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LISA

(not to scale)

aims to detect gravitational waves with 
the help of time delay interferometry 

arXiv:1702.00786



Astrophysical sources
arXiv:1702.00786



Gravitational waves of cosmic origin
see Chiara's talk for details



Gauge field production
Quantum fluctuations in the metric during single-field slow-
roll inflation are out of LISA’s reach. 
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FIG. 5: ⌦GW h2 as function of the frequency f , for N = 60 e-foldings of observable inflation, a linear slow roll inflaton potential,
and ⇠CMB = 0, 2.33, 2.66 (the value of ⇠ when the large scale CMB modes left the horizon). For reference we also show the
expected sensitivity of LISA, Advanced LIGO/VIRGO and Einstein Telescope (at their most sensitive frequency).
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FIG. 6: Region in the {NCMB , ⇠CMB} plane (values assumed by these quantities when the large scale CMB modes left the
horizon) for which the gravity wave signal is detectable at Advanced LIGO/VIRGO and Einstein Telescope. The left and right
panel refer to a linear and quadratic inflaton potential, respectively.

IV. GRAVITATIONAL WAVES AT INTERFEROMETERS

In Section III we discussed the observable cosmological fluctuations on CMB/LSS scales. Such scales left the horizon
roughly 55 to 60 e-foldings before the end of inflation, during the phase where backreaction e↵ects are negligible. In
this section, we instead study scalar and tensor fluctuations on much smaller scales. These modes left the horizon
closer to the end of inflation, when backreaction e↵ects start to play an important role in determining the evolution
of the homogeneous background, �(t) and H(t). Our main results are summarized in figure 6, where we show that
Advanced LIGO/VIRGO could detect a stochastic background of gravitational waves from inflation for ⇠CMB as small
as 2.33 (equivalent to f/(Mp↵)  0.021) in the case of a linear inflaton potential, and as small as 2.23 (equivalent to
f/(Mp↵)  0.031) in the case of a quadratic potential.
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If the inflaton is an axion, it is natural to expect a coupling 
to gauge fields that can lead to an instability in gauge field



Large Density Perturbations

On CMB scales, the primordial power spectrum of density 
perturbations is small and tightly constrained.

For the simplest models of inflation, the power spectrum is 
nearly scale invariant, but the perturbations could be 
significantly larger on small scales because of 

• a decrease in inflaton speed

• a change in sound speed

• a sharp turn in field space

• …



Large Density Perturbations
Density perturbations generate gravitational waves at 
second order.  Upper limits on stochastic gravitational wave 
background constrain features in spectrum of primordial 
density perturbations.

Primordial black 
holes formed at 
horizon reentry 
contribute to the 
stochastic 
gravitational wave 
background 
through mergers 
and close 
encounters.

Figure 3: Top panels. Left: Stochastic GW spectrum hc for a close to monochromatic (� = 0.1) PBH mass distribution with µ = 30M�
and vvir = 2 (green), 20 (blue) and 200 km/s (red). Density contrasts are normalized to produce a constant merger rate ⌧ = 50 yr�1 Gpc�3,
which corresponds respectively to 10�8�loc

PBH
= 0.2/8.0/290. The expected GW background for Bird et al. model [4] (extended halo mass

function) is also represented (dotted brown). Right: GW spectrum for µ = 30M� and vvir = 20 km/s in the broad mass spectrum case, with
� = 0.1/1/2 (solid, dashed and dotted line respectively). Bottom panels. The GW background ⌦GWh2 for the same parameters. Solid and
Dotted black curves are the expected sensitivities for LISA respectively for the best and worse experimental designs. Black dashed curve
represents the sensitivity of the SKA through PTA observations. The grey curves on the right represent the sensitivity of Advanced LIGO
(O1 Run - dashed, O2 Run - dotted, O5 Run - solid).
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First order phase transitions

V (�)

�

T = 0

T < Tc

T > Tc

T = Tc

The phase transition proceeds via nucleation of bubbles of 
the true vacuum.



