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LISA
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aims to detect gravitational waves with
the help of time delay interferometry



Characteristic Strain

Astrophysical sources

arXiv:1702.00786

-1
10 6: \ ' - 3
: \ == Galactic Background i
N\ § MBHBs at z =:
1 0-17 ! . | % \Verification Binaries |
: .‘ ,\,\ : = EMRI Harmonics ‘
[ | = LIGO-type BHBs
i ' — GW150914
1078} N
: \ vear Gal. Bin. (SNR >7) |3
> \
10'19;"
10’20,r
Observatory A A
21 Characteristic Strain
10 E— w = Total \ 3

107

10 107 10 10°' 10°
Frequency (Hz)



Gravitational waves of cosmic origin

see Chiara's talk for details
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Gauge field production

Quantum fluctuations in the metric during single-field slow-
roll inflation are out of LISA’s reach.

If the inflaton is an axion, it is natural to expect a coupling
to gauge fields that can lead to an instability in gauge field

ag.
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Large Density Perturbations

On CMB scales, the primordial power spectrum of density
perturbations is small and tightly constrained.

For the simplest models of inflation, the power spectrum is
nearly scale invariant, but the perturbations could be
significantly larger on small scales because of

® a decrease in inflaton speed
® a change in sound speed

® a sharp turn in field space



Large Density Perturbations

Density perturbations generate gravitational waves at
second order. Upper limits on stochastic gravitational wave
background constrain features in spectrum of primordial
density perturbations.

Primordial black
holes formed at
horizon reentry
contribute to the
stochastic
gravitational wave
background
through mergers
and close
encounters.
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First order phase transitions
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First order phase transitions

Gravitational wave sources

Bubble collisions and subsequent scalar field dynamics
Ti; © 0;90;¢

If the transition occurs in a medium, sound waves are
created as the bubbles expand

Tij O v (p + p)viv;
MHD turbulence (in the presence of electromagnetic fields)

1
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First order phase transitions

The peak frequency is set by the scale of the phase transition,
and LISA can constrain first order phase transitions around
the electroweak scale.

(adapted from) Caprini et al. arXiv:1512.06239
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Topological defects

Phase transitions that involve spontaneous symmetry
breaking often lead to defects.



Cosmic Strings

After the phase transition we are left with a network of

strings
Dufaux et al.
arXiv:1006.0217

In the absence of interactions these strings would rapidly
begin to dominate the energy density as
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Cosmic Strings

Loops form when strings inter- or autocommute

\_

These can decay into smaller loops through self-
intersection.

These processes lead to a scaling solution

2 Ps _ const
ox puH SO or



Cosmic Strings

Gravitational wave spectrum

adapted from Auclair et al. arXiv:1909.00819
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Model-independent constraints

Two preliminary take-aways

There are several potential sources of cosmological
gravitational wave backgrounds LISA can constrain and
could detect.The fact that the spectra vary widely
between models motivates a model-independent search.

To constrain stochastic gravitational wave backgrounds,
we constrain any excess over noise. So we must
understand/measure the noise properties to do this
successfully.



Time delay interferometry



Time delay interferometry

Neglecting the effect of gravitational potentials and treating the
satellites as free-falling in a background of gravitational waves in
Minkowski space, we can write the line element as

d82 = —dt2 + (6’63 -+ hz’j (X, t))dxzdxj

Free-falling massive particles whose initial comoving momenta
vanish remain at fixed comoving position

X'(t) =2

a

So their physical distance varies as gravitational waves pass by



Time delay interferometry

Photons transmitted from one free-falling satellite to another
then acquire a time delay. To leading order in the strain, for

photons arriving at b at time ¢ the time delay is

1 . ) Lba
ATy, (t) = 5&}")&&{)& / ds hij(Xa + NpaS,t — Lpg + 5)
0

/ /

unit vector from a — b unperturbed distance

We can hope to measure these time delays, or equivalently the
associated frequency shifts with help of interferometry.



Time delay interferometry

Considering the drift in the central frequency of the laser as
the only source of uncertainty, the measured Doppler shift is

Apa(t) = Spa(t) + pa(t — Lpa) — po(?)

where s is the relative change in frequency and p,(?) is the laser
frequency noise of the laser at satellite a at time .

Since the p,(t) are much larger than the signal (and other
sources of noise), we must form linear combinations in which
they cancel.



Time delay interferometry

As a simple example, we can consider a Michelson
interferometer

3

where we can define
M (t) = Agi(t — L12) + A1a(t) — As1(t — L13) — Aq3(¢)
= 591(t — L12) + s12(t) — s31(t — L13) — s13(¢)
+ p1(t —2L12) — p1(t — 2L43)



Time delay interferometry

If the arm lengths are equal,

Lio=1L13=1L

the laser frequency noise cancels
M1 (t) = Sgl(t — L) -+ 812(?5) — 831(?5 — L) — Slg(t)

For unequal armlengths we have to define more complicated
variables to cancel laser frequency noise.



