hole 

binaries. The galactic binaries form a cyclo-stationary GW background.



LISA Data Analysis: state of the art

 

https://lisa-ldc.lal.in2p3.fr/ldc


 

•Several successful analyses of the LDC 2a data set.

•Caveat: all analyses assumed noise was stationary.
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final output power spectrum does not include any smoothing. To accomplish the smoothing, we
apply a small Gaussian smoothing in log-frequency to the whitened log-power spectrum,

hSAE
m,gal,smoothi = exp

�
G�(log(f)) ⇤ log (hSm,gali+ ✏)

�
� ✏, (8)

where the width of the Gaussian smoothing in log-frequency is chosen such that, for the first
iteration, the width around the peak at 2 mHz is �(log(2 mHz)) = 6 frequency pixels. Because the
smoothing is only really necessary for the first few iterations, we reduce the smoothing length by one
e-folding per iteration to a floor of �(log(2 mHz)) = 0.25 pixels starting in the fifth iteration.
The addition and subsequent subtraction of the factor of ✏ = 10�50 is a small numerical stabilizer

to prevent the argument of the logarithm from becoming zero or negative, and is chosen to be much
smaller than the lowest value of hSm,gali of interest. Using hSm,instri as the numerical stabilizer
would obtain a more realistic cuto↵. However, for the purposes of this paper, the smaller numerical
stabilizer complements the more precise estimator of rAE

n in Eq. 6 to allow us to investigate the
ultimate limitations of the cyclostationary model to the best possible precision.
We can then replace hSm,gali with hSAE

m,gal,smoothi in Eq. 4 throughout the iterative fitting procedure.

3. EMPIRICAL FITTING FORMULA

The smoothed average frequency spectrum in Eq. 8 allows the spectrum fitting to have essentially
monotonic convergence to a final self-consistent estimate of the spectrum of the galactic background
and is agnostic regarding the predicted frequency distribution of galactic sources. However, for some
applications, it is desirable to reduce the number of parameters in the fit and obtain a smoother
spectrum by fitting to a spectrum of known shape. A variety of ways of parameterizing the shape of
the galactic background exist (Flauger et al. 2021; Caprini et al. 2019; Karnesis et al. 2021). Similar
to Karnesis et al. (2021), we use a 5-parameter model of the galactic background:

Sgal(f) =
Af 5/3

2
e�(f/f1)↵(1 + tanh((fknee � f)/f2)), (9)

where log
10
(fknee) = ak log10(Tobs) + bk and log

10
(f1) = a1 log10(Tobs) + b1 can be used to predict

the coe�cients as a function of observation duration, where Tobs is in years. The improvement in
the overall amplitude of the galactic stochastic background as a function of Tobs is absorbed by the
variation in f1, so a shift in A as a function of time is not necessary. For fitting purposes A and f2
have a large dynamic range, so we search over the logarithms log

10
A and log

10
f2 instead, and fit

over the spectrum in the wavelet domain, hSm,gali ' Sgal(f)/dt.
To fit the parameters of Eq. 9, we calculate the galactic spectra hSAE

m,gal(Tobs)i in 1 year increments
Tobs = 1..8 yr using the iterative fitting procedure described in Sec. 2.2. We then use the dual
annealing algorithm described in Xiang et al. (2013) as implemented in SciPy (Virtanen et al. 2020)
to obtain a least-squares fit of log

10

�
hSAE

m,gal(Tobs)i+ Sm,inst

�
to the 7-parameter model in Eq. 9. We

fit both channels and all eight years of data simultaneously.
The empirical best fit parameters are given in Table 2, with spectra plotted for several selected

observing times in Fig. 3. The best fit spectral parameters shown in Table 2 are similar whether or
not we use the cyclostationary model, and are in good general agreement with the results in Karnesis
et al. (2021) for all the shape parameters, given expected di↵erences due to our di↵erent smoothing
and fitting procedures. Our amplitude normalization in the wavelet domain is chosen such that

https://lisa-ldc.lal.in2p3.fr/ldc


 

•Digman and Cornish (2022) have extended the PSD model to allow for 
cyclostationarity, to incorporate into the global fit pipeline.
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the wavelet domain Snm = 1 generates unit variance white noise in the time domain. The basis has
a uniform tiling in frequency and time, which permits generating a uniform grid of frequency spectra
as a function of time.
We generate LISA waveforms as described in Cornish (2020) using the Rigid Adiabatic approxima-

tion (Cornish & Shuman 2020; Rubbo et al. 2004)
We first generate a realization of the signal seen by LISA as

wnm = wnm,inst +
X

k

wnm,k, (1)

where wnm,inst is a random realization of the instrumental noise and wnm,k are the wavelet decompo-
sitions of each of the 29,000,036 binaries in the Sangria dataset. The vast majority of these binaries
produce too faint a signal to be individually detectable. To mitigate unnecessary evaluations, we
do an initial pass where we calculate the instrumental-noise-only SNR and add every source with
SNRinst < SNRthresh into an ’irreducible’ background wnm,irr, so that we can rewrite:

wAET
nm = wAET

nm,inst + wAET
nm,irr +

X

k0

wAET
nm,k0 , (2)

where now the sum over k0 runs only over the O(100, 000) binaries bright enough to pass the initial
minimum SNR cut. This component of the procedure will not be possible for the real LISA data
because we will be starting from the observed wAET

nm and not an artificially simulated catalog. To
further accelerate convergence, we also remove the bright binaries with SNRinst > 30 at this step.
At a later iteration, we verify all removed bright binaries retain SNRcalc > SNRthresh and replace
them if necessary.

2.1. The Cyclostationary Model

From Eq. 2, we must estimate the noise level SAE
nm for the two channels which have an appreciable

component from the galactic stochastic background. As a first approximation, we can approximate
the mean noise spectrum as:

SAE
m =

1

Nt

NtX

n=0

�
wAE

nm

�2
. (3)

We assume the instrumental component is constant in time and the same for both channels, al-
though relaxing this assumption would be straightforward in the time-frequency domain.
To write the signal as cyclostationary, we decompose the signal into two parts, one depending only
on time and one only on the frequency:

SAE
nm,cyclo = rAE

n hSm,gali+ Sm,inst, (4)

where hSm,gali is the mean galactic spectrum averaged over time and the A and E channels, and rAE
n

is a multiplier which varies in time and will be di↵erent for the A and E channels. To determine rAE
n ,

we can average over frequency

rAE
n =

1

m2 �m1

m0
=m2X

m0=m1

SAE
nm0 � Sm0,inst

hSm0,gali
, (5)
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Figure 1. Modulation in the amplitude of the galactic background rAE
n from Eq. 6 as a function of time

for two years of simulated LISA data. The amplitude in the A channel varies by a factor of ' 7, while the
amplitude in the E channel varies by a factor of ' 4, and the mean of the envelopes varies by a factor of
' 5, from ' 0.32 to ' 1.67. The model includes the first 5 harmonics of 1. yr as described in Eq. 7, although
in this case the amplitudes of the first two harmonics dominate the other three by more than an order of
magnitude.

Tobs [yr] Channel A1 �1 A2 �2 A3 �3 A4 �4 A5 �5

1 A 0.183 3.92 0.616 3.09 0.012 4.92 0.004 3.33 0.005 4.72

1 E 0.212 3.56 0.462 3.08 0.022 0.94 0.027 0.08 0.006 1.84

2 A 0.177 3.92 0.622 3.10 0.012 4.93 0.003 3.83 0.004 4.49

2 E 0.211 3.54 0.458 3.08 0.023 0.96 0.023 0.05 0.004 2.01

4 A 0.181 3.91 0.625 3.09 0.016 5.38 0.006 3.98 0.004 4.20

4 E 0.209 3.58 0.462 3.08 0.022 1.23 0.023 0.03 0.002 1.11

8 A 0.183 3.95 0.630 3.09 0.016 5.47 0.008 3.85 0.005 4.38

8 E 0.207 3.58 0.467 3.08 0.023 1.12 0.024 0.05 0.003 1.74

Table 1. Amplitudes and phases for use in Eq. 7, computed from the Fast Fourier Transform of rAE
n

computed using the spectra shown in Fig. 3 at several sample observation times. The first two harmonics
dominate in all cases.

incoherent superposition of signals becomes intrinsically reasonably smooth after a few iterations, we
adopt a Gaussian smoothing with a smoothing length that decreases significantly over the first few
iterations, rather than the simple moving average or windowed median smoothing used in Karnesis
et al. (2021). The smoothing procedure is described in more detail in Sec. 2.3.

https://lisa-ldc.lal.in2p3.fr/ldc
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10 Digman and Cornish

Figure 4. Comparison of whitened residual power (wAE
nm)2/SAE

nm,model between Left: a constant model of
the galactic stochastic background and Center: our cyclostationary model for a two year simulated dataset.
The cyclostationary model is a significant improvement, with residuals statistically well approximated as
Gaussian. In Right: we show the whitened residuals of the cyclostationary component after turning o↵
instrumental noise completely, i.e. (wAE

nm,gal)
2/SAE

nm,gal. At frequencies around 2 mHz, the signal is still very
well approximated as cyclostationary, while at the tails of the spectrum, a slight deviation from perfect
cyclostationarity is apparent. This deviation is of limited practical significance because the spectrum falls
o↵ rapidly compared to the instrumental noise at those frequencies. Additionally, it will not be possible to
separate the instrumental and galactic contributions to the noise spectrum in real data

t (yrs) Ndet,const Ndet,cyclo Ndisagree rvol,1.0 mHz rvol,1.5 mHz rvol,2.0 mHz rvol,2.5 mHz

1 7470 7273 241 1.08 1.17 1.20 1.19

2 11764 11512 298 1.08 1.16 1.21 1.05

3 15089 14831 308 1.11 1.04 1.06 1.10

4 17992 17608 428 1.09 1.12 1.07 1.03

5 20427 20018 477 1.10 1.09 1.08 0.99

6 22674 22223 505 1.08 1.11 1.08 1.02

7 24854 24341 559 1.08 1.11 1.07 0.98

8 26925 26417 576 1.07 1.08 1.03 1.02

Table 3. Detection e�ciency for the binaries in the Sangria dataset as a function of total observation
time, and the ratio of the sensitive observing volumes for an injected test binary at several di↵erent GW
frequencies. At shorter observation times, the cyclostationary model detects less binaries near the galactic
center but overall improves sensitivity. The cuto↵ frequency of the galactic background decreases over time,
and the models begin to agree above the cuto↵ frequency, as shown in Fig. 3.

which evolve over timescales of days to weeks and therefore sample a di↵erent galactic background
amplitude depending on their time of merger.
To illustrate the di↵erence in sensitivity, we inject simulated SMBHB sources at a grid of chirp

times tc and sky positions. The injection procedure as function of tc is shown in Fig. 7. In Fig. 9, we
show the impact of the cyclostationary model on LISA’s sensitivity as a function of sky location at

•Digman and Cornish (2022) have extended the PSD model to allow for 
cyclostationarity, to incorporate into the global fit pipeline.

https://lisa-ldc.lal.in2p3.fr/ldc
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Challenges: lack of noise knowledge
❖ Typically assume a known sensitivity when assessing mission performance.



❖ Reality is different. In LISA Pathfinder only 25% of total noise power was 
explained by measured noise sources.

 

Challenges: lack of noise knowledge
Do we understand the excess?

• Within LISA 
band we 
understand ≃
25% in power
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❖ Equal-arm Sagnac channel is insensitive to gravitational waves at low 
frequency - use this as a noise monitor.

 

Solutions: T channel
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2. Analysis method

2.1. LISA time-delay interferometry combinations A, E, and T

LISA will consist of three spacecraft in a (nearly) equilateral configuration of side
5 × 106 km, trailing the Earth by about 20 degrees. The distances between the
spacecraft will be modulated by incident gravitational waves at the level of picometres.
The modulation will be sensed by monitoring the frequency (or, equivalently, phase) of
laser beams exchanged between the spacecraft, and comparing this to locally-generated
reference laser signals.

The six raw Doppler measurements can be combined in various ways using the
principle of Time-Delay Interferometry (TDI) [26]. We use the first-generation TDI
combinations, in which it is assumed that LISA is rigid and symmetric, and that
laser frequency noise cancels completely. This is consistent with the conventions
adopted in the context of the MLDCs [22, 28, 23, 24, 27], but the analysis presented
here can be generalised to second-generation TDI. In particular, we work with
the A, E and T combinations, which are independent and noise-orthogonal [29].
For frequencies smaller than the inverse of the light travel-time down a LISA arm
(1/16.6 s " 10 mHz), the A and E combinations are equivalent to two unequal-arm
Michelson interferometers, with independent noise, rotated at 45 degrees to each other,
and thus are sensitive to the two orthogonal polarisations of gravitational waves. For
these low frequencies, the response of the T channel to gravitational-waves is highly-
suppressed (similar to the response of the standard symmetrised Sagnac combination
ζ), and hence can be used as a real-time noise monitor, as discussed above. For
simplicity, in what follows, we will restrict attention to the A and T channels. The
analysis can easily be extended to also include E, which will improve our ability to
detect gravitational waves by reducing the uncertainty in our estimates by a factor of√
2 [25].