First order phase transitions
Gravitational wave sources

Bubble collisions and subsequent scalar field dynamics

If the transition occurs in a medium, sound waves are 
created as the bubbles expand

MHD turbulence (in the presence of electromagnetic fields)

Tij � �2(p+ ⇢)vivj

Tij � @i�@j�

Tij � EiEj +BiBj �
1
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�ij(E

2 +B2)



First order phase transitions
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Figure 2: Example of GW spectra in Case 1, for fixed T⇤ = 100 GeV, ↵ = 0.5, vw = 0.95, and

varying �/H⇤: from left to right, �/H⇤ = 1 and �/H⇤ = 10 (top), �/H⇤ = 100 and �/H⇤ = 1000

(bottom). The black line denotes the total GW spectrum, the green line the contribution from

sound waves, the red line the contribution from MHD turbulence. The shaded areas represent the

regions detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations.

dominate the GW spectrum, since the �/H⇤ enhancement of the amplitude that operates

for long-lasting sources is less relevant (c.f. Eqs. (13) and (7)). As �/H⇤ increases, the sound

wave contribution gains importance (provided that ↵1 is large enough). At su�ciently high

frequencies however the scalar field contribution always dominates because of its shallow

decay: p = 1 as opposed to p = 4 and p = 5/3, see Eqs. (8), (14) and (17).

It is apparent that the total GW spectrum arising from a first-order PT depends on the

interplay among the contributions of the di↵erent sources, which in turn are determined by

the specific dynamics of the PT. On the one hand this is encouraging, since it opens up

the possibility of investigating the dynamics of the PT. On the other hand, this is probably

feasible only in the most optimistic PT scenarios and for the best eLISA configurations. Note

that the highest GW signals are expected for runaway bubbles in vacuum (Case 3 above) for

which the GW spectrum has the simplest shape, being determined only by the scalar field

contribution.
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sound waves
MHD turbulence

(adapted from) Caprini et al. arXiv:1512.06239

The peak frequency is set by the scale of the phase transition, 
and LISA can constrain first order phase transitions around 
the electroweak scale.



Topological defects

x

y
z

V (�)

�

Phase transitions that involve spontaneous symmetry 
breaking often lead to defects.



Cosmic Strings
After the phase transition we are left with a network of 
strings

In the absence of interactions these strings would rapidly 
begin to dominate the energy density as

⇢1 / a�2

⇢� / a�3

22

FIG. 19: Time evolution of the spatial distribution of the magnetic energy density B2 (in units of m4) along the process of

the Higgs symmetry breaking. The images have been obtained with a N = 256 lattice simulation with an IR cut-o↵ kIR = 0.1

m, and parameters g2 = 2� = 0.25, Vc = 0.024 and e = 6
p

�. From left to right, top to bottom, the snapshots correspond to

mt = 5.5, 11.0, 17.3, 19.0, 21.0 and 23.0. At early times, before the Higgs bubbles percolate, the magnetic field is still very

small and has not acquired yet the distinctive shape of topological string configurations. At times mt ⇠ 17� 19, the string-like

spatial distributions of the magnetic energy density have finally developed, following the locus of points which corresponds to

the intermediate regions between Higgs bubbles. The string-like distributions are most clearly seen at time mt = 19. Later,

due to the time evolution of the gauge field’s mass, the string segments fatten and start shedding away the magnetic field, see

the main text.

Dufaux et al.
arXiv:1006.0217



Cosmic Strings

Loops form when strings inter- or  autocommute

These can decay into smaller loops through self-
intersection. 