Time delay interferometry

One such variable is

X(t) = Aoi(t —Li2 —2L13) + A12(t —2L13) + Agzi(t — L13) + Ai3(?)
— Asz1(t — L1 — 2L019) — Aq3(t — 2L12) — Ao1(t — L12) — Aqa(t)
= So1(t — L1o — 2L13) 4 s12(t — 2L13) + s31(t — L13) + s13(t)
— 531(t — L13 — 2L12) — s13(t — 2L12) — S21(t — L12) — s12(t)
3
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By cyclic permutation, one obtains the variables Y and Z.




Time delay interferometry

For a triangular configuration, we can also consider

a(t) = Aoy (t — L1s — Lag) + Asa(t — Lig) + A1s(t)

— Ag1(t — L1g — Log) — Ags(t — L12) — Aq1a(1)

= S91(t — L13 — Lo3) + s32(t — L13) + s13(t)
— 531(t — L1o — Lag) — sa3(t — L12) — s12(t)

AY

corresponding to a Sagnac interferometer




Time delay interferometry

To understand TDI variables systematically, one might ask what
mathematical problem they are a solution to.

Introducing the translation operators
Di;f(t) = f(t — Lij)
The Doppler variables become
Apa(t) = Spalt) + DoaPalt) — pu(t)

and, e.g., the Sagnac variable becomes

o = Dy3Do3A91 + D13As2 + A3 — D19 Do3Asy — D12Ags — Aqo



Time delay interferometry

Good TDI variables are then variables

Z QbaAba
a,b

such that azb
Z Qba(Dbapa, — pb) =0
-

where the g's are polynomials in the translation operators

Since this must hold for arbitrary p, these are conditions on
the polynomials and is a problem in commutative algebra.

The space of solutions can be characterized by an exact
sequence.

See Mauro’s talk for more details on TDI variables.



Time delay interferometry

So far we have focused exclusively on laser frequency noise, but
there are other sources of noise, including photon shot noise

and acceleration noise.
3L3R
shot noise

A

A1s = D1spor — p1r + n12(D12Vor + Vip — 2vip) 4 n1o

velocity fluctuations of optical benches /

velocity fluctuations of probe masses




Time delay interferometry

So far we have focused exclusively on laser frequency noise, but
there are other sources of noise, including photon shot noise

and acceleration noise.
3L3R

VAN

A1g = Diopor — P11 — 20112 - V1L + n12

- N\

cancel in TDI variables leads to acceleration noise

shot noise




Time delay interferometry

In Fourier space the translation operators are diagonal and
simply become

Da,b _> 627T’LfLab

Then, for example, for the Sagnac variable
a = Di13Da3Ag1 + D13Asz2 + Ayz — D12 D23Az1 — D12Ag3 — Ao
the shot noise contribution in Fourier space becomes

& :627r7,f(L13+L23)ﬁ21 + eQW%le?’ﬁgQ + N3

27T’1:f(L12 —|—L23)ﬁ31 L 627TifL12 fl

— € 23 — N12



Time delay interferometry

Assuming that the different links are uncorrelated and
statistically identical

(M2 (f)R12(f)) = (Ras(f)fiea(f')) = -+ = Pus(f)
the contribution the noise auto-power spectrum is then

(@(f)ar(f))" = 6Ps(f)
Similarly for the X,Y, Z variables
(X(f)X*(f")) = 8 (sin® (2w fL12) + sin® (27 f L13)) Puus(f)
(X(F)Y*(f) = —8e?rt/Fra=ta) gin (2 f Ly3) sin (2 f Las)
x cos (27 fL12) Pivs(f)

with the remaining spectra related by cyclic permutation.



Time delay interferometry

Similarly, assuming that the velocity perturbations of the test
masses are uncorrelated and statistically identical

(M12vir (f)rievip (f1) = (RusVir(f)risVig(f)) = -+ = Pacc(f)
the acceleration noise contributes

(X()X*(f") =8 (2sin” (27 fL12) + 2sin® (2w fL13)
+ sin2 (27Tf (ng — L13>> -+ Sin2 (27Tf (L12 -+ L13)>) Pacc(f)
(X(Y*(f)) = —32e¥ ¢/ (L1s=L23) giny (9 f Ly13) sin (27 f Lag) cos (27 f L12) Pace (f)

with the remaining spectra related by cyclic permutation.