2.2. Bayesian inference

For low frequencies, the output of the A and T channels in the frequency domain have
the form

Ã = ñA + h̃ , T̃ = ñT , (1)

where ñA,T denote the instrumental noise in the two channels, and h̃ denotes the
stochastic gravitational-wave signal. (Here ˜ denotes the discrete Fourier transform of
the time domain data, so that Ã, T̃ , etc. are dimensionless quantities.) Notice that we
assume that in the frequency window of interest the gravitational-wave contribution
is perfectly suppressed in the T channel. We also assume that the instrumental noises
and stochastic signal are zero-mean Gaussian random variables, with variances

〈|ñA|2〉 = σ2
A , 〈|ñT |2〉 = σ2

T , 〈|h̃|2〉 = σ2
h , (2)

and that the noises in the two channels are related by

σ2
A = aσ2

T , (3)

where a is some multiplicative factor, which we may not know in advance. (The
variances σ2

A, σ
2
T , σ

2
h, and multiplicative factor a all vary as functions of frequency;

however, in the analysis below we consider one frequency bin at a time, and therefore
do not explicitly show the dependence of these variables on frequency.) Since the noise
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Figure 2. The marginalised posterior PDFs on (a) σ2

h
and (b) σ2

T
for the three

different priors on a, using the MLDC 2.1 data. The thin line shows the posterior
for the unconstrained prior on a, the dashed line for the weakly-constrained prior,
and the thick line for the strongly-constrained prior. The vertical dashed lines
indicate the expected values of the variances, obtained from the 1.1.1a and 2.1
data sets. Notice that for σ2

T
, the choice of prior on a makes no difference to

the posterior. For σ2
h
, no prior knowledge of a means that we cannot distinguish

the signal from the noise, while moderate knowledge (i.e., to within a factor of 2)
enables us to easily distinguish the gravitional-wave signal and place constraints
on its value.

constraints on its value. Using the ‘strongly-constrained’ prior on a does not improve
the result in any appreciable manner. This is due to the fact that the stochastic
signal is strong at this frequency, and in fact σh/σA ≈ 25. The prior knowledge
on a required to unambiguously detect a stochastic background clearly depends on
the signal-to-noise ratio; this is an important point and work is currently ongoing to
address this question [25].

3.3. Power spectrum estimation

In order to estimate the spectra of the gravitational-wave signal and the instrumental
noise, and to gain some initial quantitative insight into the performance of the method
as a function of signal-to-noise ratio, we studied nine other frequency bins distributed
evenly throughout the range 0.1 mHz < f < 1.0 mHz. As before, priors on a
were determined using the 1.1.1a data. Strongly constrained priors, for each of these
frequency bins, are given in Table 2.

These priors were then used to calculate marginalised posterior PDFs for σ2
h

and σ2
T , from which the posterior mean and 95% probability interval in each band

could be calculated. These values were then scaled by a factor of 2∆t2/Tseg to obtain
(dimensionfull) estimates of the PSDs of the gravitational-wave signal Ph(f) and the
instrumental noise PT (f). Figure 3(a) shows the Bayesian 95% probability intervals
for Ph(f), and Fig. 3(b) shows the corresponding 95% probability intervals for PT (f).
From these figures, one sees that the Bayesian estimates agree with the expected PSD
estimates to within the 95% probability intervals. In this band the strength of the
stochastic signal σh/σA varied from about 1 to ≈ 62.
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Figure 1. Power spectral densities (PSDs) obtained from the MLDC 2.1 and
1.1.1a data sets. Line (a) shows the PSD of the A channel in the 2.1 data set,
which includes the instrumental noise and an injected galaxy of ≈ 26 million white
dwarf binaries. Line (b) shows the PSD of the T channel in the 2.1 data set. Line
(c) shows the PSD of the A channel in the MLDC 1.1.1a data set, which contains
just one injected binary, at 1.06 mHz, which is outside of the frequency band of
interest. As there are no signals in the 1.1.1a data set below ∼ 1 mHz, this PSD is
representative of the detector noise in the A channel, and was used to determine
the true value of a, which was needed to validate the results of our analysis.

Prior on a at 0.602 mHz

‘unconstrained’ 0< a <1000
‘weakly-constrained’ 0< a <0.86
‘strongly-constrained’ 0.39< a <0.47

Table 1. The three different priors on a in the 0.602 mHz bin.

of the instrumental noise levels. (Of course, for a real analysis, the prior that we
use for a will be based largely on theoretical models of the instrument, its expected
performance, and data from on-board monitoring channels that provide information
on different subsystems.) The numerical values that we used for the priors are listed
in Table 1.

Figure 2 shows the resultant posterior PDFs for σ2
h and σ2

T for the three different
priors distributions on a. It can be seen that the PDF on σ2

T is not dependent on the
prior on a. This is to be expected, as σ2

T can be estimated from the T channel alone,
with no dependence on the data in the A channel. The posteriors on σ2

h show that with
no knowledge of a it is impossible to determine the presence of the gravitational-wave
signal. However, for this case, having moderate knowledge of a, even to within a factor
≈ 2, enables us not only to distinguish the gravitational-wave signal, but also to placeRobinson et al. (2008)
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2. Analysis method

2.1. LISA time-delay interferometry combinations A, E, and T

LISA will consist of three spacecraft in a (nearly) equilateral configuration of side
5 × 106 km, trailing the Earth by about 20 degrees. The distances between the
spacecraft will be modulated by incident gravitational waves at the level of picometres.
The modulation will be sensed by monitoring the frequency (or, equivalently, phase) of
laser beams exchanged between the spacecraft, and comparing this to locally-generated
reference laser signals.

The six raw Doppler measurements can be combined in various ways using the
principle of Time-Delay Interferometry (TDI) [26]. We use the first-generation TDI
combinations, in which it is assumed that LISA is rigid and symmetric, and that
laser frequency noise cancels completely. This is consistent with the conventions
adopted in the context of the MLDCs [22, 28, 23, 24, 27], but the analysis presented
here can be generalised to second-generation TDI. In particular, we work with
the A, E and T combinations, which are independent and noise-orthogonal [29].
For frequencies smaller than the inverse of the light travel-time down a LISA arm
(1/16.6 s " 10 mHz), the A and E combinations are equivalent to two unequal-arm
Michelson interferometers, with independent noise, rotated at 45 degrees to each other,
and thus are sensitive to the two orthogonal polarisations of gravitational waves. For
these low frequencies, the response of the T channel to gravitational-waves is highly-
suppressed (similar to the response of the standard symmetrised Sagnac combination
ζ), and hence can be used as a real-time noise monitor, as discussed above. For
simplicity, in what follows, we will restrict attention to the A and T channels. The
analysis can easily be extended to also include E, which will improve our ability to
detect gravitational waves by reducing the uncertainty in our estimates by a factor of√
2 [25].

2.2. Bayesian inference

For low frequencies, the output of the A and T channels in the frequency domain have
the form

Ã = ñA + h̃ , T̃ = ñT , (1)

where ñA,T denote the instrumental noise in the two channels, and h̃ denotes the
stochastic gravitational-wave signal. (Here ˜ denotes the discrete Fourier transform of
the time domain data, so that Ã, T̃ , etc. are dimensionless quantities.) Notice that we
assume that in the frequency window of interest the gravitational-wave contribution
is perfectly suppressed in the T channel. We also assume that the instrumental noises
and stochastic signal are zero-mean Gaussian random variables, with variances

〈|ñA|2〉 = σ2
A , 〈|ñT |2〉 = σ2

T , 〈|h̃|2〉 = σ2
h , (2)

and that the noises in the two channels are related by

σ2
A = aσ2

T , (3)

where a is some multiplicative factor, which we may not know in advance. (The
variances σ2

A, σ
2
T , σ

2
h, and multiplicative factor a all vary as functions of frequency;

however, in the analysis below we consider one frequency bin at a time, and therefore
do not explicitly show the dependence of these variables on frequency.) Since the noise
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❖ For an unequal arm length interferometer, T channel is no longer 
insensitive to gravitational waves. Sagnac     channel performs better.
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❖ Channels more strongly correlated for unequal arms or unequal noises.
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❖ Signal is less correlated -> potential to measure noise at high frequency.

 

Solutions: TDI channels
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❖ Another approach is to assume a form for the instrumental noise. This was 
already done in SGWBinner and in the LDCs. SGWBinner uses

 

Solutions: simplified uncertainties
spectral density (PSD). All noise components are then absorbed into two e↵ective functions.

The components that dominate the noise at high frequencies are represented by the one-link

“optical metrology system” noise PSD Poms(f, P ), whereas the low-frequency components

by the single “mass acceleration” noise PSD Pacc(f,A):
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with f being the frequency, c the speed of light, and P = 15, A = 3 are noise parameters,

known to within 20% [135]. The TDI X channel single-sided PSD becomes then

P
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where L = 2.5 · 106 km is the arm length, and the sin2(2⇡f L/c) factor appears as a

consequence of the TDI procedure (as shown later, this factor cancels with the response

function, c.f. eq. (2.10)).

From the noise PSD of the TDI-X observable, under the above-mentioned assumptions,

one can construct the detector strain sensitivity curve for a single TDI channel. This

involves the detector polarisation- and sky-averaged response function R(f), as follows:

Sn(f) =
P

(X)

n

R(f)
. (2.3)

The response of a detector to the GW signal at time t and position x is given by the

convolution of the detector response with the metric perturbation:

r(x, t) =

Z 1

�1
d⌧

Z
d
3
y Rij(y, ⌧)hij(x� y, t� ⌧) , (2.4)

where Rij is the detector response function encoding the time delay measured by the

interferometer and it depends on the particular detector design; for LISA see e.g. ref. [139].

The metric perturbation can be decomposed as
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where p denotes the polarization index, epij the polarization tensors, and hp(k̂, f) are the

tensor mode functions, whose power spectrum gives the gravitational wave strain PSD
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By introducing the Fourier transform of the response function and the gravitational wave,

eq. (2.4) becomes
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❖ MLDC/LDCs employ a similar model, but with the noise levels allowed to 
vary independently for each optical link. 
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Solutions: simplified uncertainties
❖ Hartwig et al. (2023) explored the 12 parameter model for an unequal arm 

interferometer. Correlations between channels help determine noise 
components.

Hartwig et al. (2023)
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Solutions: simplified uncertainties
❖ Background parameters recovered consistently with no bias.

Hartwig et al. (2023)
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❖ Model more generic deviations using splines. Can successfully recover 
single link PSD and injected background parameters for a power-law 
SGWB signal.

 

Challenges: lack of noise knowledge

Baghi et al. (2023). See Baghi talk on Thursday
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Figure 7. Posteriors of the SGWB parameters (log-energy
density and power-law index) for an injection of ⌦0 =

1.63⇥ 10
�13 and n = �1.

Figure 8. Upper panel: posterior of the single-link noise PSD
(blue) compared to the true value (dashed orange). The ver-
tical red lines locate spline control points. Bottom panel:
average relative error obtained with the MAP estimate, along
with the 3-� credible interval.

B10(⌦0, n) = 30 corresponding to the detection thresh-
old (dashed orange line in Fig. 5). For each of these
pairs corresponding to an integer power law index be-
tween n = �2 and n = 3, we generate 10 data realizations
under hypothesis H1, from which we sample the posterior
distributions and compute the evidences under both H0

and H1. We plot the histogram of the log-Bayes factors
we obtain in Fig. 9 (orange), along with the detection
threshold line (dashed red). The distribution we obtain
exhibits a significant variance, but the mean is located
towards Bayes factor values larger than the threshold.

Among the Bayes factors estimated from these simula-
tions, 80 % yield a value above the detection threshold.

In addition, we perform a similar analysis with 30 data
realizations generated under hypothesis H0 (containing
only noise), and plot the histogram of the log-Bayes fac-
tors we obtain in blue on the same figure. They are con-
centrated around zero and distributed approximately like
a chi-squared distribution. All the simulations produce
values below the detection threshold, i.e., there are no
false positive for these data realizations. The orange and
blue distributions show that our derivation of detection
limit is a conservative one as it minimizes the false-alarm
rate at the expense of 20 % of false negatives.

Figure 9. Statistics of the decimal log-Bayes factor for cou-
ples of parameters (log⌦0, n) corresponding to the detection
threshold B10 = 30 (vertical red dashed line) derived from
the contour plot in Fig. 5. For each power-law index, Bayes
factors are computed for 10 data realizations under H1 (noise
and signal, in blue). The histogram of log-Bayes factors com-
puted for 20 data realizations under H0 (noise only) is also
shown in orange.

V. CONCLUSION

We have presented a method to detect SGWBs from
LISA measurements, which, for the first time, is model-
agnostic with respect to the instrumental noise spectral
shape. Instead, we use a flexible model for the single-
link noise PSDs based on cubic splines. Such modelling
could avoid biasing the instrument characterization and
the subsequent impact on the signal detection. We test
for the presence of an isotropic SGWB through Bayesian
model comparison, where we model both the signal and
the noise transfer functions. We also adopt a template-
based search to look for power-law signals. As a step
towards more realistic instrumental setup compared to
previous studies, we simulate interferometric data in the
time domain, featuring a spacecraft constellation with
unequal, time-varying armlengths. In this configuration,
the assumptions underlying classic pseudo-orthogonal
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with the 3-� credible interval.

B10(⌦0, n) = 30 corresponding to the detection thresh-
old (dashed orange line in Fig. 5). For each of these
pairs corresponding to an integer power law index be-
tween n = �2 and n = 3, we generate 10 data realizations
under hypothesis H1, from which we sample the posterior
distributions and compute the evidences under both H0

and H1. We plot the histogram of the log-Bayes factors
we obtain in Fig. 9 (orange), along with the detection
threshold line (dashed red). The distribution we obtain
exhibits a significant variance, but the mean is located
towards Bayes factor values larger than the threshold.

Among the Bayes factors estimated from these simula-
tions, 80 % yield a value above the detection threshold.

In addition, we perform a similar analysis with 30 data
realizations generated under hypothesis H0 (containing
only noise), and plot the histogram of the log-Bayes fac-
tors we obtain in blue on the same figure. They are con-
centrated around zero and distributed approximately like
a chi-squared distribution. All the simulations produce
values below the detection threshold, i.e., there are no
false positive for these data realizations. The orange and
blue distributions show that our derivation of detection
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rate at the expense of 20 % of false negatives.

Figure 9. Statistics of the decimal log-Bayes factor for cou-
ples of parameters (log⌦0, n) corresponding to the detection
threshold B10 = 30 (vertical red dashed line) derived from
the contour plot in Fig. 5. For each power-law index, Bayes
factors are computed for 10 data realizations under H1 (noise
and signal, in blue). The histogram of log-Bayes factors com-
puted for 20 data realizations under H0 (noise only) is also
shown in orange.

