arXiv:2302.12573

it PPN 4

Seam
-
.....

*\ DIFFERENTIATING-SIGNAL FROM NOISE: TOWARDS A
'MULTIVARIATE SPECTRAL ANALYSIS FOR LISA .

ean, .
.

Quentin BACHENS Nikos Karnesis, Jean-Baptiste Bayle, Marc Besangoh, Henri Inchauspe
*CEA Paris-SaGiel .

Thursday, July 20th 2023
Data analysis challenges for stochastic gravitational wave backgrounds

irfu |_||| SA
@ _I COI:ISORTIUM




CONSORTIUM

irfuJ LI!I S A

Layout

1. Problem statement
2. Multivariate time series model
3. Bayesian inference

4. Revisiting null channels

Stochastic GW background generated with Midjourney

Quentin Baghi - Data analysis challenges for SGWBs - July 20th, 2023



Problem statement @lrfu lc_o'NllséT.%

Quentin Baghi - Data analysis challenges for SGWBs - July 20th, 2023



Problem statement

B Liss .

» In LISA, we cannot cross-correlate different detectors like LIGO-Virgo-KAGRA
— Instrumental stochastic processes must be very precisely accounted for to allow for a detection

Quentin Baghi - Data analysis challenges for SGWBs - July 20th, 2023



B Liss .

Problem statement

» In LISA, we cannot cross-correlate different detectors like LIGO-Virgo-KAGRA
— Instrumental stochastic processes must be very precisely accounted for to allow for a detection

»  We cannot fully rely on pre-flight instrumental noise models (Cf. LISA Pathfinder)

Quentin Baghi - Data analysis challenges for SGWBs - July 20th, 2023



Problem statement

@ irfu |_||| SA

» In LISA, we cannot cross-correlate different detectors like LIGO-Virgo-KAGRA
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» In LISA, we cannot cross-correlate different detectors like LIGO-Virgo-KAGRA
— Instrumental stochastic processes must be very precisely accounted for to allow for a detection
»  We cannot fully rely on pre-flight instrumental noise models (Cf. LISA Pathfinder)
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Problem statement

B LisA

» There is no such thing as a perfect null channel (Cf. Martina Muratore and Mauro Pieroni’s talks)

»  We need

+ to use differences in signal and noise features

+ anoise model that is as robust and flexible as possible

+ realistic instrumental data simulations

» Nevertheless, we need to make assumptions

+ Isotropic, stationary SGWB
+ Noise PSD is smooth on mHz scales

+ All resolvable GW sources have been removed (!!!)
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Multivariate time series model

»  We start from interferometric measurements

»  After some combinations to suppress S/C motion and half of the laser noise, we obtain 6 intermediate
variables n

SC3

(112)
"3
H31
"3
UEY)
121

MOSA 31

»  They are affected by noise and GW signal:

SC 2 SC 1

“D21

MOSA 21 MOSA 12

n=h+p+n
o

laser frequency noise

GW signal secondary noises
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Multivariate time series model

B Liss

» To cancel laser frequency noise we form TDI variables through a linear operation:

X
d=\(Y = — reduces to 3 effective variables
/
= Mh + Mn + Mp TDI transformation matrix
= Mh + Mn
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Multivariate time series model

6

» To cancel laser frequency noise we form TDI variables through a linear operation:

X
d=\(Y = — reduces to 3 effective variables
/
= Mh + Mn + Mp TDI transformation matrix
= Mh + Mn

»  We obtain a 3-dimensional multivariate time series d

» We can take their discrete Fourier transform (DFT): d = DFT (d)
»  Stationarity assumption implies:
+ DFT components at frequencies f, approximately uncorrelated

+ Each frequency bin is characterised by a spectrum matrix
2/f) = E |[d(Hd(N)]
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Multivariate time series model

»  We can split the spectrum matrix into 2 independent components: signal and noise

2“a’ = 2“noise + Z“GW
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Multivariate time series model

B Liss

»  We can split the spectrum matrix into 2 independent components: signal and noise

2“a’ = 2“noise + ZGW
» Note that each matrix depends on frequency
» The noise covariance may have a complicated structure

» The signal covariance is easier to model. For a stationary isotropic SGWB, we have

Zew() = Raw(NS()

Sky-averaged TDI _T T— SGWB PSD (scalar)
response matrix

( )

»  What helps distinguishing between noise and signal:

1. Differences in correlation structure between X_ . . and Xy

noise

2. Spectral features of the SGWB template S,(f)

3. Priors on noise and signal parameters
\— _J
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Bayesian inference

B Liss .