SGWBinner

w/
Chiara Caprini, Dani Figueroa, Nikolaos Karnesis, Germano
Nardini, Marco Peloso, Mauro Pieroni, Angelo Ricciardone,
Gianmassimo Tassinato, Jesus Torrado



LISA noise model

In the XY, Z basis and assuming an equilateral configuration,
the noise spectra are

Noolf, A, P) = 16 sin? (27TfL) { [3 + cos (47TfL)] Poce(f, A)

C C

+Prvs(f, P)}

Nup(f, A, P) = —8sin” (27TfL) cos (QWfL>

C C
X [4P.cc(f, A) + Pous(f, P)]

Diagonalization leads to the A, E, T basis.



LISA noise model

To fully characterize the spectra, we need the IMS and
acceleration noise spectra.VWe assume some information will be
available and in practice used

m? mHz \ * rf\?
Ps(f, P) = P? sz 1+<2 fH> (%)

2 2
Pacc(f7 A) = A’ i 1+ <O4IanZ>

f 4 1 4 27Tf 2
o () ) (22




LISA noise model

We see that the IMS and acceleration noise spectra are
necessary to specify the noise covariance matrix. VWe assume
some information will be available and in practice, we used

Noise components
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Likelihood

For concreteness, consider some model with parameters 6.

Given the data D, we would like to know which choice of
parameters provides the best fit.

Using Bayes’ theorem Prior

/

P(0|D) o L(6)P(6)

\ Likelihood



Likelihood

In general, the parameters include both cosmological
parameters and noise parameters.

We impose Gaussian priors on the parameters of the
noise model and work with uniform priors on
cosmological parameters

P(O,n|D) o< L(O,n)P(n)

The parameters could be the values of the power spectrum
in different bins, or could be parameters of the underlying
model.



Likelihood

If a given data point is based on a large number of
underlying measurements, we expect the likelihood to be

Gaussian

2
Dk (f,0,7) — DY’
In Lc:(DI6, 7) ZZn(k) { -/ &
h¢(k)
Dt (f’l,] 79 )
channels /
bins
where

—

Dth(f,e ) = RijQawh?(f,0) + Qnijh°(f, 7)



Likelihood

In practice for our choices non-Gaussianity is not yet
completely negligible and we correct the likelihood

1 2
In L = §1n£(; + gln[,LN

where

In L1 (D6, 7) S‘S‘n“‘“ In? |

This can then be used to search for any model for which the
dependence of the signal on some set of § is known. Some
likelihood characterizing the data after a global fit for
resolved sources should be an official data product.



SGWBinner

Obtain prior on noise parameters from TT channel
Bin signal to initial (and maximal) number of bins

Find best-fit parameters for each bin for signal (taken as
power law) and noise parameters (subject to prior)

Check whether merging neighboring bins is statistically
preferred (according to AlC) and merge if necessary

Repeat fitting for signal and noise parameters if merge was
performed

Once bins have converged, estimate error locally or globally
with MCMC.



Examples

Power law

Data (used by the binner)
LISA SciRD
—— LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
Reconstructed signal
Bin extremes
Signal 1o region
Signal 20 region
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Broken power law

Bin 2 (f« = 1.87x1073 Hz)
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Examples

Data (used by the binner)

LISA SciRD

LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal

Reconstructed sensitivity
Reconstructed signal

Bin extremes

Signal 1o region

Signal 20 region

o

Bin 5 (f+ =8.02x1073 Hz)

oo

MAP

1o Fisher
20 Fisher
1o region
20 region
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a (logyo of the amplitude at f+)
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Examples

Bump

|
Data (used by the binner)

LISA SciRD

LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal

Reconstructed sensitivity
Reconstructed signal

Bin extremes

Signal 1o region

Signal 20 region
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6+ 100 192 | 100
Frequency [HZz]



Examples

Signal degenerate with XX noise auto-spectrum

Data (used by the binner)
10-5 LISA SciRD
LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
10~7 Reconstructed signal
Bin extremes
1o region
-9 20 region
§ 10
<
10—11
10—13 4
10—15

1074 1073 1072 1071
Frequency [Hz]

User of multiple channels allows to break degeneracies.



Reconstruction with Foregrounds

Broken power law with galactic foregrounds

Binned reconstruction (8 bins)

Data (used by the binner)

LISA SciRD

LISA PLS 4.0y, 0.75% eff, SNR=10
Input signal

Reconstructed sensitivity
Reconstructed foreground
Reconstructed signal

Bin extremes

% 107° Foreground 10 region
‘g Foreground 20 region
< Signal 1o region

Signal 20 region
10—11
10—13
10—15

10 10-3 10-2 10-1
Frequency [Hz]

Good reconstructions is possible even in the presence of
foregrounds.



Conclusions

There are many processes that could have taken
place in the early universe that produce a stochastic
gravitational wave background.

LISA will be in a good position to constrain many of
them.

The shape is a priori unknown, motivating a model-
independent search for a stochastic gravitational
wave background.

For a simplified setting, we have provided one such
possibility, but improvements on several fronts are
needed to confront real data.



Thank you