V. CONCLUSION

We have presented a method to detect SGWBs from
LISA measurements, which, for the first time, is model-
agnostic with respect to the instrumental noise spectral
shape. Instead, we use a flexible model for the single-
link noise PSDs based on cubic splines. Such modelling
could avoid biasing the instrument characterization and
the subsequent impact on the signal detection. We test
for the presence of an isotropic SGWB through Bayesian
model comparison, where we model both the signal and
the noise transfer functions. We also adopt a template-
based search to look for power-law signals. As a step
towards more realistic instrumental setup compared to
previous studies, we simulate interferometric data in the
time domain, featuring a spacecraft constellation with
unequal, time-varying armlengths. In this configuration,
the assumptions underlying classic pseudo-orthogonal
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❖ Include further uncertainties by allowing both PSDs and real/imaginary 
components of CSD to vary, and assume unequal arm interferometer.

 

Challenges: lack of noise knowledge

See Muratore talk on Thursday
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The first of these expressions is odd in the noise while
the second is even. From this we deduce that
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= 0, (9)

i.e., at this level of approximation the estimation of the
noise parameters and of the signal parameters is inde-
pendent and hence lack of knowledge of the noise does
not a↵ect measurements of the system parameters.

IV. FISHER MATRIX FOR STOCHASTIC GW
BACKGROUND

In case of SGWB, to compute the fisher matrix we
should define the total variance at frequency fk as

St(fk|~✓,~�) = SGW(fk|~✓) + Sn(fk|~�) (10)

and the log likelihood become:
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Considering that �ij = �E[ @2l
@⇡i@⇡j ], the Fisher matrix

elements in continous domain takes the form (see. A):
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where we are using ⇡
i to denote a component of the com-

bined parameter set ~⇡ = {~✓,~�} and we computed the one
PSD from the correlation matrix in frequency domain
using the Wiener-Khinchin theorem. The equivalent ex-
pression in continous domain when we have multiple de-
tectors is (see .A 1)
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where the indices l,m run over the number of detectors
Nd included in the measurement; and we have used
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V. MODELLING NOISE KNOWLEDGE
UNCERTAINTIES

To model the uncertainties in the noise we consider
cubic splines under the assumption of a stationary and
Gaussian noise. This means that we allow the modelled
PSD and CSD to deviate from the reference ones through
noise uncertainties. We assume that such uncertainties
vary smoothly over a relatively wide range of frequency,
and, therefore can be well represented by natural cubic
splines log-spaced in frequency. The spline is constructed
as following: C(f |{log10(fi)}, {wi}).

• Specify a set of spline knots, {log10 fi : i =
1, . . . , Nknots}. We use 13 knots per spline equally
spaced between 10�4 Hz and 1 Hz.

• Define the weights at the spline points, wi 2
[�1,1]. These could be related to a bounded pa-
rameter via a logit transform, wi = log(pi/(1� pi),
where pi are parameters defined to lie in the range
[0, 1] or allowed to freely vary. We characterise our
spline directly via the wi’s. Denote the resulting
natural cubic spline, constructed1 on log10(f), as
C(f |{log10(fi)}, {wi}).

Noise curves generated by random draws from this prior,
with pmin = 0.001, are shown in fig. 1; Note that at the
spline knots the value of the cubic spline never exceeds
the values of -3 and 1 meaning we allow a 20% variation
with more variability in the range below the reference
noise requirement.
Therefore, our model for the PSD is given by

Sn(f |{wi}) = S(f)des.10
C(f |{log10(fi)},{wi}); (15)

In the approach considered here we assume that the
weight of the spline are zeros, this means that we are
considering the spline to be at the reference value of the
PSD accordingly to Fig. 2.

The choice of the CSD model has been driven by two
factors: the first factor is that in case of unequal arm-
length the cross-correlation terms between the TDI chan-
nels AE, A⇣ and E⇣ are smaller with respect to the PSD

1
where C represents a cubic spline function used to model a cross

spectral density (CSD) or power spectral density function. The

function takes as input the logarithm (base 10) of a frequency

value f, and computes the CSD or PSD of f given a set of input

variables {log10(fi)} and and associated weights {wi} which are

used to define the cubic spline

4

but non neglegible as visible in 3, the second factor is
that in case we consider a more inclusive noise model
where the six OMS and TMs can have di↵erent PSDs
among each other then the CSD noise contribution start
to become relevant as shown in [15] where the CSD is a
factor of about only 1% smaller than the PSD.

Thus since we want to allow the splines to vary in such
a way to mimic un-expected and un-modelled noise com-
ponents with respect to the simplified scenario of three
unequal fixed arm-length we model the CSD as2:

Sn(f |{wi}) =q
S(f)des,iS(f)des,j �R ⇥ 10C(f |{log10(fi)},{wi})

+
q

S(f)des,iS(f)des,j i�i ⇥ 10C(f |{log10(fi)},{wi});

(16)

with �R = 0.1 and �i ⇡ �R and the indexes i and j

running over the number of detectors or channels, i 6= j.
The additional factors �I and �R is used to limit the
amplitude and allow to model the CSD as a spline times
the geometric mean of the square root-PSDs.

It is important to state that our model is not com-
pletely general since we are imposing a certain amount
of smoothness in the PSD variation, and consequently
in the CSD, when we specify the number and spacing of
the knots. Thus we are not able to fit for all possible
noise scenario.

Moreover it is important to stress that for one side this
model is su�cient general but for the other side does not
reproduce the zeros of the TDI transfer functions faith-
fully, therefore above 5e-2 is not informative. Although
we are not properly capturing the zeros of the CSD at
high frequency, this should not a↵ect our results as the
SGWBs we consider do not have much power at those
frequencies as visible in Fig. 5. This model will need to
be improved in the work. However it is well posed for
the purpose of this study where we are allowing generic,
slowly varying, fluctuations in the PSD and CSD and we
also checked the varying the relationship between �i and
�R as well as the value of �R, do not change the outcome.

2
In principle our model does not force the matrix to be positive

definite. We are forcing the reference spectral density matrix to

be positive definite, but in principle we could have a factor of

10 variation in the CSD while the PSD is unchanged. It doesn’t

matter for the Fisher matrix because this is a local approximation

and we are evaluating it at a point where the matrix is positive

definite. The CSD at the central point is 0.1 of its maximum

value, so in an open set around that point it will be positive

definite and thus all derivatives are well defined. The conclusion

is that the model used here is fair for what we want to demon-

strate but would not be a suitable model to use when analysing

the data because it won’t be imposing positive definiteness

FIG. 1. Sample noise curves from the log cubic spline model,
with wi ⇠ U [�3, 1], and with knots equally spaced between
log10(f) = �4 and log10(f) = 0.

Other approaches can also be used to model noise un-
certainties, one example is to use the splines at the single
link level, that is the methodology used in [7]. While this
approach is less sensitive to inaccuracy at high frequency
is also less general as would not be able to mimic unac-
counted noise sources. Would be possible to also use this
method, but this would increase the number of param-
eters further so we would expect additional degeneracy
and might encounter practical di�culties in fitting noise
and signal simultaneously.

VI. IMPACT OF UN-CERTAINTY OF NOISE
KNOWLEDGE ON PARAMETER ESTIMATION

A. Noise at the TDI input and outputs

Among the di↵erent noise sources for LISA, the
laser noise is the main source of noise that we need
to reduce by eight order of magnitude by applying a
post-processing technique called time delay interfer-
ometry (TDI) [27]. We combine the interferometric
measurements in many di↵erent ways to form TDI
channels. The standard second TDI generation channels
are the Michelson interferometers X, Y and Z from
which we form the more GW sensitive channels A,E [24].
In addition to the GW sensitive channels we consider
a null channel, the ⇣ channel [22]. Moreover, in the
assumption that laser noise has already been reduced
we work directly with TDI first generation [16] and we
assume to have a perfect isotropic GW background.

In this section, we describe the main limiting noise
sources after the post-processing TDI technique has
been applied. We also consider that all possible known
calibrated and measured instrumental noise sources
has been subtracted such as the optical tilt to length
cross-coupling to spacecraft motion or clock noise ([12],
[9] and [14]). The remaining noises, for which we have
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❖ Using this model, we find that the amplitude of modelled SGWBs needs to 
be a factor of a few bigger for confident detection.

 

Challenges: lack of noise knowledge

See Muratore talk on Thursday
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❖ Distinguishing between an SGWB and instrumental noise will be difficult

- different transfer function offers limited information;

- using a model for the noise components helps break degeneracies;

- generic reconstruction of one component only possible if other 
component is modelled;

- priors on amplitude of instrumental noise allow reconstruction of loud 
backgrounds.

 

Summary: lack of noise knowledge

See Baptiste-Bayle talk on Thursday

https://lisa-ldc.lal.in2p3.fr/ldc


❖ SGWB will be obscured by astrophysical foregrounds, including galactic 
white dwarf binaries.

 

Challenges: astrophysical foregrounds
6 Digman and Cornish

Figure 2. Convergence of the iterative procedure described in Sec. 2.2 for a two year galactic stochastic
gravitational-wave spectrum. The the final converged spectrum was first reached on iteration 17; iterations
5-16 are omitted to improve the clarity of the plot. The procedure has already suppressed 90% of SNR > 7
binaries by iteration 4, and the final 7 iterations are spent deciding on the inclusion of only ⇠ 10 binaries
with SNR ' 7.

For approximately the first two iterations of the iterative subtraction procedure, the signal is not
well approximated as cyclostationary due to distortion from the individual influence of bright, well-
isolated galactic binaries. For those iterations, we set rAE

n = 1. To prevent the initial iterations with
a di↵erent noise model and smoothing length from causing sources to be incorrectly subtracted, we
use a more conservative SNRthresh for those first few iterations. In testing, an exponential phase-in
of the SNR cuto↵ from the initial SNRthresh = 7(1 + e�2k+4) for iterations k = 1..3 and SNRthresh =
7 thereafter works well to prevent any sources from ever being incorrectly subtracted due to the
changing smoothing length or time dependence, while ensuring each iteration subtracts almost as
many sources as possible. As long as the cuto↵ is su�ciently conservative to prevent any erroneous
subtractions of sub-threshold sources, the exact details of the phase-in of the cuto↵ should not a↵ect
the final result at all. However, the rate of phase-in does a↵ect the number of iterations and total
compute time it takes to achieve the final converged result.
An example illustrating the convergence to a galactic spectrum for two years of data using our

procedure is shown in Fig. 2. In this example, the procedure has essentially converged after < 10
iterations, and reached full convergence on iteration 17.

2.3. Smoothing

During the iterative fitting procedure, it is necessary to smooth the modeled galactic background
in frequency so that individual bright binaries do not artificially compete with their own power. The

Digman & Cornish (2022)
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❖ There will also be a background from stellar binary black holes…..

 

Challenges: astrophysical foregrounds
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Figure 12: Effective, i.e., averaged over all TDI channels, LISA PLS for 4 years of obser-
vations (with 100% efficiency), including (in dashed purple) and excluding (solid purple) the
GBs and SOBBHs SGWB components. The black line shows the sensitivity of the AA TDI
channel, and the dashed grey line shows the amplitude of the SGWB due to unresolved GBs.
The median value for the SOBBH SGWB estimated in this work from GWTC-3 constraints
on the SOBBH population (with 25-75 and 5-95 uncertainty ranges) is shown in blue.

4.5 SGWB detection and the SOBBH population parameters

Intuitively, one might expect the constraining power of a measurement of the SGWB on
the SOBBH population model to be very limited, regardless of its precision, since it would
reduce the dimensionality of the population parameter space at most by one, leading to a
highly-degenerate posterior. On the other hand, this can still have an important impact if
the degeneracy associated with the SGWB measurement does not align with the correlations
in the population parameter posterior associated with the detection of individual events, the
misalignment being due to the fact that the population parameters influence the SGWB
amplitude differently from how they influence the characteristics of the population of indi-
vidually resolvable events. Indeed, it has been demonstrated that a SGWB measurement (or
even upper limit) by LVK, in combination with resolved merger events, can constrain the
redshift evolution of their merger rate [33, 34] and possibly their mass distribution [76].

The high precision with which LISA is expected to measure the SOBBH background, as
shown in Section 4.3, should render LISA especially suited to this task. In order to illustrate
its potential constraining power, in Figure 13 we plot the GWTC-3 population parameters
posterior sample as a scatter plot, highlighting the points compatible with a SGWB amplitude
within the LISA 1- and 2-� credible intervals, relative to a detection by LISA of a SGWB
with amplitude corresponding to the median predicted SGWB level P50 (see Figure 10). One
can appreciate that the two-dimensional posterior shrinks significantly, depending on the
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❖ ….and perhaps from extreme-mass-ratio inspirals.

 

Challenges: astrophysical foregrounds
11

FIG. 5. The GWB generated in the 12 di↵erent EMRI forma-
tion scenarios represented in the TDI variables A (top panel)
and E (bottom panel). The black line is the LISA noise in
the correspondent channel.

A. Comparison with the literature

We can perform a comparison between our results and
the findings of [23] by matching the SNRs shown in ta-
ble V with those in the second last column of table II.
The latter are computed following the same approach as
[23], but applying the same sources selection described
in Sec. IVA. We observe that our SNRs are lower with
respect to those of [23] by a factor between two and four,
depending on the model. This di↵erence may be due to
some discrepancies between the two approaches used to
estimate the EMRI GWB.

