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% Part |: Data Analysis for stochastic GW signals
[Just a recap focusing on SGWB]

% Part Il: Modelling the stochastic signals tor the
band of LISA
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Part |

Data Analysis for stochastic signals

[very brietly, and not about maps]
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Assume

N. Karnesis, Data analysis challenges for stochastic gravitational wave backgrounds, 2023/07/18




Assume

e p(n) = C X exp (—% (nln)>

where
(alp) = 2 / df[aT C1b]
O

Then the likelihood is written as




% Usually when it comes to stochastic signals we are interested in their
oower, and not the amplitude at each sample.

% So, if we assume that the amplitude is distributed as a Gaussian variable as

h2
A ]
p(h|Sp) = C" X exp ( 25h>

% We can marginalise it over amplitude, which yields

1
p{dlh) = €% K bxp (—§<d|d>)
* But now, inside the /OO dfja’C1v*] , we write:

Cn(f) = Su(f) + R(f)Sh(/[)
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% Usually when it comes to stochastic signals we are interested in their
oower, and not the amplitude at each sample.

% So, if we assume that the amplitude is distributed as a Gaussian variable as

h2
A ]
p(h|Sp) = C" X exp ( ZSh)

% We can marginalise it over amplitude, which yields

plalh) = € x exp ()

* But now, inside the / dfja’C1v*] , we write:
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Challenges!

Those will be discussed a ot during this meeting!

J. Gair and N. Cornish gave us a pretty good overview
this morning.
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Challenges!
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Challenges!
Cn(f) =60 (f)H R(f)Sh(f)

< Stationarity (gaps, glitches, astro signals, ...) ¢ Correlations between channels
< Not completely known (many signals in there) ¢ Residuals

% LPF lessons (unknown noise components) o
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Challenges!
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Challenges!

% Astrophysical & Cosmological  Parts of response can be similar to noise

* Non-stationary, anisotropic % [ ... ]
* Models with many different spectral shapes < We will hear a lot about these tomorrow.
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Part i

Modelling the stochastic signals for the band ot LISA
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% Previous speakers gave us a really nice overview on the different sources
ot stochastic signals.

% We can try now to assign the different models to the various sources.
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Cosmological sources
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Cosmological sources

% Chiara this morning gave us an overview of the physical processes that might

generate cosmological stochastic signals.

% Mostprocesses predict a signal in the LISA band that follows a particular spectral
shape.

— FOPT - PBH — sBHB
Sl O - GB === Noise AA

—igure by M. Pieroni,

1%;quency 2] for the Red Book
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Stellar Origin Black Hole Binaries
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Stellar Origin Black Hole Binaries

% We expectto get

128.-5/3 £2/3
h*Qaw (f) = /

OH?

(E s

/OOO dMp (M(mq,ms)) M>/3 /OOO dR(z)

% Which means: hQQGW(f) X f2/3

[Babak+. acc. to JCAP, 2023]

-= Compact Galactic Binaries

Sensitivity

10~ 10~ 10~
Frequency [Hz] Frequency [Hz]
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Stellar Origin Black Hole Binaries

% And how detectable will that signal be?

[Babak+, acc. to JCAP, 2023]
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Galactic Binaries
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Galactic Binaries

e More complicated stochastic signal that depends on many things

— agCE py=7

— ag2CE py =7
aaCE po =17
aa2CE Po = 7
obs_default py =7

- === [nstrument noise

10-*
Frequency [Hz]

Frequency [Hz| IM Georgousi, Msc thesis, AUTh, 2021]
INK+, PRD 104 043019, 2021] IV Korol+, MNRAS, 511, 4, 2022]
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Galactic Binaries [M Georgousi+, MNRAS, 519, 2, 2023]

* A great selection of resulting stochastic
signals has this particular shape, which can
be modelled with an empirical model as:

Squt = 5 eI (14 tanh (fuae — £) /F2)

e Similar models work equally well. ..
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Galactic Binaries

e Cyclo-stationarity can be modelled and taken into account:

SAE

cyclo

T ggal > _|_Sinstr

[Digman and Cornish, Apd 240 10, 2022}
Cyclostationar Galactic Residual
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Galactic Binaries

* However, there might be other effects that may “disturb” this smooth

shape. For example:
S. Scaringi+, 2307.02553, 2023]

—— data —— wdwd confusion
residual -—=jnstrument noise
- CV confusion

GW frequency [HZz]
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Generic Spectral shape

* Thus, given the “zoo"” of stochastic signals, we might want to take a
more agnostic route.
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Generic Spectral shape

* Thus, given the “zoo"” of stochastic signals, we might want to take a
more agnostic route. A: The Binner.

Data (used by the binner)

LISA SciRD

LISA PLS 4.0y, 0.75% eff, SNR=10
- Input signal

Reconstructed sensitivity

Reconstructed signal

Bin extremes

Signal 1o region

Signal 20 region

1073 102 1071
Frequency [HZ]

[Flauger+ JCAPQO1, 059, 2023]
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Generic Spectral shape

e Thus, given the “zoo"” of stochastic signals, we might want to take a

‘more agnostic route. B: Using a spline model.