»  We recently conducted a study with additional assumptions:
+ All interferometric noises have the same transfer function
+ All interferometric noises have the same PSD

+ They are uncorrelated
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» In our approximation we can model the noise covariance as
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Bayesian inference

B Liss .

»  We recently conducted a study with additional assumptions:
+ All interferometric noises have the same transfer function
+ All interferometric noises have the same PSD

+ They are uncorrelated

» In our approximation we can model the noise covariance as

i:noise(f ) = IN{noise(f )Sn(f )

TDI correlation matrix—T T— Single-link noise PSD (scalar)

»  We do it with a spline basis:

K-1
log S, (f) = 2 ¢;B; (fa §)
j=0
Spline amplitudes Spline locations
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

H2
f Qew(f) = 6w J%

Si(f) = Qaw(f )
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

n

3H; f
Si(f) = Qaw(f ) A2 Qew(f) = QTW’O JTO
Energy density
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

3H; )
> f3 QGW(]C ) — QTW,O ]40

Slf) = Qewlf)7

Energy density Power-law index
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

3H; )
> f3 QGW(]C ) — QTW,O ]40

Slf) = Qewlf)7

Energy density Power-law index

»  We use Whittle’s likelihood (multivariate case):
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

Hg )
> f3 QGW(]C ) — QTW,O ]40

3
Slf) = Qewlf)7

Energy density Power-law index

»  We use Whittle’s likelihood (multivariate case):

p10) = V=) det(S(f0)exp (—d(A)E; (fod(fp) )
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Modelling the spectrum matrix

» Power-law template to model the SGWB PSD:

Hg ¥
> f3 QGW(]C ) — QTW,O ]40

3
Slf) = Qewlf)7

Energy density Power-law index

»  We use Whittle’s likelihood (multivariate case):

p(d|0) = I det(Z,(fi)™! 6XP _d(fk)TE 1(]2)61(]2)

Fourier-transformed TDI data FuII TDI covariance matrix
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»  We generate single-link measurements using LISA GW Response [Bayle, Baghi, Renzini, Le Jeune 2022]
»  Obtain 6 science interferometer time series

» Add instrumental noise from prescribed PSD 768 pixels

SC3

0 Power spectral density at 1 Hz 2

MOSA 31

le—10 Power sky map and link response to stochastic gravitational-wave background

MOSA 23 MOSA 13

Link response

SC 2

“D21
MOSA 21

MOSA 12

| | | | | |
10000 20000 30000 40000 50000 60000
Time [s]

»  Process data through time-delay interferometry (TDI) using the pyTDI code [Staab, Bayle, Hartwig 2022]

» Time-varying arm lengths = second-generation TDI
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Bayesian inference

» Bayesian data analysis :

+ Sampling posterior distributions with parallel tempered Markov chain Monte Carlo (MCMC)
+ Uniform priors on GW parameters Q. , € [10716, 107 '*1 and n € [-5,7]

+ Uniform prior on noise PSD level: 1 order of magnitude deviation allowed
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Bayesian inference

» Bayesian data analysis :

+ Sampling posterior distributions with parallel tempered Markov chain Monte Carlo (MCMC)

+ Uniform priors on GW parameters Q. , € [10716, 107 '*1 and n € [-5,7]

(4 Uniform prior on noise PSD level: 1 order of magnitude deviation aIIowed)
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Bayesian inference

» Bayesian data analysis :

+ Sampling posterior distributions with parallel tempered Markov chain Monte Carlo (MCMC)

+ Uniform priors on GW parameters Q. , € [10716, 107 '*1 and n € [-5,7]

(4 Uniform prior on noise PSD level: 1 order of magnitude deviation aIIowed)

K-1
log S,(f) = Y. ¢;B; (1)
j=0
10_18 | | | L | | | | L | |
—— Estimate @ - True PSD — Khnots

VS, [Hz 1)
2

103 102
&

107> 10~
Frequency [Hz]
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Bayesian inference

» Bayesian data analysis :

+ Sampling posterior distributions with parallel tempered Markov chain Monte Carlo (MCMC)

+ Uniform priors on GW parameters Q. , € [10716, 107 '*1 and n € [-5,7]

(4 Uniform prior on noise PSD level: 1 order of magnitude deviation aIIowed)