The first obvious reason can be ascribed to the choice
of the waveform. Indeed, we perform our computation
using the innovative AAK, which is more accurate (at

the level of the numerical kludge) with respect to the
AK waveform, used in [23]. As shown in figure 12 of
[23], the AK model captures the salient features of the
waveform, but is less precise in modelling the spectrum
close to the final plunge, because it overestimates the
frequency of the last stable orbit. This e↵ect is enhanced
when truncating the inspiraling at Kerr separatrix (green
line), but it is also present in Schwarzschild case. Thus,
the excess power in the AK signal at higher frequencies
can possibly induce a boost in the SNR.
A second cause contributing to the discrepancy can be

related to the computation of the SNR itself. Indeed,
in our study, the final SNRs are computed including in
the noise spectral density both the instrumental and the
EMRIs background component, unlike tableII (and [23])
where the astrophysical noise has been neglected. Con-
sequently, the SNR can be lower since the noise level
is higher. Moreover, neglecting the EMRI GWB in the
background computation can lead to an incorrect sub-
traction of the resolvable sources.
Finally, the GWB computation in [23] is based on the

use of inclination-polarization averaged fluxes, while we
automatically take into account the inclination of each in-
dividual system with respect to the observation frame in-
jecting the signal in the TDI variables, which ultimately
makes our estimation more realistic.
In Table V, we also report the number of resolvable

sources which have been subtracted from the background
using the iterative algorithm. We compare our results to
the only other two estimates found in the literature, in
[23] and [25]. In the last column of Table II, we report the
EMRI detected in 4 years obtained with the same pro-
cedure as in [23], but adjusted with respect to our selec-
tion. Our detection rates are more than a factor of three
smaller, except for M11, for which we confirm that no
EMRI can be resolved. As mentioned, this discrepancy
is twofold: (i) due to the AK waveform employed and
on whether it is truncated at the Kerr or Schwartzschild
last stable orbit, the truncation at the Kerr separatrix
causes an excess power at high frequencies compared to
the AAK waveform, inducing a boost in the SNR; (ii) the
instrumental noise level assumed in [25] is about 1.5 lower
(above 2-3 mHz) compared to the currently adopted. In
addition, some of the removed EMRIs, especially those
with p0 < 10, might be su�ciently loud to be resolved
(without a↵ecting the GWB). Still, when [23] add (in
an approximate fashion) the corresponding EMRI GWB
to the LISA sensitivity curve, we find rates of the same
order (i.e. column labeled ’AKSb’ in table II of [23]).
Compared to numbers obtained by [25] and reported

in table I, our detection rates are even lower. For ex-
ample, considering the optimistic case M12, the EMRI
detection rate reported in table I is 4219 per year in the
Kerr case and 2279 per year in the Schwartzschild case,
while we obtain only 891 detections in 4 years, i.e. only
⇡ 200 events per year. The di↵erence can be ascribed to
a number of causes: the selection of the sources in our
catalogs, the choice of the waveform, the LISA curve em-

Pozzoli et al. (2023)
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❖ Presence of other sources in the data 
impacts parameter estimates for 
sources of interest.

❖ For resolved sources, assess impact 
using joint Fisher matrix

❖ Assuming near-orthogonality

Challenges: source confusion

Noisy neighbours 5

Here we have introduced a composite vector of parameters,
⇥ “ t✓pjq

i uj“1,...,J
i“1,...,Nj

, such that ⇥N†j`pi´1qmj`k “ p✓pjq
i qk,

where N†j “ ∞j´1
l“1 Nlml. For any given parameter in ⇥,

there is exactly one waveform in the above sum that de-
pends on that parameter. Thus the derivatives of the signal
reduce to derivatives of the specific waveform template. The
combined Fisher matrix has a block structure, with the on-
diagonal blocks being the Fisher matrices for the individ-
ual sources, and the o↵-diagonal blocks being formed from
overlaps of waveform derivatives of one source with wave-
form derivatives of another source. Through calculating the
Fisher matrix on parameters ⇥, one is able to estimate the
expected precision of measurements on individual parame-
ters, taking into account all parameter correlations. This is
(an estimate for) the precision that would be achieved in a
simultaneous coherent fit to all sources in the data.

Without loss of generality, we illustrate this consider-
ing two classes of sources, with one source in the first class
(j “ 1, N1 “ 1) and an arbitrary number N2 of sources
in the second (j “ 2). This split is only made for ease of
exposition, and is quite arbitrary as the sources could al-
ways be relabelled so that the first source is the source of
interest. We want to estimate the impact of confusion due
to the presence of the population of (fitted) sources of type
2, on the precision of parameter estimation for source 1. We
define the following quantities

�p1q
jk “

´
Bjh

p1qp✓p1qq
ˇ̌
Bkh

p1qp✓p1qq
¯

(27)
´
�p2q
i

¯

jk
“

´
Bjh

p2qp✓p2q
i q

ˇ̌
Bkh

p2qp✓p2q
i q

¯
(28)

´
�mix
i

¯

jk
“

´
Bjh

p1qp✓p1qq
ˇ̌
Bkh

p2qp✓p2q
i q

¯
. (29)

Here �p1q is the Fisher matrix for the source of type 1, �p2q
i is

the Fisher matrix for the i’th source of type 2 (i “ 1, . . . , N2)
and �mix

i is the mixed Fisher matrix for the source of type
1 and the i’th source of type 2. In what follows, we find
it useful to combine the Fisher matrix contributions of the
entire population of sources in a more compact form. One
can write Eqs.(27-29) as

´
�p2q

¯

m2pi´1q`j,m2pl´1q`k
“

´
Bjh

p2qp✓p2q
i q

ˇ̌
Bkh

p2qp✓p2q
l q

¯

(30)

�mix
j,m2pi´1q`k “ pBjh

p1qp✓p1qq|Bkh
p2qp✓p2q

i qq. (31)

The Fisher matrix for the full analysis and its inverse are
therefore

� “
ˆ

�p1q �mix

p�mixqT �p2q

˙
; �´1 “

ˆ
�´1
11 �´1

12

p�´1
12 qT �´1

22

˙

(32)

with the components of the inverse1

�´1
11 “

´
�p1q ´ �mixp�p2qq´1p�mixqT

¯´1
, (33)

�´1
22 “

´
�p2q ´ p�mixqT p�p1qq´1�mix

¯´1
, (34)

�´1
12 “ ´�´1

11 �mixp�p2qq´1
. (35)

The components �´1
11 encode the measurement precisions for

source 1. If the degree of correlation between the source
types is small, i.e., |�mix| ! 1, we can approximate this as

�´1
11 « p�p1qq´1 ` p�p1qq´1�mixp�p2qq´1p�mixqT p�p1qq´1

.

(36)
The first term is the measurement precision when there
are no sources in the data, while the second represents the
degradation in the precision due to confusion with the other
sources. We can understand the form of the second term as
follows. If the other sources were ignored when fitting for
source 1, the parameter bias would be given by Eq. (15)

�✓
p1q,i
sys “ p�p1qq´1

ij pBjh
p1q
m |hp2qq (37)

where we are combining all of the sources of type 2 into the
single term hp2q. This bias is dominated by the contribu-
tion from the true waveform. When we simultaneously fit for
the sources of type 2, we imperfectly remove these signals,
leaving a residual in the data of the form Bjh

p2q�✓
j
2, where

again we are combining the parameters of all of the sources
of type 2 into a single parameter vector, ✓2. The parame-
ter error, �✓2, is a random variable with covariance matrix
x�✓

j
2�✓

k
2 y “ p�p2qq´1

jk . The bias on source 1 parameters can

be approximated by �✓
p1q,i
sys « p�p1qq´1

ik pBkh
p1q|Blh

p2q�✓
l
2q.

The covariance of the induced systematic error in the pa-
rameters of source 1 is then

x�✓
p1q,i
sys �✓

p1q,j
sys y “ p�p1qq´1

ik pBkh
p1q
m |Blh

p2qqx�✓
l
2�✓

m
2 y
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p1q
m |Bmhp2qqp�p1qq´1
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“
”
p�p1qq´1�mixp�p2qq´1p�mixqT p�p1qq´1

ı

ij
,

which is the second term from Eq. (36). There is nothing
that can be done to mitigate uncertainties of this type,
which arise from an over-abundance of sources in the data.
However, as described above, additional uncertainties can
arise from their inaccurate modelling. Previous studies have
focused on biases from inaccurate modelling of the target
source, but it is also important to ask if the inaccurate mod-
elling of a large number of other sources can leave a su�cient
residual in the data to cause problems.

To estimate this, we define �h
p1q “ h

p1q
e ´ h

p1q
m as the

di↵erence between the exact he and template hm wave-
forms for the source of type 1, and similarly �h

p2q
i “

h
p2q
e p✓p2q

i q ´ h
p2q
m p✓p2q

i q for the i’th source of type 2. We also

define �h “ �h
p1q ` ∞N2

i“1 �h
p2q
i as the combination of all

1
We note also that

�
´1
11 “ p�p1qq´1 ` p�p1qq´1

�
mix

�
´1
22 p�mixqT p�p1qq´1

�
´1
22 “ p�p2qq´1 ` p�p2qq´1

�
mix

�
´1
11 p�mixqT p�p2qq´1

which can sometimes be cheaper to compute than Eq. (34).
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i is
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and �mix

i is the mixed Fisher matrix for the source of type
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which is the second term from Eq. (36). There is nothing
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which arise from an over-abundance of sources in the data.
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pends on that parameter. Thus the derivatives of the signal
reduce to derivatives of the specific waveform template. The
combined Fisher matrix has a block structure, with the on-
diagonal blocks being the Fisher matrices for the individ-
ual sources, and the o↵-diagonal blocks being formed from
overlaps of waveform derivatives of one source with wave-
form derivatives of another source. Through calculating the
Fisher matrix on parameters ⇥, one is able to estimate the
expected precision of measurements on individual parame-
ters, taking into account all parameter correlations. This is
(an estimate for) the precision that would be achieved in a
simultaneous coherent fit to all sources in the data.

Without loss of generality, we illustrate this consider-
ing two classes of sources, with one source in the first class
(j “ 1, N1 “ 1) and an arbitrary number N2 of sources
in the second (j “ 2). This split is only made for ease of
exposition, and is quite arbitrary as the sources could al-
ways be relabelled so that the first source is the source of
interest. We want to estimate the impact of confusion due
to the presence of the population of (fitted) sources of type
2, on the precision of parameter estimation for source 1. We
define the following quantities

�p1q
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´
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Here �p1q is the Fisher matrix for the source of type 1, �p2q
i is

the Fisher matrix for the i’th source of type 2 (i “ 1, . . . , N2)
and �mix

i is the mixed Fisher matrix for the source of type
1 and the i’th source of type 2. In what follows, we find
it useful to combine the Fisher matrix contributions of the
entire population of sources in a more compact form. One
can write Eqs.(27-29) as
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The components �´1
11 encode the measurement precisions for

source 1. If the degree of correlation between the source
types is small, i.e., |�mix| ! 1, we can approximate this as

�´1
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.

(36)
The first term is the measurement precision when there
are no sources in the data, while the second represents the
degradation in the precision due to confusion with the other
sources. We can understand the form of the second term as
follows. If the other sources were ignored when fitting for
source 1, the parameter bias would be given by Eq. (15)
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m |hp2qq (37)

where we are combining all of the sources of type 2 into the
single term hp2q. This bias is dominated by the contribu-
tion from the true waveform. When we simultaneously fit for
the sources of type 2, we imperfectly remove these signals,
leaving a residual in the data of the form Bjh

p2q�✓
j
2, where

again we are combining the parameters of all of the sources
of type 2 into a single parameter vector, ✓2. The parame-
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which is the second term from Eq. (36). There is nothing
that can be done to mitigate uncertainties of this type,
which arise from an over-abundance of sources in the data.
However, as described above, additional uncertainties can
arise from their inaccurate modelling. Previous studies have
focused on biases from inaccurate modelling of the target
source, but it is also important to ask if the inaccurate mod-
elling of a large number of other sources can leave a su�cient
residual in the data to cause problems.

To estimate this, we define �h
p1q “ h

p1q
e ´ h

p1q
m as the

di↵erence between the exact he and template hm wave-
forms for the source of type 1, and similarly �h

p2q
i “

h
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e p✓p2q

i q ´ h
p2q
m p✓p2q

i q for the i’th source of type 2. We also

define �h “ �h
p1q ` ∞N2

i“1 �h
p2q
i as the combination of all

1
We note also that
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which can sometimes be cheaper to compute than Eq. (34).
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where N†j “ ∞j´1
l“1 Nlml. For any given parameter in ⇥,

there is exactly one waveform in the above sum that de-
pends on that parameter. Thus the derivatives of the signal
reduce to derivatives of the specific waveform template. The
combined Fisher matrix has a block structure, with the on-
diagonal blocks being the Fisher matrices for the individ-
ual sources, and the o↵-diagonal blocks being formed from
overlaps of waveform derivatives of one source with wave-
form derivatives of another source. Through calculating the
Fisher matrix on parameters ⇥, one is able to estimate the
expected precision of measurements on individual parame-
ters, taking into account all parameter correlations. This is
(an estimate for) the precision that would be achieved in a
simultaneous coherent fit to all sources in the data.

Without loss of generality, we illustrate this consider-
ing two classes of sources, with one source in the first class
(j “ 1, N1 “ 1) and an arbitrary number N2 of sources
in the second (j “ 2). This split is only made for ease of
exposition, and is quite arbitrary as the sources could al-
ways be relabelled so that the first source is the source of
interest. We want to estimate the impact of confusion due
to the presence of the population of (fitted) sources of type
2, on the precision of parameter estimation for source 1. We
define the following quantities

�p1q
jk “

´
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p1qp✓p1qq
ˇ̌
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Here �p1q is the Fisher matrix for the source of type 1, �p2q
i is

the Fisher matrix for the i’th source of type 2 (i “ 1, . . . , N2)
and �mix

i is the mixed Fisher matrix for the source of type
1 and the i’th source of type 2. In what follows, we find
it useful to combine the Fisher matrix contributions of the
entire population of sources in a more compact form. One
can write Eqs.(27-29) as
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source 1. If the degree of correlation between the source
types is small, i.e., |�mix| ! 1, we can approximate this as

�´1
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.