⇢s =
µL

L3
=

µ

L2
/ µH

2
⇢s
⇢r

= constso 

These processes lead to a scaling solution



Cosmic Strings
Gravitational wave spectrum

Figure 12: Solid red curves show cosmic string SGWB curves for a range of Gµ values. From the darkest most
high up line to the lightest lowest one these read: Gµ = 10�10, Gµ = 10�13, Gµ = 10�15 and 10�17. The Pn used
in computation of these spectra was inferred from simulations [753], and the loop number density is from Model 2.
The dashed orange curve shows the sensitivity of EPTA. The dark orange dash-dotted line shows the projected SKA
sensitivity. The dotted black line shows the LISA PLS of SNR = 10.
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Figure 13: Identical to Fig. 12, however, Pn / n�4/3 and using the loop number density from Model 3 [739].
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Figure 12: Solid red curves show cosmic string SGWB curves for a range of Gµ values. From the darkest most
high up line to the lightest lowest one these read: Gµ = 10�10, Gµ = 10�13, Gµ = 10�15 and 10�17. The Pn used
in computation of these spectra was inferred from simulations [753], and the loop number density is from Model 2.
The dashed orange curve shows the sensitivity of EPTA. The dark orange dash-dotted line shows the projected SKA
sensitivity. The dotted black line shows the LISA PLS of SNR = 10.

Figure 13: Identical to Fig. 12, however, Pn / n�4/3 and using the loop number density from Model 3 [739].

65

Gµ = 10�17

Gµ = 10�15

Gµ = 10�13

Gµ = 10�10
LISA

SKA

EPTA LIGO

ET
IPTA
NANOGrav

adapted from Auclair et al. arXiv:1909.00819



Model-independent constraints

There are several potential sources of cosmological 
gravitational wave backgrounds LISA can constrain and 
could detect. The fact that the spectra vary widely 
between models motivates a model-independent search.

To constrain stochastic gravitational wave backgrounds, 
we constrain any excess over noise. So we must 
understand/measure the noise properties to do this 
successfully.

Two preliminary take-aways



Time delay interferometry



Time delay interferometry

Neglecting the effect of gravitational potentials and treating the 
satellites as free-falling in a background of gravitational waves in 
Minkowski space, we can write the line element as

Free-falling massive particles whose initial comoving momenta 
vanish remain at fixed comoving position

Xi(t) = xi
a

So their physical distance varies as gravitational waves pass by

ds2 = �dt2 + (�ij + hij(x, t))dx
idxj



Time delay interferometry

Photons transmitted from one free-falling satellite to another 
then acquire a time delay.  To leading order in the strain, for 
photons arriving at b at time t the time delay is 

�Tba(t) =
1

2
n̂i
ban̂

j
ba

Z Lba

0
ds hij(xa + n̂bas, t� Lba + s)

We can hope to measure these time delays, or equivalently the 
associated frequency shifts with help of interferometry.

unit vector from a ! b unperturbed distance



Time delay interferometry

Considering the drift in the central frequency of the laser as 
the only source of uncertainty, the measured Doppler shift is

where s is the relative change in frequency and         is the laser 
frequency noise of the laser at satellite    at time t.

�ba(t) = sba(t) + pa(t� Lba)� pb(t)

pa(t)
a

Since the          are much larger than the signal (and other 
sources of noise), we must form linear combinations in which 
they cancel. 

pa(t)



Time delay interferometry

As a simple example, we can consider a Michelson 
interferometer

M1(t) = �21(t� L12) +�12(t)��31(t� L13)��13(t)

= s21(t� L12) + s12(t)� s31(t� L13)� s13(t)

+ p1(t� 2L12)� p1(t� 2L13)

3

21

where we can define



Time delay interferometry

If the arm lengths are equal,

M1(t) = s21(t� L) + s12(t)� s31(t� L)� s13(t)

the laser frequency noise cancels

L12 = L13 = L

For unequal armlengths we have to define more complicated 
variables to cancel laser frequency noise.



Time delay interferometry

One such variable is 

X(t) = �21(t� L12 � 2L13) +�12(t� 2L13) +�31(t� L13) +�13(t)

��31(t� L13 � 2L12)��13(t� 2L12)��21(t� L12)��12(t)

= s21(t� L12 � 2L13) + s12(t� 2L13) + s31(t� L13) + s13(t)

� s31(t� L13 � 2L12)� s13(t� 2L12)� s21(t� L12)� s12(t)

3

21

By cyclic permutation, one obtains the variables Y and Z.