10—3
Frequency [Hz|
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Generic Spectral shape

* Thus, given the “zoo"” of stochastic signals, we might want to take a
more agnostic route. B: Using a spline model.

Periodogram
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Generic Spectral shape

* Thus, given the “zoo"” of stochastic signals, we might want to take a

more agnostic route. B: Using a spline model.
|Q Baghi+ JCAP 04, 066, 2023]
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Generic Spectral shape
* Thus, given the “zoo"” of stochastic signals, we might want to take a
more agnostic route. B: Using a spline model.

* Too much freedom is causing degeneracies though. It's very hard to
assume a shape-agnostic model tfor the noise and the signal...
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Generic Spectral shape

* More complicated models might be needea.

e For example a comparison of models based on B-splines and more shape-
specific models.

e For example we can check the Bayesline work.
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Generic Spectral shape

* More complicated models might be needea.

e For example a comparison of models based on B-splines and more shape-
specific models.

e An example is the Bayesline pipeline. [Littenberg+, PRD, 91, 084034, 2015]
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Generic Spectral shape

* More complicated models might be needea.

e For example a comparison of models based on B-snlines and mare cshane-

specitic models. This needs to go into the

 An example is the Bayesline pipeline. [Littent: Global-Fit, so we need to be
103 careful to not "eat” signal from

. () different boxes
10 | Cubic spline fit —
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Modelling non-Gaussianities
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Modelling non-Gaussianities

* We might get non-Gaussianities, from different sources.

e Those can be modelled in the likelihood level.

N. Karnesis, Data analysis challenges for stochastic gravitational wave backgrounds, 2023/07/18



Modelling non-Gaussianities

* We might get non-Gaussianities, from different sources.
* Those can be modelled in the likelihooad level.

e Example: mixture of Gaussians.
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Modelling non-Gaussianities

* We might get non-Gaussianities, from different sources.
* Those can be modelled in the likelihooad level.

* We can use the Generalized Hyperbolic model, which is basically the
"mother” of exponential distributions.

[Sasli+, arXiv:2305.04709, 2023]
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Modelling non-Gaussianities

* We might get non-Gaussianities, from different sources.
* Those can be modelled in the likelihooad level.

* We can use the Generalized Hyperbolic model, which is basically the
"mother” of exponential distributions.

Nf &
| Q 1—d
Anyp (@, 05 fi) :nz ( 5 log (E> | 5 log(27)

— log(2a) — log (K(d+1)/2(5@)) )

— (/82 + (di — hi)2/Sn.

[Sasli+, arXiv:2305.04709, 2023]
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Modelling non-Gaussianities

* We might get non-Gaussianities, from different sources.
* Those can be modelled in the likelihooad level.

* We can use the Generalized Hyperbolic model, which is basically the
"mother” of exponential distributions.

Nf 2
| 1
Anyp (@, 05 f5) :nz (d;— log (%) | : dlog(Zﬂ) N if §/la— S, as a,) =5 x©

—log(2ar) — log (K (441)/2(0c)) ) ‘S:yjzgz,atzg;norvrgz\énNCc;rma\—

Sk o Gamma, [...], Tor other
o 04\/52 + (di — h)?/Sn combinations

[Sasli+, arXiv:2305.04709, 2023]
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Modelling non-Gaussianities

* A toy example as demonstration:

T

— PSD(data+)
—— PSD(data)
= Model

10~ 1077
Frequency [Hz]
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Modelling non-Gaussianities

* A toy example as demonstration:

Ly My L

,,'w WW, N

N/
V""V

—— PSD(data+)
—— PSD(data)
== Model

10~ 1077
Frequency [Hz]
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Modelling non-Gaussianities

* A toy example as demonstration:

Ly My L

TR .
L

N/
V""V

—— PSD(data+)
—— PSD(data)
== Model

10~ 1077
Frequency [Hz]

N. Karnesis, Data analysis challenges for stochastic gravitational wave backgrounds, 2023/07/18



Modelling non-Gaussianities

* A toy example as demonstration:

L M Ll

TR .
L

N/
V""V

—— PSD(data+)
—— PSD(data)
== Model

10~ 1077
Frequency [Hz]
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Modelling non-Gaussianities

* A toy example as demonstration:

skew—Laplace distribution

[Sasli+, arXiv:2305.04709, 2023]
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Modelling non-Gaussianities

* A toy example as demonstration:

skew—Laplace distribution

[Sasli+, arXiv:2305.04709, 2023]
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% In terms of modelling the stochastic signals, there is a huge library
of spectral models.

We have shape-agnostic models that are very useful for data
analysis.

We need to make use of the ditferent responses of the instrument.

We need: work with more realistic data scenarios, where
components of the noise are not fully known.

Put all the pieces together.
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