(36)
The first term is the measurement precision when there
are no sources in the data, while the second represents the
degradation in the precision due to confusion with the other
sources. We can understand the form of the second term as
follows. If the other sources were ignored when fitting for
source 1, the parameter bias would be given by Eq. (15)
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m |hp2qq (37)

where we are combining all of the sources of type 2 into the
single term hp2q. This bias is dominated by the contribu-
tion from the true waveform. When we simultaneously fit for
the sources of type 2, we imperfectly remove these signals,
leaving a residual in the data of the form Bjh

p2q�✓
j
2, where

again we are combining the parameters of all of the sources
of type 2 into a single parameter vector, ✓2. The parame-
ter error, �✓2, is a random variable with covariance matrix
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which is the second term from Eq. (36). There is nothing
that can be done to mitigate uncertainties of this type,
which arise from an over-abundance of sources in the data.
However, as described above, additional uncertainties can
arise from their inaccurate modelling. Previous studies have
focused on biases from inaccurate modelling of the target
source, but it is also important to ask if the inaccurate mod-
elling of a large number of other sources can leave a su�cient
residual in the data to cause problems.

To estimate this, we define �h
p1q “ h

p1q
e ´ h

p1q
m as the

di↵erence between the exact he and template hm wave-
forms for the source of type 1, and similarly �h

p2q
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h
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e p✓p2q

i q ´ h
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i q for the i’th source of type 2. We also

define �h “ �h
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i as the combination of all
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We note also that
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which can sometimes be cheaper to compute than Eq. (34).
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Here we have introduced a composite vector of parameters,
⇥ “ t✓pjq

i uj“1,...,J
i“1,...,Nj

, such that ⇥N†j`pi´1qmj`k “ p✓pjq
i qk,

where N†j “ ∞j´1
l“1 Nlml. For any given parameter in ⇥,

there is exactly one waveform in the above sum that de-
pends on that parameter. Thus the derivatives of the signal
reduce to derivatives of the specific waveform template. The
combined Fisher matrix has a block structure, with the on-
diagonal blocks being the Fisher matrices for the individ-
ual sources, and the o↵-diagonal blocks being formed from
overlaps of waveform derivatives of one source with wave-
form derivatives of another source. Through calculating the
Fisher matrix on parameters ⇥, one is able to estimate the
expected precision of measurements on individual parame-
ters, taking into account all parameter correlations. This is
(an estimate for) the precision that would be achieved in a
simultaneous coherent fit to all sources in the data.

Without loss of generality, we illustrate this consider-
ing two classes of sources, with one source in the first class
(j “ 1, N1 “ 1) and an arbitrary number N2 of sources
in the second (j “ 2). This split is only made for ease of
exposition, and is quite arbitrary as the sources could al-
ways be relabelled so that the first source is the source of
interest. We want to estimate the impact of confusion due
to the presence of the population of (fitted) sources of type
2, on the precision of parameter estimation for source 1. We
define the following quantities

�p1q
jk “

´
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p1qp✓p1qq
ˇ̌
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Here �p1q is the Fisher matrix for the source of type 1, �p2q
i is

the Fisher matrix for the i’th source of type 2 (i “ 1, . . . , N2)
and �mix

i is the mixed Fisher matrix for the source of type
1 and the i’th source of type 2. In what follows, we find
it useful to combine the Fisher matrix contributions of the
entire population of sources in a more compact form. One
can write Eqs.(27-29) as
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types is small, i.e., |�mix| ! 1, we can approximate this as
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.

(36)
The first term is the measurement precision when there
are no sources in the data, while the second represents the
degradation in the precision due to confusion with the other
sources. We can understand the form of the second term as
follows. If the other sources were ignored when fitting for
source 1, the parameter bias would be given by Eq. (15)
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where we are combining all of the sources of type 2 into the
single term hp2q. This bias is dominated by the contribu-
tion from the true waveform. When we simultaneously fit for
the sources of type 2, we imperfectly remove these signals,
leaving a residual in the data of the form Bjh

p2q�✓
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2, where

again we are combining the parameters of all of the sources
of type 2 into a single parameter vector, ✓2. The parame-
ter error, �✓2, is a random variable with covariance matrix
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which is the second term from Eq. (36). There is nothing
that can be done to mitigate uncertainties of this type,
which arise from an over-abundance of sources in the data.
However, as described above, additional uncertainties can
arise from their inaccurate modelling. Previous studies have
focused on biases from inaccurate modelling of the target
source, but it is also important to ask if the inaccurate mod-
elling of a large number of other sources can leave a su�cient
residual in the data to cause problems.

To estimate this, we define �h
p1q “ h
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e ´ h

p1q
m as the

di↵erence between the exact he and template hm wave-
forms for the source of type 1, and similarly �h
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i q for the i’th source of type 2. We also
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which can sometimes be cheaper to compute than Eq. (34).
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❖ Can interpret as noise from residuals



❖ Get additional errors from 
mismodelling of sources, e.g., ignoring 
environmental effects or GR 
modifications or waveform errors.

❖ For example, fitting for a single source 
of type A in the presence of residuals 
from a population of type B.

❖ Residuals create a ~stochastic signal 
that could be confused with an SGWB.

�✓Ai = �
NBX

a=1

�
�A

��1

ij

"
(@jh

A|�hB(✓B
a )) +

⇣
�mix(✓B

a )
⌘

jk

⇣
�B(✓B

a )
⌘�1

kl

NBX

b=1

(@lh
B(✓B

a )|�hB(✓B
b ))

#

<latexit sha1_base64="01XuOQSXeHmMM5B9myuDMMhC5yY=">AAADTXicjVLfb9MwEHYyYKP8WAePvFhUSK3QqmSsKpOYtBUkeEJDotukOokcx23d2klkO4jK5B/kBYk3/gteeAAhhNMGjU0MOMny57v77r6zLs45U9rzPjnu2pWr19Y3rjdu3Lx1e7O5dedYZYUkdEgynsnTGCvKWUqHmmlOT3NJsYg5PYnnT6v4yRsqFcvS13qR00DgScrGjGBtXdGWQ9AzyjVGeko1jlh4CPfhNkSqEJHB+34ZmpfRoISI07Fuo+dYCBweIskmU90JzbZfRobN6vgItlGOpWaYRzM4tbXeQZRU5e1j0EZxxhO1EPYyq35lOIhwpwMfnitvkBRQsLflpYy6f2Rm8wvSzOCfrFr1nJf1mPHZmGf6+V8l/89gcafuGETNltf193o7PQ+uQL9Xg0d96He9pbVAbUdR8yNKMlIImmrCsVIj38t1YCpphNOygQpFc0zmeEJHFqZYUBWY5TaU8IH1JHCcSXtSDZfe3xkGC1WJtZkC66m6GKucf4qNCj1+HBiW5oWmKVk1Ghcc6gxWqwUTJinRfGEBJpJZrZBMscRE2wVs2E/4NSm8HBzvdP3d7t6r3dbBk/o7NsA9cB+0gQ/64AC8AEdgCIjz3vnsfHW+uR/cL+5398cq1XVqzl1wztbWfwLwHRLO</latexit>

⇣
�mix(✓B

a )
⌘

ij
= (@ih

A|@jhB(✓B
a )), �A

ij = (@ih
A|@jhA),

⇣
�B(✓B

a )
⌘

ij
= (@ih

B(✓B
a )|@jhB(✓B

a ))

<latexit sha1_base64="aGRmymKFLyPaC7kZkpfs+WkRyFE="></latexit>

Challenges: source confusion
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Figure 3. Waveforms for overlapping signals. We plot the waveforms for signal hp1q
e ptq in black; this represents the “inferred source”

for which we are attempting to recover the parameters. We plot the waveform of the overlapping signal hp2q
e ptq in red; the signal has a

coalescence time at ⌧ “ ´0.2s relative to the one of the inferred source. The sum of the two signals is shown in blue.

Figure 4. Biases from an overlapping signal as a function of the

di↵erence in coalescence time. In cold (blue, purple) colors, we

plot the bias ratios for the parameters of signal “(1)” due to the

unaccounted-for presence of signal “(2)”, as a function of the co-

alescence time di↵erence ⌧ between the two signals. The relevant

scale is the y-axis on the left, where we see that biases R ° 1 can

arise. In gray, we indicate the region where we regard biases as

not significant (R † 1). In warm colors, we plot the correlation

coe�cients (with relevant y-axis on the right), defined in Eq. (55).

We see that the largest correlations � Á 0.05 correspond to the

largest biases („ 6�).

are incorrectly subtracted using approximate templates
ĥmpf ;✓p2,3q

, ✏ “ 0.3q. In such a procedure, we expect biases
to arise only from the residual that the incorrectly modelled
signals leave in the data stream (56),

�h “
3ÿ

i“2

ĥ
piq
e pf ;✓piqq ´ ĥ

piq
m pf ;✓piq

, ✏ “ 0.3q . (57)

In this case, the relevant parameter space is ⇥ “
t✓p1q

,✓p2q
,✓p3qu, where we pick each subset to be ✓piq “

tlogMpiq
c , ⌘

piq
,�

piqu. The joint Fisher matrix � is therefore
a 9ˆ9 matrix (calculated using ĥm). We report the true
source parameters in Table 1. We calculate the biases �✓p1q

on the reference signal’s parameters using (42)(or equiva-
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Figure 5. Biases from the inaccurate removal of loud sources.

Posterior distributions for the parameters of a reference signal,

computed using MCMC, when 2 mismodelled overlapping signals

are removed from the data (with parameters given in Table 1).

We also show the biases predicted using our formalism.

lently (44)), which leads us to

Rp� logMp1q
c q “ 1.98 ° 1

Rp�⌘
p1qq “ 0.84

Rp��
p1qq “ 0.74 . (58)

Biases are then significant for the chirp mass in this case.
These predictions can be checked with an MCMC analysis,
see Fig. 5. We find that the formalism can accurately predict
the biases from the inaccurate removal of signals.

The fact that each contribution to �h in Eqs. (42,44)
a↵ects the parameters of each source equally suggests that
residuals e↵ectively behave as missed sources and confusion
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❖ Many possible causes of gaps in the LISA data stream, of both known and 
unknown origin.

 

Challenges: gaps

Gap type Frequency Duration Total loss (hr/yr)

Antenna repointing every 2 weeks 3.3h 1%

PAAM angle adjust 3 per day 100s 0.3%

TM stray pot. est. 2/yr 1 day 0.56%

TTL coupling est. 4/yr 2 days 2.22%

Unplanned: platform 3/yr 2.5 days 2%

Unplanned: payload 4/yr 2.75 days 3%

Unplanned: micro-meteorites 30/yr 1 day 8%

https://lisa-ldc.lal.in2p3.fr/ldc


❖ Various approaches to dealing with gaps: gap filling, noise filtering, time-
frequency analysis etc. Results depend critically on assumptions about 
noise behaviour across gap.

❖ Treating gap as missing data

❖ Treating noise as independent in each between-gap segment: likelihood is 
product of likelihoods for each segment.  

Challenges: gaps
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data stream D(t) = w(t)d(t) takes the form

D(t) = w(t)h(t;✓) + w(t)n(t) (23)

= H(t;✓) +N(t) . (24)

We will refer to N(t) and H(t) as the gated noise and
signal in the time domain. Through gating the noise
process n(t), the tampered noise in the frequency do-
main exhibits correlations that violate the validity of
the Whittle-likelihood. In the frequency domain, the
noise covariance matrix of the gated process is given by

.⌃N (f, f 0) = hN̂
?(f)N̂(f 0)i

=
DZ 1

�1
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?(f � u)ŵ(f 0
� v)hn?(u)n(v)i

=
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2
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0

ŵ
?(f � u)ŵ(f 0

� u)Sn(u)du . (25)

Where we have used Eq.(14) and the convolution theo-
rem

N̂(f) = F(w(t)n(t)) =

Z 1

�1
ŵ(f � f

0)n̂(f 0)df 0
.

If w(t) is not constant, individual frequency components
are now correlated and the assumptions leading to the
Whittle-likelihood are violated and so the latter cannot
be used. The discrete analogue of (25) is

(⌃N )ij ⇡
�f

2

bN/2+1cX

p=0

ŵ
?(fi � vp)ŵ(fj � vp)Sn(vp).

(26)

Notice here that for functions non-constant functions
w(t), there are elements of (⌃N )ij 6= 0, implying that
there are correlations in the noise between frequency
components. Hence the arguments leading to the Whit-
tle likelihood (21) are violated and the simple diagonal
structure of the noise covariance matrix is lost.

To derive the form of the likelihood, we first note that
RN (f, f 0) = hN̂(f)N̂(f 0)i = 0 since hn̂(f)n̂(f 0)i = 0 for
f 2 (0,1), implying that the resultant complex normal
distribution is circularly symmetric. This means that
the likelihood takes the simple matrix form given by
(10). For a known form of the PSD, we find that the
log-likelihood for the noise processN(t) = D(t)�H(t;✓)
takes the form up to a constant of proportionality

log p(D|✓,⌃N ) / �
1

2
(D(t)�H(t;✓)|D(t)�H(t;✓))⌃N

(27)

= �(D̂ � Ĥ)†⌃�1

N (D̂ � Ĥ) . (28)

with inner product given by (12). Notice now that the
likelihood has lost its simplistic form due to the non-
diagonal structure of ⌃N due to the presence of w(t)
tampering the underlying stationary process n(t). In
this prescription, ⌃N = E[N̂N̂

†] is a hermitian matrix
satisfying ⌃†

N = ⌃N .
The presence of correlations between noise compo-

nents for gated noise not only changes the form of the
likelihood, but other usual quaantities used in gravita-
tional wave astronomy. In the next section, we show how
common statistics used in parameter estimation such as
the signal to noise ratio (SNR) and Fisher matrix (FM)
must change to account for these correlations.