Time delay interferometry

For a triangular configuration, we can also consider

3

21

↵(t) = �21(t� L13 � L23) +�32(t� L13) +�13(t)

��31(t� L12 � L23)��23(t� L12)��12(t)

= s21(t� L13 � L23) + s32(t� L13) + s13(t)

� s31(t� L12 � L23)� s23(t� L12)� s12(t)

corresponding to a Sagnac interferometer



Time delay interferometry

To understand TDI variables systematically, one might ask what 
mathematical problem they are a solution to.

Dijf(t) = f(t� Lij)

Introducing the translation operators

The Doppler variables become

�ba(t) = sba(t) +Dbapa(t)� pb(t)

and, e.g., the Sagnac variable becomes

↵ = D13D23�21 +D13�32 +�13 �D12D23�31 �D12�23 ��12



Time delay interferometry

Good TDI variables are then variables
X

a,b
a 6=b

qba�ba

X

a,b
a 6=b

qba(Dbapa � pb) = 0

such that

where the q's are polynomials in the translation operators

Since this must hold for arbitrary p, these are conditions on 
the polynomials and is a problem in commutative algebra. 
The space of solutions can be characterized by an exact 
sequence.

See Mauro’s talk for more details on TDI variables.



Time delay interferometry

So far we have focused exclusively on laser frequency noise, but 
there are other sources of noise, including photon shot noise 
and acceleration noise. 

velocity fluctuations of optical benches

velocity fluctuations of probe masses

�12 = D12p2R � p1L + n̂12(D12V2R +V1L � 2v1L) + n12

shot noise

3R

2R
1R
1L

2L

3L



Time delay interferometry

3R

2R
1R
1L

2L

3L

cancel in TDI variables leads to acceleration noise

�12 = D12�2R � �1L � 2n̂12 · v1L + n12

shot noise

So far we have focused exclusively on laser frequency noise, but 
there are other sources of noise, including photon shot noise 
and acceleration noise. 



Time delay interferometry

In Fourier space the translation operators are diagonal and 
simply become

Dab ! e2⇡ifLab

↵ = D13D23�21 +D13�32 +�13 �D12D23�31 �D12�23 ��12

Then, for example, for the Sagnac variable

the shot noise contribution in Fourier space becomes

↵̃ =e2⇡if(L13+L23)ñ21 + e2⇡ifL13 ñ32 + ñ13

� e2⇡if(L12+L23)ñ31 � e2⇡ifL12 ñ23 � ñ12



Time delay interferometry

Assuming that the different links are uncorrelated and 
statistically identical

the contribution the noise auto-power spectrum is then

hñ12(f)ñ12(f
0)i0 = hñ23(f)ñ23(f

0)i0 = · · · = PIMS(f)

h↵̃(f)↵̃⇤(f 0)i0 = 6PIMS(f)

Similarly for the X, Y, Z variables

hX(f)X⇤(f 0)i0 = 8
�
sin2 (2⇡fL12) + sin2 (2⇡fL13)

�
PIMS(f)

hX(f)Y ⇤(f 0)i0 = �8e2⇡if(L13�L23) sin (2⇡fL13) sin (2⇡fL23)

⇥ cos (2⇡fL12)PIMS(f)

with the remaining spectra related by cyclic permutation.



Time delay interferometry

Similarly, assuming that the velocity perturbations of the test 
masses are uncorrelated and statistically identical

the acceleration noise contributes

with the remaining spectra related by cyclic permutation.

hn̂12ṽ1L(f)n̂12ṽ
⇤
1L(f

0)i0 = hn̂13ṽ1R(f)n̂13ṽ
⇤
1R(f

0)i0 = · · · = Pacc(f)

hX(f)X⇤(f 0)i0 = 8
�
2 sin2 (2⇡fL12) + 2 sin2 (2⇡fL13)

+ sin2 (2⇡f (L12 � L13)) + sin2 (2⇡f (L12 + L13))
�
Pacc(f)

hX(f)Y ⇤(f 0)i0 = �32e2⇡if(L13�L23) sin (2⇡fL13) sin (2⇡fL23) cos (2⇡fL12)Pacc(f)



SGWBinner

w/
Chiara Caprini, Dani Figueroa, Nikolaos Karnesis, Germano 
Nardini, Marco Peloso, Mauro Pieroni,  Angelo Ricciardone, 