K-1 f n
log S,(f) = Z ¢;B; (f,€) Qow(f) = Qcwyo 7
J=0 0
10_18 = | | | L | | | | L | 3
- —— Estimate TruePSD  —— Knots 7 log Qaw = _29'41ﬂ:8-3§_
— n N i
n 107k =
N — -
an) - ]
@ 10°20F N =
C1F E
B i D
10—21 | | - - |
1073 1072 o
él = /Q
Q
§ | | | L | | | | L | | /;\
=
Q

107> 10~
Frequency [Hz]
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%) H~ Ut
1 1 1

log Sj,k

=
N
|

Probability

=
—_
I

0.0

0123456789 10
# of free knots

log f j.k

[Done with Eryn: Karnesis et al., 2023]
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» Detection using Bayesian model comparison

-
+ Hypothesis Ho: only noise in the data

+ Hypothesis Hq: presence of a SGWB
g

d

d=M

h

_|_

n

)

J
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» Detection using Bayesian model comparison

-
+ Hypothesis Ho: only noise in the data

+ Hypothesis Hq: presence of a SGWB
g

d

d=M

h

_|_

n

)

J

» Aim: compute the Bayes factors for a range of configurations (€2, ., 1)
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Bayesian inference

» Detection using Bayesian model comparison

p - ~
+ Hypothesis Ho: only noise in the data d

1= M 2= | pa10.1)p0)a0
+ Hypothesis Hq: presence of a SGWB d=Mh+ ﬁ) ®

g J
. : : Zl
» Aim: compute the Bayes factors for a range of configurations (€2, ., 1) 9310 — 7
0
log B
~12.25 el
~12.50 ~10*
—12.75 103
Log-energy < ~13.00 102
density 2 _13.95
10!
—13.50
10Y
—13.75
107!
—14.00 ) 0 > A
n Power-law index
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Bayesian inference

» Detection using Bayesian model comparison

p - ~
+ Hypothesis Ho: only noise in the data d

1= M 2= | pa10.1)p0)a0
+ Hypothesis Hq: presence of a SGWB d=Mh+ ﬁ) ®

g J
: : : Zl
» Aim: compute the Bayes factors for a range of configurations (€2, ., 1) 9310 — 7
0
log B
~12.25 el
~12.50 ~10*
—12.75 103
Log-energy < ~13.00 102
density 2 _13.95

—13.50

—13.75

—14.00

-2

n Power-law index
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Bayesian inference

» Detection using Bayesian model comparison

p - ~
+ Hypothesis Ho: only noise in the data d

1= M 2= | pa10.1)p0)a0
+ Hypothesis Hq: presence of a SGWB d=Mh+ ﬁ) ®

g J
: : : Zl
» Aim: compute the Bayes factors for a range of configurations (€2, ., 1) 9310 — 7
0
log B
~12.25 el
~12.50 ~10*
—12.75 103
Log-energy < ~13.00 102
density 2 _13.95

—13.50

—13.75

—14.00

-2

n Power-law index
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Bayesian inference

» In reality, we will have different noises, with different transfer functions

inoise(f) = Z Rnoise,i(f)Sn,i(f) — One spline for each PSD
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Bayesian inference

» In reality, we will have different noises, with different transfer functions
2 e(f) = Z R 0ise.i(/)S,:(f) = Onespline for each PSD
I

»  Even worse: the single-link measurements #;; will have different PSDs!

inoise(f ) — Z 1V[noise,i(f )Sn,z(f )Mnoise,i(f )T
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Bayesian inference

» In reality, we will have different noises, with different transfer functions

inoise(f) = Z Rnoise,i(f)Sn,i(f) — One spline for each PSD

»  Even worse: the single-link measurements #;; will have different PSDs!

Znoise(f ) = Z Mnoise,i(f )Sn,z(f )Mnoise,i(f )Jr
[
» But we only have 9 observable degrees of freedom, so we might rather directly fit for them...?

) (Sex(f) Sxr(f) Sy
2oise() = | Syx(f) Syy(f)  Syz(f)
S S Sz,
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Bayesian inference

»  Attempt with 2 noise components: optical metrology system (OMS) and test-mass (TM) noises

2 oise() = Roms(NSoms () + Ry (St

OMS noise
B I I l LN | I I I L | I | b
- Prior True PSD Knots - Qcwo = 4.5 X 10~12 n=~0 o
Q1020 —— Estimate - {l.
| -
. . 10—19 TDI X
. ] = T T I B N I R I T T 1T 1 1T TT] S T =
2 . [~ == Estimated noise = Estimated GW -
I — ) : -
10721 = B True noise === True GW
E 1 1§| ||§|||I | I |§||||§|I I : —20_ o
1073 10~2 10 §
— _
N
71072 =
N —
M| | —
10~* 10~° 10~ EEL ~
Frequency [Hz] ) |
TM noise 7p) _7
_19 I I I LN | I I I L | I m 10
10 -~ Prior True PSD oo Knots 3 3
& i —— Estimate f _
S 1020k = |
= f s
= B N 10~ =
<) 1072 = =
10—22 ; 1 E E E : : —
107 10~ 10~24 Lol
1 1073 102
Z Frequency [Hz]
z
R -1