III. NON-STATIONARY ANALOGUES OF
STATIONARY QUANTITIES

A. Signal-to-noise ratio

Gating stationary noise realisations using a time de-
pendent function introduces correlations amongst fre-
quencies in the frequency domain. Similar to the likeli-
hood, expressions for the optimal matched filtering SNR
and the FM will change. We will begin by deriving the
general expression for the SNR given any noise covari-
ance matrix ⌃N (f, f 0) = hN̂(f)N̂?(f 0)i.
Consider the cross correlation between some fil-

ter function K(t) and the gated signal H(t;✓) =
w(t)h(t;✓). We will compare this cross correlation with
the root-mean-square amplitude of the correlated gated
noise and K(t).

✓
S

N

◆
(t) =

�� R1
�1 K

?(t+ t
0)H(t0)dt0

��
q⌦�� R1

�1 K?(t+ t0)N(t0)dt0
��2↵

, (29)

We seek the optimal filter K which maximizes (29). At
zero lag and in the Fourier domain, it can be shown that

✓
S

N

◆
(0) =

�� R1
�1 K̂

?(f)Ĥ(f)df
��

qR1
�1

R1
�1 K̂(f)⌃N (f, f 0)K̂(f 0)dfdf 0

(30)
For practical reasons, we will work in the discrete do-
main rather than the continuous domain. We refer the
curious reader to appendix D, where the following re-
sults are generalised the continuous domain.

Discretising equation (30) we obtain

✓
S

N

◆
(0) =

|K̂
†
Ĥ|p

K̂†⌃NK̂

. (31)

Where ⌃N = E[N̂N̂
†] is the hermitian symmetric noise

covariance matrix with components (26). From (30),
equation (31) is valid over both positive and negative
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nents for gated noise not only changes the form of the
likelihood, but other usual quaantities used in gravita-
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the signal to noise ratio (SNR) and Fisher matrix (FM)
must change to account for these correlations.
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For practical reasons, we will work in the discrete do-
main rather than the continuous domain. We refer the
curious reader to appendix D, where the following re-
sults are generalised the continuous domain.

Discretising equation (30) we obtain
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Ĥ|p

K̂†⌃NK̂

. (31)

Where ⌃N = E[N̂N̂
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covariance matrix with components (26). From (30),
equation (31) is valid over both positive and negative
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� v)hn?(u)n(v)i

=
1

2

Z 1

0

ŵ
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5

data stream D(t) = w(t)d(t) takes the form

D(t) = w(t)h(t;✓) + w(t)n(t) (23)

= H(t;✓) +N(t) . (24)

We will refer to N(t) and H(t) as the gated noise and
signal in the time domain. Through gating the noise
process n(t), the tampered noise in the frequency do-
main exhibits correlations that violate the validity of
the Whittle-likelihood. In the frequency domain, the
noise covariance matrix of the gated process is given by

.⌃N (f, f 0) = hN̂
?(f)N̂(f 0)i

=
DZ 1

�1

Z 1

�1
ŵ
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ŵ(f � f

0)n̂(f 0)df 0
.

If w(t) is not constant, individual frequency components
are now correlated and the assumptions leading to the
Whittle-likelihood are violated and so the latter cannot
be used. The discrete analogue of (25) is

(⌃N )ij ⇡
�f

2

bN/2+1cX

p=0

ŵ
?(fi � vp)ŵ(fj � vp)Sn(vp).

(26)

Notice here that for functions non-constant functions
w(t), there are elements of (⌃N )ij 6= 0, implying that
there are correlations in the noise between frequency
components. Hence the arguments leading to the Whit-
tle likelihood (21) are violated and the simple diagonal
structure of the noise covariance matrix is lost.

To derive the form of the likelihood, we first note that
RN (f, f 0) = hN̂(f)N̂(f 0)i = 0 since hn̂(f)n̂(f 0)i = 0 for
f 2 (0,1), implying that the resultant complex normal
distribution is circularly symmetric. This means that
the likelihood takes the simple matrix form given by
(10). For a known form of the PSD, we find that the
log-likelihood for the noise processN(t) = D(t)�H(t;✓)
takes the form up to a constant of proportionality

log p(D|✓,⌃N ) / �
1

2
(D(t)�H(t;✓)|D(t)�H(t;✓))⌃N

(27)

= �(D̂ � Ĥ)†⌃�1
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and the FM will change. We will begin by deriving the
general expression for the SNR given any noise covari-
ance matrix ⌃N (f, f 0) = hN̂(f)N̂?(f 0)i.
Consider the cross correlation between some fil-

ter function K(t) and the gated signal H(t;✓) =
w(t)h(t;✓). We will compare this cross correlation with
the root-mean-square amplitude of the correlated gated
noise and K(t).
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◆
(t) =

�� R1
�1 K

?(t+ t
0)H(t0)dt0

��
q⌦�� R1

�1 K?(t+ t0)N(t0)dt0
��2↵

, (29)

We seek the optimal filter K which maximizes (29). At
zero lag and in the Fourier domain, it can be shown that
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(0) =
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?(f)Ĥ(f)df
��

qR1
�1

R1
�1 K̂(f)⌃N (f, f 0)K̂(f 0)dfdf 0

(30)
For practical reasons, we will work in the discrete do-
main rather than the continuous domain. We refer the
curious reader to appendix D, where the following re-
sults are generalised the continuous domain.

Discretising equation (30) we obtain
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◆
(0) =

|K̂
†
Ĥ|p

K̂†⌃NK̂

. (31)

Where ⌃N = E[N̂N̂
†] is the hermitian symmetric noise

covariance matrix with components (26). From (30),
equation (31) is valid over both positive and negative
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❖ Using the wrong 
model leads to 
biases for resolved 
sources.

❖ For SGWBs, it is 
less clear. Gaps 
may provide 
natural segment 
breaks for 
stochastic analyses.

❖ Analysis may 
ultimately be done 
in time-frequency 
domain. 

Challenges: gaps

https://lisa-ldc.lal.in2p3.fr/ldc


❖ LISA Pathfinder 
observed glitches at a 
rate of 1/day. Expect 
glitches in LISA too.

❖ Pathfinder glitches well 
described by a single 
exponential

 

Challenges: glitches

https://lisa-ldc.lal.in2p3.fr/ldc


 

Challenges: glitches
❖ If glitch overlaps merger, 

can get biases for 
individual resolvable 
sources.

❖ Avoid biases by fitting for 
glitch simultaneously with 
signal parameters.

❖ Need reliable glitch model.
❖ Ignoring glitches or fitting 

them poorly could lead to 
residual noise that is 
confused with SGWB.

https://lisa-ldc.lal.in2p3.fr/ldc


Summary
❖ SGWB detection and characterisation is an important part of the LISA 

science case described in the Red Book.

❖ Development of data analysis strategies is underway, partly drive by the 
ongoing LISA Data Challenges.

❖ State of the art: characterisation of galactic binary foreground within global 
fit to Sangria data set, unmodelled/modelled recovery of SGWB in isolated 
data sets.

❖ Many challenges still to overcome: lack of noise knowledge, astrophysical 
foregrounds, confusion noise, modelling errors, data gaps, glitches etc.

❖ Work on these topics needed now to inform construction of global fits and 
prepare the way for LISA science exploitation within the STPs/on open data.
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LISA mission status
❖ Project must build a mission that can address Red Book science objectives. This 

is encoded in observing requirements.

❖ OR7.1: Characterise the stochastic GW background from SOBH binaries with energy 
density normalised to the critical energy density in the Universe today, Ω, based on the 
inferred rates from the LIGO detections, i.e., at the lowest Ω = 2 × 10−10 ( f /25 Hz)2/3. 
This requires the ability to verify the spectral shape of this stochastic background, and to 
measure its amplitude in the frequency ranges 0.8 mHz < f < 4 mHz and 4mHz < f < 
20mHz. 

❖ OR7.2: Probe a broken power-law stochastic back- ground from the early Universe as 
predicted, for example, by first order phase transitions (other spectral shapes are 
expected, for example, for cosmic strings and inflation). Therefore, we need the ability to 
measure Ω = 1.3 × 10−11 ( f /10−4 Hz)−1 in the frequency ranges 0.1mHz < f < 2mHz and 
2mHz < f < 20mHz, and Ω = 4.5 × 10−12 (f/10−2 Hz)3 in the frequency ranges 2mHz < f < 
20mHz and 0.02 < f < 0.2 Hz. 

❖ Project not required to necessarily deliver the Red Book science.



❖ Expected to occur following mergers of the host galaxies. LISA can observe 
gravitational waves from these with very high signal-to-noise ratio.

Sources: massive black hole mergers
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❖ Expected to occur following mergers of the host galaxies. LISA can observe 
gravitational waves from these with very high signal-to-noise ratio.

❖ Expected event rate depends on assumptions about black hole population 
(Klein+, 2016)
- Light pop-III seed model: expect to see ~350 events.
- Heavy seed model, no delay in binary formation: ~550 events.
- Heavy seed model, with delays: ~50 events.

❖ LISA observations expected too provide mass measurements to ~ 0.1-1%, 
spin measurements to 1-10%, sky location to ~tens of square degrees and 
luminosity distance to ~10%.

Sources: massive black hole mergers



Sources: extreme-mass-ratio inspirals
❖ The inspiral of a 

compact object into a 
massive black hole in 
the centre of a galaxy.

❖ Form as a result of 
scattering in dense 
galacto-centric stellar 
clusters.

❖ Orbits are expected to 
be both eccentric and 
inclined - rich 
waveform structure.



❖ There are large astrophysical uncertainties, but expect to see between a few 
tens and a few hundreds of events.

Sources: extreme-mass-ratio inspirals

10

Mass MBH Cusp M–� CO EMRI rate [yr�1]
Model function spin erosion relation Np mass [M�] Total Detected (AKK) Detected (AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189

M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146

M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440

M4 Barausse12 a98 yes Gultekin09 10 30 520 (620) 260 221

M5 Gair10 a98 no Gultekin09 10 10 140 47 15

M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261

M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765

M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24

M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177

M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188

M11 Gair10 a0 no Gultekin09 100 10 13 1 1

M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279

TABLE I. List of EMRI models considered in this work. Column 1 defines the label of each model. For each model we specify
the MBH mass function (column 2), the MBH spin model (column 3), whether we consider the e↵ect of cusp erosion following
MBH binary mergers (column 4), the M–� relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7); the total number of EMRIs occurring in a year up to z = 4.5 (column 8; for model M4 we also show the total
rate per year up to z = 6.5); the detected EMRI rate per year, with AKK (column 9) and AKS (column 10) waveforms. The
AKK and AKS waveforms are introduced in Section IV, and bracket waveform modelling uncertainties.

of 2).2 Even smaller is the e↵ect of spin, a↵ecting EMRI
rates at the 10% level; there are more EMRIs when spins
are higher as the LSO is smaller (and so it is more di�-
cult to directly plunge [90]), but this only a↵ects a small
portion of orbits. However, we will see that spins will
play a more important role in the detectability of these
events by LISA. Changing the M–� relation, which sets
the relation between the MBH and its surrounding popu-
lation of COs, can introduce a variation of about a factor
of 2. More significant are the mass of the COs and the
number of plunges, as both of these directly impact the
mass accreted by the MBH and so the necessary duty
factor to preserve the population of MBHs. An increase
in either m or Np by a factor of X reduces the EMRI rate
by a similar factor. Since we are more uncertain of the
number of plunges, this has a greater potential impact on
the expected rate, here changing it by almost two orders
of magnitude. A drop of about one order of magnitude
is achieved by switching to the pessimistic MBH mass
distribution, as the reduction in the number of MBHs
naturally decreases the number of EMRIs.

For each of the 12 models outlined above we generate
10 Monte-Carlo realizations of the expected population
of EMRIs plunging in 1 year. We therefore construct
a library of 120 catalogs that includes all EMRI events
occurring in the Universe in 10 years for the 12 models.

2 This could be up to a factor of 4 if kick velocities of few hundred
km s�1 are considered in the computation of the cusp regrowth
timescale (cf. Eq. 9).

IV. WAVEFORMS, SIGNAL ANALYSIS AND
PARAMETER ESTIMATION

Having generated astrophysical populations of EMRI
systems, we need to determine which of the systems will
be observed by LISA. To do this, we need a model of
the GW emission from an EMRI system. Accurate grav-
itational waveforms from EMRIs can be computed using
BH perturbation theory, exploiting the large di↵erence
in masses of the two objects to regard the smaller as a
perturbation of the spacetime of the larger and construct
an expansion in the mass ratio (see [101] for a review).
Perturbative calculations have not yet been completed
to the order necessary to accurately track the phase of
an EMRI over an entire inspiral, and these calculations
are extremely computationally expensive. Two approxi-
mate EMRI models have therefore been developed, which
capture the main features of EMRI waveforms at much
lower computational cost and can therefore be used to
explore questions connected to the detection and scien-
tific exploitation of EMRI observations. Of the two mod-
els, the numerical kludge [102, 103] is the more accurate
and is based on modelling the trajectory of the smaller
object as a geodesic of the Kerr background, with inspi-
ral imposed on the system. With further enhancements,
the numerical-kludge model may be accurate enough for
use in LISA data analysis. However, it is still relatively
computationally expensive. The analytic kludge (AK)
model [51] is computationally cheaper, at the cost of less
faithfulness to real EMRI signals. The AK model ap-
proximates gravitational wave emission by that from a
Keplerian orbit [104], with precession of the orbital per-
ihelion, precession of the orbital plane, and inspiral of
the orbit added using post-Newtonian prescriptions. The
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❖ GW150914 would have been 
observable by LISA ~5 years 
before being observed by 
LIGO, with S/N~10 in a 5yr 
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❖ Number of events could be 
high (several tens) but there 
are significant uncertainties.
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FIG. 1: The multi-band GW astronomy concept. The violet
lines are the total sensitivity curves (assuming two Michelson)
of three eLISA configurations; from top to bottom N2A1,
N2A2, N2A5 (from [15]). The orange lines are the current
(dashed) and design (solid) aLIGO sensitivity curves. The
lines in di↵erent blue flavours represent characteristic ampli-
tude tracks of BHB sources for a realization of the flat popu-
lation model (see main text) seen with S/N> 1 in the N2A2
configuration (highlighted as the thick eLISA middle curve),
integrated assuming a five year mission lifetime. The light
turquoise lines clustering around 0.01Hz are sources seen in
eLISA with S/N< 5 (for clarity, we down-sampled them by a
factor of 20 and we removed sources extending to the aLIGO
band); the light and dark blue curves crossing to the aLIGO
band are sources with S/N> 5 and S/N> 8 respectively in
eLISA; the dark blue marks in the upper left corner are other
sources with S/N> 8 in eLISA but not crossing to the aLIGO
band within the mission lifetime. For comparison, the char-
acteristic amplitude track completed by GW150914 is shown
as a black solid line, and the chart at the top of the figure
indicates the frequency progression of this particular source
in the last 10 years before coalescence. The shaded area at
the bottom left marks the expected confusion noise level pro-
duced by the same population model (median, 68% and 95%
intervals are shown). The waveforms shown are second order
post-Newtonian inspirals phenomenologically adjusted with a
Lorentzian function to describe the ringdown.