Gianmassimo Tassinato, Jesús Torrado



In the X, Y, Z basis and assuming an equilateral configuration, 
the noise spectra are 

LISA noise model

Naa(f,A, P ) = 16 sin2
✓
2⇡fL

c

◆⇢
3 + cos

✓
4⇡fL

c

◆�
Pacc(f,A)

+PIMS(f, P )

�

Nab(f,A, P ) = �8 sin2
✓
2⇡fL

c

◆
cos

✓
2⇡fL

c

◆

⇥ [4Pacc(f,A) + PIMS(f, P )]

Diagonalization leads to the A, E, T basis.



LISA noise model

To fully characterize the spectra, we need the IMS and 
acceleration noise spectra. We assume some information will be 
available and in practice used

PIMS(f, P ) = P 2 pm
2

Hz

"
1 +

✓
2mHz

f

◆4
#✓

2⇡f

c

◆2

Pacc(f,A) = A2 fm
2

s4 Hz

"
1 +

✓
0.4mHz

f

◆2
#

⇥
"
1 +

✓
f

8mHz

◆4
#✓

1

2⇡f

◆4 ✓
2⇡f

c

◆2



LISA noise model

We see that the IMS and acceleration noise spectra are 
necessary to specify the noise covariance matrix. We assume 
some information will be available and in practice, we used



LISA noise model



Likelihood

For concreteness, consider some model with parameters   . 

Given the data   , we would like to know which choice of 
parameters provides the best fit.  

✓

D

Using Bayes’ theorem Prior

P (✓|D) / L(✓)P (✓)

Likelihood



Likelihood

In general, the parameters include both cosmological 
parameters and noise parameters. 

We impose Gaussian priors on the parameters of the 
noise model and work with uniform priors on 
cosmological parameters

P (✓, n|D) / L(✓, n)P (n)

The parameters could be the values of the power spectrum 
in different bins, or could be parameters of the underlying 
model.



Likelihood

If a given data point is based on a large number of 
underlying measurements, we expect the likelihood to be 
Gaussian

where 

lnLG(D|~✓,~n) = �Nc

2

X

i,j

X

k

n(k)
ij

"
Dth

ij (f
(k)
ij , ~✓,~n)�D(k)

ij

Dth
ij (f

(k)
ij , ~✓,~n)

#2

Dth
ij (f, ~✓,~n) ⌘ Rij⌦GWh2(f, ~✓) + ⌦n,ijh

2(f,~n)

channels
bins



Likelihood

In practice for our choices non-Gaussianity is not yet 
completely negligible and we correct the likelihood

lnLLN (D|~✓,~n) = �Nc

2

X

i,j
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where

This can then be used to search for any model for which the 
dependence of the signal on some set of    is known. Some 
likelihood characterizing the data after a global fit for 
resolved sources should be an official data product. 

✓



SGWBinner

• Obtain prior on noise parameters from TT channel

• Bin signal to initial (and maximal) number of bins

• Find best-fit parameters for each bin for signal (taken as 
power law) and noise parameters (subject to prior)

• Check whether merging neighboring bins is statistically 
preferred (according to AIC) and merge if necessary

• Repeat fitting for signal and noise parameters if merge was 
performed

• Once bins have converged, estimate error locally or globally 
with MCMC.



Examples
Power law

MAP



Examples
Broken power law
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Examples
Bump



Examples
Signal degenerate with XX noise auto-spectrum

User of multiple channels allows to break degeneracies.



Reconstruction with Foregrounds
Broken power law with galactic foregrounds

Good reconstructions is possible even in the presence of 
foregrounds.



Conclusions

• There are many processes that could have taken 
place in the early universe that produce a stochastic 
gravitational wave background. 

• LISA will be in a good position to constrain many of 
them. 

• The shape is a priori unknown, motivating a model-
independent search for a stochastic gravitational 
wave background.

• For a simplified setting, we have provided one such 
possibility, but improvements on several fronts are 
needed to confront real data.



Thank you