[N L1l
10~* 1073 1072
Frequency [Hz]
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»  Going beyond: can the concept of null channel help?
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Revisiting null channels

» Classic definition following Prince et al. (2002). We can look for a combination e of TDI variables that
maximises signal-to-noise ratio (SNR) of a deterministic signal s:

- (a,)

Je aTAsya 4

e=a X+ aY+aZ SNR = — df a=|d
fi EULGoisea \613 )

Where A gy is the matrix of cross-products of the signal vector §: Agw = §87
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Revisiting null channels

» Classic definition following Prince et al. (2002). We can look for a combination e of TDI variables that
maximises signal-to-noise ratio (SNR) of a deterministic signal s:

- (a,)

Je aTAsya 4

e=a X+ aY+aZ SNR = — df a=|d
fi aTZnoisea \613 )

Where A gy is the matrix of cross-products of the signal vector §: Agw = §87

»  Which from Rayleigh’s principle is equivalent to the generalised eigenvalue problem [Borloz & Xerri 2005]:

IlOlSC
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Revisiting null channels

» Classic definition following Prince et al. (2002). We can look for a combination e of TDI variables that
maximises signal-to-noise ratio (SNR) of a deterministic signal s:

= (a;)

Je aTAsya 4

e=a X+ aY+aZ SNR = — df a=|d
fi aTZnoisea \a3 )

Where A gy is the matrix of cross-products of the signal vector §: Agw = §87

»  Which from Rayleigh’s principle is equivalent to the generalised eigenvalue problem [Borloz & Xerri 2005]:

IlOlSC

»  For deterministic signals Ay, is of rank 1 so it is equivalent to performing the eigendecomposition of

the noise covariance matrix X ...

(Syx(f) Sxy(f) Syz()
inoise(f ) = Syx(f ) Syy(f ) SYZ(f )
Sox(f) Sp(F) Sz,
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Revisiting null channels

» That means we compute nOlse(f) V(H)AFV(f)' so that the transformation & = V'd forms a set of
orthogonal channels

»  The null channel corresponds to the eigenvector with smallest SNR

x SNR!

»  Under speciﬂc assumptions 10‘”_ AL AL T IAH%
. . . 1074k ceee E -
+ Fixed arm lengths — first-generation TDI = 3
g 107°E ~Null channel E
+ Equal armlengths O -
T 107 E
) ) ) 2 N ]
+ Equal interferometric noises = all 77;; have the same = 10k E
PSDs Z r -
% 10718 = E
» The diagonalisation is independent of frequency and 1L _
noise levels = A, E, T 205 .
O_ = | | I | | | L 1 1 11 | | L1 1 1 1=
/ \ 107 0 0 10°!
_1 1 1 Frequency [Hz]
2 6 3 . .
V2 \/; \/1— Both noise and signal are orthogonal
-1 0 —-— —
v NG
1 1 1 But unrealistic assumptions!
| V2 Ve V3
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Revisiting null channels

» Now assume
+ Flexing armlenghts — second-generation TDI
+ Unequal armlengths

+ Equal interferometer noises

»  The eigenvectors V(f) of £_. (f) are now frequency dependent!

Classic AET Diagonalisation of X ...

10_]55 T T T T TTT] T I N I T LI N = 10_155 T T T T TTT] T T T T TTT] T LN B A =

: A1 = .

| I e ] | ]

-k Not orthogonal anymore! E 1o-16L ;

- — T 3 - §

& i 1 & i .
lN 10_17 E_ _E IN 10_17 E_ _E
e - i = - E
> i 1 = i .
E 10718 = = E 10718 =
= - 1 = - -
8 B ] g B ]
n B ] 0p) B ]
107 = 10-P =
10_20:_ i 10_20; j:

= | Lol | [ | | L = =

10~% 1072 1072 107! 10~* 10> 102 107!

Frequency [Hz] Frequency [Hz]
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Revisiting null channels

»  But we are looking for stochastic signals. What is a null channel in this case?

» The definition of the optimal SNR needs to account for SGWB correlations:

fe 2ty a .
SNR = J Sy 2w = E [ss]
aJrznoisea

l
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Revisiting null channels

»  But we are looking for stochastic signals. What is a null channel in this case?