Equation (3) is valid for circular binaries, which is our
working hypothesis. This is certainly a good approxima-
tion for systems formed through stellar evolution, that
are expected to inherit their stellar progenitor circular
orbits. Extrapolating results shown in figure 10 of [17]
at low frequency, we find that also dynamically formed
BHBs have typical e . 0.01 in the relevant eLISA band,
making our S/N and source number computations robust
against the assumed BHB formation channel.

For both the flat and salp models, probability distri-
butions of the intrinsic rate R are given in [3] (see their
figure 5). We make 200 Monte Carlo draws from each of
those, use equation (2) to numerically construct the cos-

mological distribution of emitting sources as a function of
mass redshift and frequency, and make a further Monte
Carlo draw from the latter. For each BHB mass model,
the process yields 200 di↵erent realizations of the instan-
taneous BHB population emitting GWs in the Universe.
We limit our investigation to 0 < z < 2 and fr > 10�4Hz,
su�cient to cover all the relevant sources emitting in the
eLISA and aLIGO bands.
Signal-to-noise ratio computation. An in-depth study

of possible eLISA baselines in under investigation [15, 18,
19], and the novel piece of information we provide here
might prove critical in the selection of the final design.
Therefore, following [15], we consider six baselines fea-
turing one two or five million km arm-length (A1, A2,
A5) and two possible low frequency noises – namely the
LISA Pathfinder goal (N1) and the original LISA require-
ment (N2). We assume a two Michelson (six laser links)
configuration, commenting on the e↵ect of dropping one
arm (going to four links) on the results. We assume a
five year mission duration.
In the detector frame, each source is characterized

by its redshifted quantities M = Mr(1 + z) and f =
fr/(1 + z). During the five years of eLISA observations,
the binary emits GWs shifting upwards in frequency from
an initial value fi, to an ff that can be computed by in-
tegrating equation (3) for a time tr = 5yr/(1 + z). The
sky and polarization averaged S/N in the eLISA detector
is then computed as

(S/N)2 = 2

Z ff

fi

h
2
c(f)

fhS(f)idlnf, (4)

where the factor 2 accounts for the fact that we have
two Michelson interferometers (i.e. we consider six laser
links). hc is the characteristic strain of the source given
by

hc =
1

⇡D

✓
2G

c3

dE

df

◆1/2

, (5)

whereD is the comoving source distance, and the emitted
energy per unit frequency is

dE

df
=

⇡

3G

(GM)5/3

1 + z
(⇡f)�1/3

. (6)

In equation (4), hS(f)i is the eLISA instrumental noise,
averaged over the source sky location and wave polar-
ization, and it is estimated by using the analytical form
given in [15] for each configuration. Note that at the
high frequencies relevant for the sources crossing to the
aLIGO band, the real eLISA sensitivity is not well cap-
tured by the analytical fitting functions. However, this
does not appreciably a↵ect S/N computations, and is not
expected to significantly alter detector performances (Pe-
titeau et al. in preparation). For parameter estimation,
we adopt a modification of the Fisher Matrix code of
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[20]. The code employs a 3.5 Post Newtonian (3.5PN)
circular non-spinning gravitational waveform evaluated
in the frequency domain assuming the stationary phase
approximation. The limitation to non-spinning, circular
binaries is not critical here, since the main source param-
eters of interest are the sky localization and the time to
coalescence. The former depends mostly on the signal
Doppler modulation and the time-varying antenna beam
pattern due to the detector’s orbital motion, neither of
which is influenced by the adopted waveform. The latter
mostly depends on the estimate of the redshifted chirp
mass, which is automatically determined to ⇡ 10�6 (see
figure 3) relative precision by match filtering hundreds
of thousand of source cycles. In fact, preliminary results
using 3.5PN spinning precessing waveforms confirm the
figures shown in the following (A. Klein, private commu-
nication). The code accounts for the full eLISA orbital
motion during the observation time, but also uses the
analytical approximation for the sensitivity curve. We
checked that, given M and fi, the S/N returned by the
code matches the estimate of equation (4) when averaged
over a Monte Carlo realization of the parameters describ-
ing the source sky location, inclination and polarization.

Finally, the estimate of the stochastic signal is com-
puted following [21] as

(S/N)2bkg = T

Z
�(f)

h
4
c,bkg(f)

4f2hS(f)i2 df, (7)

where T = 5yr is the mission lifetime and we used the fact
that h

2
c,bkg(f) = fSh(f), being Sh(f) the power spec-

tral density of the signal. Note that the response func-
tion �(f) ⇡ 1 in the relevant frequency range (see figure
4 in [21]). hc,bkg is related to the GW energy density
via h

2
c,bkg = 3H2

0⌦
2
gw/(2⇡

2
f
2), and is calculated at each

frequency by summing in quadrature the characteristic
strains of all sources up to z = 2. In our simple esti-
mate we did not remove sources with individual S/N> 8,
which however do contribute to less than 10% to the es-
timate of the background. This is compensated by the
fact that we integrate up to z = 2, whereas significant
contribution to the background comes from higher red-
shifts. However, we cannot trust (already at z = 2 in
fact) the assumption of a constant intrinsic BHB merger
rate and our stochastic background S/N estimates are
only indicative.

Results and implications. For each configuration we se-
lect only events resolvable above a given signal-to-noise
ratio (S/N) threshold. Results are shown in figure 2. Be-
tween one and about a thousand BHBs will be observable
at S/N> 8, and a factor of about four more at S/N> 5,
with the flat model resulting in twice as many sources as
the salp one. Four link configurations would yield approx-
imately one third of detections, since their sensitivity is a
factor

p
2 smaller, and the cumulative number of sources

goes with (S/N)3. About 20% of the resolvable systems
will coalesce within ten years from the start of eLISA

FIG. 2: Number of BHBs resolved by eLISA for di↵erent base-
lines. Orange triangles and blue squares are for models flat
and salp respectively. Filled symbols and associated error-
bars represent the median and 95% confidence interval from
200 realizations of the BHB population. The two top pan-
els represent the total number of resolved sources above the
indicated threshold. The two lower panels depict the subset
of sources that will eventually coalesce in the aLIGO band
within 10 years from the start of the eLISA mission. All fig-
ures are computed assuming five years of eLISA operations.

operations, appearing into the aLIGO band. These are
typically massive binaries (50M� < M1 +M2 < 100M�)
and can be observed up to z ⇡ 0.4 in eLISA. Numbers are
therefore quite sensitive to the high end of the BHB mass
function, but even assuming an artificial pessimistic cut-
o↵ for systems more massive than GW150914, we obtain
tens of events for the best eLISA design.

Figure 3 shows an example of parameter estimation
precision achievable with eLISA, for a typical population
of systems coalescing in the aLIGO band within its life-
time. The plot was constructed by running the Fisher
Matrix code on a sub-sample of 1000 sources coalescing
in five years and resulting in an S/N> 8 in the eLISA de-
tector (configuration N2A5, but distributions are largely
insensitive to the specific design), taken from our 200
Monte Carlo realizations of the flat BHB mass model.
The exquisite precision is due to the many thousands
of wave cycles emitted by the system convolved with the
multiple orbits completed by the eLISA detector over five
years. Although we use a simple waveform and detector
response model, adding complexity to the waveform and
to the response function should not appreciably alter the
precision of the measurement, as discussed above. Typ-
ically few weeks before appearance in the aLIGO band,
the relative errors in the mass measurements is better
than 1%, the sky location is better than 1deg2, and the
coalescence time can be predicted within less than ten

12

FIG. 8. The cumulative (right to left) distribution of observed trig-
gers in the GstLAL analysis as a function of the log likelihood. The
best fit signal + noise distribution, and the contributions from signal
and noise are also shown. The shaded regions show 1s uncertain-
ties. The observations are in good agreement with the model. At
low likelihood, the distribution matches the noise model, while at
high likelihood it follows the signal model. Three triggers are clearly
identified as being more likely to be signal than noise. GW150914
stands somewhat above the expected distribution, as it is an unusu-
ally significant event – only 6% of the astrophysical distribution of
sources appearing in our search with a false rate of less than one per
century will be more significant than GW150914.

than was achieved in [42], due to the longer duration of data
containing a larger number of detected signals.

To do so, we consider two classes of triggers: those whose
origin is astrophysical and those whose origin is terrestrial.
Terrestrial triggers are the result of either instrumental or en-
vironmental effects in the detector, and their distribution is
calculated from the search background estimated by the anal-
yses (as shown in Fig. 3). The distribution of astrophysical
events is determined by performing large-scale simulations of
signals drawn from astrophysical populations and added to the
data set. We then use our observations to fit for the number of
triggers of terrestrial and astrophysical origin, as discussed in
detail in Appendix C. Figure 8 shows the inferred distributions
of signal and noise triggers, as well as the combined distribu-
tion. The observations are in good agreement with the model.

It is clear from the figure that three triggers are more likely
to be signal (i.e. astrophysical) than noise (terrestrial). We
evaluate this probability and find that, for GW150914 and
GW151226, the probability of astrophysical origin is unity
to within one part in 106. Meanwhile for LVT151012, it is
calculated to be 0.87 and 0.86, for the PyCBC and GstLAL
analyses respectively.

Given uncertainty in the formation channels of the various

Mass distribution R/(Gpc�3yr�1)

PyCBC GstLAL Combined
Event based

GW150914 3.2+8.3
�2.7 3.6+9.1

�3.0 3.4+8.6
�2.8

LVT151012 9.2+30.3
�8.5 9.2+31.4

�8.5 9.4+30.4
�8.7

GW151226 35+92
�29 37+94

�31 37+92
�31

All 53+100
�40 56+105

�42 55+99
�41

Astrophysical
Flat in log mass 31+43

�21 30+43
�21 30+43

�21
Power Law (�2.35) 100+136

�69 95+138
�67 99+138

�70

TABLE II. Rates of BBH mergers based on populations with masses
matching the observed events, and astrophysically motivated mass
distributions. Rates inferred from the PyCBC and GstLAL analyses
independently as well as combined rates are shown. The table shows
median values with 90% credible intervals.

BBH events, we calculate the inferred rates using a variety of
source population parametrizations. For a given population,
the rate is calculated as R = L/hV T i where L is the number
of triggers of astrophysical origin and hV T i is the population-
averaged sensitive space-time volume of the search. We use
two canonical distributions for BBH masses:

i a distribution uniform over the logarithm of component
masses, p(m1,m2) µ m1

�1m2
�1 and

ii assuming a power-law distribution in the primary mass,
p(m1) µ m�2.35

1 with a uniform distribution on the sec-
ond mass.

We require 5M�  m2  m1 and m1 +m2  100M�. The first
distribution probably overestimates the fraction of high-mass
black holes and therefore overestimates hV T i resulting in an
underestimate the true rate while the second probably over-
estimates the fraction of low-mass black holes and therefore
underestimating hV T i and overestimating the true rate. The
inferred rates for these two populations are shown in Table II
and the rate distributions are plotted in Figure 10.

In addition, we calculate rates based upon the inferred prop-
erties of the three significant events observed in the data:
GW150914, GW151226 and LVT151012 [140]. Since these
classes are distinct, the total event rate is the sum of the indi-
vidual rates: R ⌘ RGW150914 + RLVT151012 + RGW151226. Note
that the total rate estimate is dominated by GW151226, as it
is the least massive of the three likely signals and is therefore
observable over the smallest space-time volume. The results
for these population assumptions also are shown in Table II,
and in Figure 9. The inferred overall rate is shown in Fig. 10.
As expected, the population-based rate estimates bracket the
one obtained by using the masses of the observed black hole
binaries.

The inferred rates of BBH mergers are consistent with the
results obtained in [42, 141] following the observation of
GW150914. The median values of the rates have decreased
by approximately a factor of two, as we now have three likely
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Figure 2: Example of GW spectra in Case 1, for fixed T⇤ = 100 GeV, ↵ = 0.5, vw = 0.95, and

varying �/H⇤: from left to right, �/H⇤ = 1 and �/H⇤ = 10 (top), �/H⇤ = 100 and �/H⇤ = 1000

(bottom). The black line denotes the total GW spectrum, the green line the contribution from

sound waves, the red line the contribution from MHD turbulence. The shaded areas represent the

regions detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

dominate the GW spectrum, since the �/H⇤ enhancement of the amplitude that operates

for long-lasting sources is less relevant (c.f. Eqs. (13) and (7)). As �/H⇤ increases, the sound

wave contribution gains importance (provided that ↵1 is large enough). At su�ciently high

frequencies however the scalar field contribution always dominates because of its shallow

decay: p = 1 as opposed to p = 4 and p = 5/3, see Eqs. (8), (14) and (17).

It is apparent that the total GW spectrum arising from a first-order PT depends on the

interplay among the contributions of the di↵erent sources, which in turn are determined by

the specific dynamics of the PT. On the one hand this is encouraging, since it opens up

the possibility of investigating the dynamics of the PT. On the other hand, this is probably

feasible only in the most optimistic PT scenarios and for the best eLISA configurations. Note

that the highest GW signals are expected for runaway bubbles in vacuum (Case 3 above) for

which the GW spectrum has the simplest shape, being determined only by the scalar field

contribution.
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SGWB detectability: correlation
❖ Assuming two data streams of the form                       , satisfying

❖ Filter data using a Kernel function of the form

❖ Optimal filter maximises the response in the presence of the signal to the 
RMS response to the noise. Desired filter is of the form

❖ This is a matched filter for cross-correlation and yields optimal SNR

4

variable definition

hab(t, !x) metric perturbation, Eq. 1

hA(f, k̂) Fourier coefficients of metric perturbation, Eq. 1

Sh(f) strain power spectral density of a gravitational-wave background, Eq. 3

Ωgw(f) fractional energy density spectrum of a gravitational-wave background, Eq. 4

hc(f) characteristic strain for gravitational waves, Eq. 5

h(t) detector response to gravitational waves, Eq. 12

RA
I (f, k̂) detector response to a sinusoidal plane gravitational wave, Eq. 12

h̃(f) Fourier transform of h(t), Eq. 13

ΓIJ (f) overlap reduction function for the correlated response to a gravitational-wave background, Eq. 15

RI(f) detector response to a gravitational wave averaged over polarizations and directions on the sky, Eq. 17

PhI(f) detector power spectral density due to gravitational waves, Eq. 18

PnI(f) detector power spectral density due to noise, Eq. 21

Seff(f) effective strain noise power spectral density for a detector network, Eq. 23

heff(f) effective characteristic strain noise amplitude for a detector network, Eq. 24

Sn(f) strain noise power spectral density for a single detector, Eq. 27

hn(f) characteristic strain noise amplitude for a single detector, hn(f) ≡
√

fSn(f)

TABLE I: Summary of select variables with references to key equations.

D. Overlap reduction function

Given two detectors, labeled by I and J , the expec-
tation value of the cross-correlation of the detector re-
sponses h̃I(f) and h̃J(f) is

〈h̃I(f)h̃
∗

J (f
′)〉 =

1

2
δ(f − f ′)ΓIJ(f)Sh(f) , (14)

where

ΓIJ(f) ≡
1

8π

∫
d2Ωk̂

∑

A

RA
I (f, k̂)R

A
J
∗(f, k̂)e−i2πfk̂·("xI−"xJ)/c

(15)

is the overlap reduction function (see e.g., [4, 5] in the
context of ground-based interferometers). Note that
ΓIJ(f) is the transfer function between gravitational-
wave strain power Sh(f) and detector response cross-
power CIJ (f) = ΓIJ(f)Sh(f). It is often convenient
to define a normalized overlap reduction function γIJ(f)
such that for two identical, co-located and co-aligned de-
tectors, γIJ(0) = 1. For identical interferometers with
opening angle between the arms δ,

γIJ (f) = (5/ sin2 δ)ΓIJ(f) . (16)

For a single detector (i.e., I = J), we define

RI(f) ≡ ΓII(f), (17)

which is the transfer function between gravitational-wave
strain power Sh(f) and detector response auto power

PhI(f) = RI(f)Sh(f) . (18)

Note that RI(f) is the antenna pattern of detector I
averaged over polarizations and directions on the sky.
A plot of RI(f) normalized to unity for the strain re-
sponse of an equal-armMichelson interferometer is shown
in Fig. 4.

10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

2fL/c
γ I
I(f
)

FIG. 4: A plot of the transfer function RI(f) = γII(f)
normalized to unity for the strain response of an equal-arm
Michelson interferometer. The dips in the transfer function
occur around integer multiples of c/(2L), where L is the arm
length of the interferometer.

Detailed derivations and discussions of the overlap re-
duction functions for ground-based laser interferometers,
space-based laser interferometers, and pulsar timing ar-
rays can be found in [3–5], [6, 7], and [8, 9], respec-
tively. In Fig. 5 we plot the overlap reduction func-
tions for the strain response of the LIGO Hanford-LIGO

5

Livingston detector pair in the long-wavelength limit
(valid for frequencies below a few kHz) and the strain
response of a pair of mini LISA-like Michelson interfer-
ometers in the hexagram configuration of the Big Bang
Observer (BBO), which is a proposed space-based mis-
sion, whose goal is the direct detection of the cosmo-
logical gravitational-wave background [10–12]. The two
Michelson interferometers for the BBO overlap reduction
function are located at opposite vertices of a hexagram
(‘Star of David’) and have arm lengths L = 5 × 107 m
and opening angles δ = 60◦.
In Fig. 6, we plot both the overlap reduction func-

tion and the Hellings and Downs curve [8] for the timing
response of a pair of pulsars in a pulsar timing array. As-
suming two pulsars are separated by an angle ψIJ on the
sky, then to a very good approximation [9]:

ΓIJ(f) =
1

(2πf)2
1

3
ζIJ (19)

where

ζIJ ≡
3

2

(
1− cosψIJ

2

)
log

(
1− cosψIJ

2

)

−
1

4

(
1− cosψIJ

2

)
+

1

2
+

1

2
δIJ

(20)

is the Hellings and Downs factor [8]. (The normalization
is chosen so that for a single pulsar ζII = 1.)

E. Signal-to-noise ratio

The expected (power) signal-to-noise ratio for a cross-
correlation search for an unpolarized and isotropic
stochastic background is given by [3]:

ρ =
√
2T

[∫ fmax

fmin

df
Γ2
IJ (f)S

2
h(f)

PnI(f)PnJ (f)

]1/2

, (21)

where T is the total (coincident) observation time and
PnI(f), PnJ (f) are the auto power spectral densities for
the noise in detectors I, J . The limits of integration
[fmin, fmax] define the bandwidth of the detector. This is
the total broadband signal-to-noise ratio, integrated over
both time and frequency. It can be derived as the ex-
pected signal-to-noise ratio of a filtered cross-correlation
of the output of two detectors, where the filter function
is chosen so as to maximize the signal-to-noise ratio of
the cross-correlation.3 For a network of detectors, this

3 The above expression for ρ assumes that the gravitational-wave
background is weak compared to the instrumental noise in the
sense that PhI(f) ! PnI(f) for all frequencies in the bandwidth
of the detectors.

generalizes to

ρ =
√
2T

[∫ fmax

fmin

df
M∑

I=1

M∑

J>I

Γ2
IJ(f)S

2
h(f)

PnI(f)PnJ (f)

]1/2

, (22)

whereM the number of individual detectors, and we have
assumed the same coincident observation time T for each
detector.
The above expression for ρ suggests the following def-

inition of an effective strain noise power spectral density
for the detector network

Seff(f) ≡

[
M∑

I=1

M∑

J>I

Γ2
IJ(f)

PnI(f)PnJ (f)

]−1/2

, (23)

with corresponding strain noise amplitude

heff(f) ≡
√
fSeff(f) . (24)

In terms of Seff(f), we have

ρ =
√
2T δf

√
Nbins

〈
S2
h

S2
eff

〉1/2

, (25)

where 〈 〉 denotes an average4 over the total bandwidth
of the detectors, ∆f = Nbins δf . For the case of M iden-
tical, co-located and co-aligned detectors, things simplify
further. First,

Seff(f) =

√
2

M(M − 1)
Sn(f) , (26)

where

Sn(f) ≡ Pn(f)/R(f) (27)

is the strain noise power spectral density in a single de-
tector. Second,

ρ =
√
T δf

√
Nbins

√
M(M − 1)

〈
S2
h

S2
n

〉1/2

. (28)

Thus, we see that the expected signal-to-noise ratio
scales linearly with the number of detectors for M ' 1,
the square-root of the total observation time, and the
square-root of the number of frequency bins. Note
that

√
T δf

√
Nbins =

√
T∆f , which is the total time-

frequency volume of the measurement.

III. POWER-LAW INTEGRATED CURVES

A. Construction

The sensitivity curves that we propose are based on
Eq. 22 for the expected signal-to-noise ratio ρ, applied

4 Explicitly, 〈X〉 ≡ (1/∆f)
∫ fmax

fmin
X(f) df .
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hñI(f)ñ
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SGWB detectability: Fisher matrix
❖ Fisher matrix provides Gaussian approximation to precision of 

parameter estimation. Increasingly valid as SNR increases.

❖ Computed using

❖ For estimation of SGWB parameters, assuming stationary-Gaussian 
noise, expression becomes

❖ For multiple detectors:
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SGWB detectability: frequency dependence
❖ Karnesis, Lilley & Petiteau (2020) 

suggested a simple approach to 
characterising SGWB detectability.

❖ Use piecewise constant model for 
spectrum with instrumental noise 
uncertain by a specified amount.
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Figure 3.10: Left panel, SI 7.2a: the detection of a cosmological SGWB. Here the presence of the injected FOPT
SGWB (green line) can be identified in the simulated LISA data imposing a hard prior on the instrument noise, for
two tested values of the relative uncertainty on the noise + astrophysical signals: " = 5% and 30%. The frequency
region over which the signal is identified (Bayes factor logBFOPT > 50) is shown as the coloured regions: orange,
" = 30% and yellow, " = 5%. Right panel, SI 7.2b: The outcome of a signal reconstructing procedure based on
searching for the FOPT SGWB (green, dashed line: injected signal) as a series of power laws in frequency bins. The
SGWBinner code has been run on simulated data (red dots) containing the FOPT SGWB, the astrophysical signals
(sBHBs SGWB in dark blue and Galactic foreground in ligth blue), and the instrument noise (black). The code has
iterativelly merged several initial frequency bins in two final ones. The presence of a break in the FOPT SGWB can
be reconstructed piece-wise, with two power laws (green, solid). The 2� error on the reconstructed signals and noise
are shown as shaded areas (invisible fore the astrophysical signals and the instrument noise).

the bin i ). Simultaneously, a template-based search is performed both for the astrophysical signals
(sBHBs SGWB and GB foreground) and for the instrument noise. The noise template has two
parameters: A (mass acceleration noise) and P (optical metrology system noise) [102]. The prior
for the noise parameters is established using the T -channel. The posterior for the A-channel noise
and signals is minimised independently in each bin, over the full set of parameters: the two noise
parameters (A, P ), the two astrophysical signals’ parameters (AGB,AsBHB) (the spectral index of
the sBHBs SGWB is fixed to 2/3), and the two FOPT SGWB parameters per bin i (log⌦i , ni ).
For all pairs of neighbouring bins, the code iteratively checks whether merging them is statistically
favoured. The result is shown in the right panel of figure 3.10: the merging procedure gives two
final bins (horizontal dashed grey lines), allowing to recognise the presence of a break in the FOPT
SGWB spectral shape (solid green lines). In table 3.12 we report the SNR and the marginalised 2�
errors on the FOPT SGWB parameter set for each bin, as well as on the other parameters of the
search.

Determining the cosmological SGWB spectral shape constitutes the first step for the identifi-
cation of the early universe process that generated it. LISA can reconstruct basic features in
the spectral shape of physically motivated cosmological SGWBs.

3.7.3 Characterise the large-scale anisotropy of the SGWB

Similarly to the CMB, the SGWB is expected to be statistically homogeneous and isotropic in the
cosmological frame, and therefore to feature a dipole fluctuation [101], induced by the motion of
the detector. This guaranteed SGWB dipole anisotropy is potentially detectable by LISA [41], if
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segments and average them in frequency so that, in each bin i,

p(D[i]|St) =
e
�

PN

j=1
Dj [i]

St[i]

St[i]N
=

e
�N D[i]

St[i]

St[i]N
, (2)

where D[i] is the average of the N periodograms of the time series data in frequency

bin i. Now, we can assume that the theoretical power St[i] is the sum of the true signal

plus the instrumental noise :

St[i] = So[i] + Sn[i], (3)

with Sn[i] the instrumental noise, and So the excess power measured for each frequency

f [i].

Let us also introduce an uncertainty in the noise amplitude by assigning a prior

probability on the power spectrum level Sn[i] per frequency bin i. We choose to use a

uniform prior in each bin. This will also allow us to compute the integrals that follow

analytically. Defining the uncertainty in the noise amplitude by parameter ✏[i], the

instrument noise power spectrum lies in the range [Sn[i]� ✏[i], Sn[i] + ✏[i]], where Sn[i]

is a best estimate, for each frequency f [i]. A step further would be to generalise to an

asymmetric range around Sn[i], which would then lead to [Sn[i] � ✏
�[i], Sn[i] + ✏

+[i]].

Marginalizing over Sn, the resulting PDF for each frequency bin is now
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Single link signal model
• Decompose signal into Fourier modes 

 

• Assume statistics for homogeneous, isotropic and non-chiral SGWB: 
 

• Compute the cross-spectral densities for all single link measurements



Single link signal model
• Consider just 2 main noise sources in each single link 

 

• Assume fixed  and perfectly known noise shape 
 
 
 

• Consider either equal noise levels:                       


• or unequal noise levels (20% std):



Single link signal model



Single link signal model
• Consider 1st generation TDI for simplicity


• Compare Michelson X,Y,Z, 


• and Sagnac  
 

• Construct quasi-orthogonal variables 
 
 



Single link signal model
• Define Fourier trafo of TDI variables as vector of Fourier coefficients 

applied to single link measurements: 
 
 
 
Formally define CSD via expectation value of FT 
 
 

• Write result as contraction of single-link CSD matrix and TDI coefficient 
matrix  
 
 