» The definition of the optimal SNR needs to account for SGWB correlations:

Ju @S wa
SNR = J OV if 3w =E [ss
alX oW [ ]

/ noised

» The generalised eigenvalue problem we need to solve is now

Z:GWa — /Iznmse i':GW(]C ) — liGW(f )Sh(f )

Quentin Baghi - Data analysis challenges for SGWBs - July 20th, 2023



|rfu L||| SA

CONSORTIUM 20

Revisiting null channels

»  But we are looking for stochastic signals. What is a null channel in this case?

» The definition of the optimal SNR needs to account for SGWB correlations:

Ju @S wa
SNR = J OV if 3w =E [ss
alX oW [ ]

/ noised

» The generalised eigenvalue problem we need to solve is now

Z:GWa — Aznmse i':GW(]C ) — 1iGW(f )Sh(f )

» Involves both noise and signal orthogonalisation! Equivalent to solving the eigenvalue problem:
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Revisiting null channels

»  But we are looking for stochastic signals. What is a null channel in this case?

» The definition of the optimal SNR needs to account for SGWB correlations:

fe 2ty a .
SNR = [ Sy 2w = E [ss]
17 aJrznoisea

l

» The generalised eigenvalue problem we need to solve is now

Z:GWa — }“anse i':GW(]C ) — 1iGW(f )Sh(f )

» Involves both noise and signal orthogonalisation! Equivalent to solving the eigenvalue problem:

~/

Az

Bz

~

Where we set B = L_IZ : LT_1 7 = LTa

noise

With L the Cholesky decomposition of the SGWB response matrix: RGW(f) =LL'
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Revisiting null channels

» Let us revisit the null channel with this new definition of the optimal SNR:

s Classic AET Diagonalisation of X_ ..
= T N B I B T N B I B T T 11T g = . T T T TTT] T T T T T ||||L||:
E _— A E 10—13;_ - A —;
10_16‘_ -———— F : E ........ E ;
5 3 10_14 = =
= — I'3 g - T3
& n 1 &, .| ]
T 107 J T 07k E
N 8 E N — -
= - 1 Z gk =
Ef‘ — _| E:. = E
Z 1070 1 2 0L ;
Z - i1 Z g =
5 F 15 F :
n B b wn 10_18 — =
10_19 — = 3
- 109k 4
10720 = -20 i 4/\‘{
- | L1111l | L1111l | L4111 H 10 E | L | Ll | L 11111

10~* 107> 10~2 107! 1077 1073 10~2 107!

Frequency [Hz] Frequency [Hz]

Very similar to { channel, see Martina’s talk!

But now completely orthogonal channels!
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Revisiting null channels

» Let us revisit the null channel with this new definition of the optimal SNR:

) . . . -1 ¥
s Classic AET Diagonalisation of X X qice
E | | IIIIII| | | IIIIII| | | IIIIII; = ‘\| T ||||||| T T ||||||| T T ||||||:
- — A - 108N === A 4
| ] = \ =
10_]6 B ——— E | E \\\ ........ /12 E
§ § 10—14 L \ —
- — T ] \ — I3 3
—_ A ] — \ -
Q B ] Qr— _ | \\ ]
1077 R = N E
N = = N — S -
=] - 1 = 6] R ]
= f 1 2'F
5 107°F 1 &0k
N — 7 .a E
5 1 8l
n B b wn 10_18 =
1079 = =
: : 10-9k
107X = - -
= | L1l | L1l | L1 111 H 10205_ | Cooo il | IR |
10~ 10~ 1072 107! 1074 1073 1072
Frequency [Hz] Frequency [Hz]

Very similar to { channel, see Martina’s talk!

But now completely orthogonal channels!
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Prospects

» We need a non-parametric spectral estimation for the full TDI covariance matrix

» There is a trade-off to find between inserting instrumental knowledge (breaking down noise in
different components with known transfer functions) and model complexity (number of parameters)

» We need to drop assumptions one by one and see if SGWB is still distinguishable

» We need to go to time-frequency domain to use the time information as a discriminant
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Prospects

» We need a non-parametric spectral estimation for the full TDI covariance matrix

» There is a trade-off to find between inserting instrumental knowledge (breaking down noise in
different components with known transfer functions) and model complexity (number of parameters)

» We need to drop assumptions one by one and see if SGWB is still distinguishable

» We need to go to time-frequency domain to use the time information as a discriminant

Thank you for your attention !
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