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Measuring SGWBs with LISA

SGWBs detection
The data d̃ (in frequency space) can be expressed as

d̃ = s̃ + ñ

For an isotropic SGWB −→ ⟨hλ(k⃗) h∗
λ′(k⃗ ′)⟩ = Pλ

h (k)(2π)
3δλλ′δ(k⃗ − k⃗ ′)

Assuming ⟨s̃ñ⟩ = 0 and Gaussian signal and noise〈
d̃2

〉
=

〈
s̃2
〉
+

〈
ñ2
〉
= RPλ

h + N ≡ R
[
Pλ

h + Sn

]
where we have introduced

The response function of the instrument R
The signal power spectrum Pλ

h (in 1/Hz)
The noise power spectrum N (in 1/Hz)
The (square of the) Strain sensitivity Sn (in 1/Hz)

In order to compare with cosmological predictions it’s customary to introduce

ΩGW ≡ 1
3H2

0 M2
p

∂ρGW

∂ ln f
=

4π2

3H2
0

f 3
∑
λ

Pλ
h and Ωn(f ) =

4π2

3H2
0

f 3Sn(f ) ,

where H0 ≃ 3.24 × 10−18 h0 Hz is the Hubble constant today.
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For an isotropic SGWB −→ ⟨hλ(k⃗) h∗
λ′(k⃗ ′)⟩ = Pλ

h (k)(2π)
3δλλ′δ(k⃗ − k⃗ ′)
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ñ2
〉
= RPλ

h + N ≡ R
[
Pλ

h + Sn

]
where we have introduced

The response function of the instrument R
The signal power spectrum Pλ

h (in 1/Hz)
The noise power spectrum N (in 1/Hz)
The (square of the) Strain sensitivity Sn (in 1/Hz)

In order to compare with cosmological predictions it’s customary to introduce

ΩGW ≡ 1
3H2

0 M2
p

∂ρGW

∂ ln f
=

4π2

3H2
0

f 3
∑
λ

Pλ
h and Ωn(f ) =

4π2

3H2
0

f 3Sn(f ) ,

where H0 ≃ 3.24 × 10−18 h0 Hz is the Hubble constant today. 3/30



Introduction Towards realistic data A new idea for SGWB data analysis Conclusions and future perspectives

Measuring SGWBs with LISA

Some common assumptions...

LISA will have three
(correlated) data streams

dubbed XYZ basis
↓

Diagonalize to get
the (uncorrelated) AET basis

Time Delay Interferometry (TDI) to
reduce huge laser noise

Low frequencies are dominated by
Test Mass (TM) noise

large frequencies by Optical
Metrology System (OMS) noise:

PTM(f ,A) = A2 × 10−30 × FTM(f ) ,

POMS(f ,P) = P2 × 10−24 × FOMS(f ) ,

where FTM(f ), FOMS(f ) are some
functions of frequency.

4/30



Introduction Towards realistic data A new idea for SGWB data analysis Conclusions and future perspectives

Measuring SGWBs with LISA

Some common assumptions...

LISA will have three
(correlated) data streams

dubbed XYZ basis
↓

Diagonalize to get
the (uncorrelated) AET basis

Time Delay Interferometry (TDI) to
reduce huge laser noise

Low frequencies are dominated by
Test Mass (TM) noise

large frequencies by Optical
Metrology System (OMS) noise:

PTM(f ,A) = A2 × 10−30 × FTM(f ) ,

POMS(f ,P) = P2 × 10−24 × FOMS(f ) ,

where FTM(f ), FOMS(f ) are some
functions of frequency. 4/30



Introduction Towards realistic data A new idea for SGWB data analysis Conclusions and future perspectives

Measuring SGWBs with LISA

In reality LISA won’t have equal arms...

Fluctuations in the
arm-lengths of order up to
10−2 are expected!

Response functions and noise
spectra will be modified

−→ Orthogonality of TDI variables
might be affected

An accurate description is necessary to avoid biases in the analysis

5/30



Introduction Towards realistic data A new idea for SGWB data analysis Conclusions and future perspectives

Measuring SGWBs with LISA

... nor the same noise levels in all links!

Let us have a closer look at the problem of noise characterization
(still stick with TM and OMS noise only with known templates)

Each spacecraft contains two test
masses and two lasers

−→ 12 (6 Acc +6 OMS) independent
noise components are expected!

(
A 0
0 P

)
−→


A12 0 0 D12 A21 0 0
0 A23 0 0 D23 A32 0
0 0 A31 0 0 D31 A13

D12 A12 0 0 A21 0 0
0 D23 A23 0 0 A32 0
0 0 D31 A31 0 0 A13

0

0
P12 0 0 0 0 0
0 P23 0 0 0 0
0 0 P31 0 0 0
0 0 0 P21 0 0
0 0 0 0 P32 0
0 0 0 0 0 P13


Several complications are added in the problem:

Noise components propagate differently in different TDI variables

Higher dimensionality of the parameter space

Correlations between the noise parameters

Again, an accurate analysis of the scenario is required
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Time Delay Interferometry (TDI) and TDI variables

Single link signal model
The observable is the difference in the travel time of a photon from j to i :

∆tij(t) ≃
∫ Lij

0

l̂a
ij l̂b

ij

2
hab(t(s), x⃗(s)) ds , or alternatively, ηGW

ij (t) ≡ d
dt

∆tij(t) .

To compute this quantity we first expand the signal in plane waves:

hab(x⃗ , t) =
∫ ∞

−∞
df

∫
dΩk̂ e2πif (t−k̂ ·⃗x)

∑
A

h̃A(f , k̂)eA
ab(k̂) ,

and assuming homogeneity, isotropy and no-chirality for the SGWB:

⟨h̃A(f , k̂) h̃∗
B(f

′, k̂ ′)⟩ = δ(f−f ′)δ(k̂−k̂ ′)δAB
PAB

h (f )
16π

, ⟨h̃A(f , k̂) h̃B(f ′, k̂ ′)⟩ = 0 .

The cross-spectral density for the single link measurement thus reads

Sη,GW
ij,mn (f ) ≡

∑
A

RA
ij,mn PAA

h (f ) =
f 2

fij fmn
e−2πif (Lij−Lmn)

∑
A

PAA
h (f ) ΥA

ij,mn(f ) ,

where RA
ij,mn is the single link response and we introduced:

ΥA
ij,mn(f ) =

∫
dΩk̂

4π
e−2πif k̂·(⃗xi−x⃗m) ξA

ij (f , k̂) ξ
A
mn(f , k̂)

∗ .
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Time Delay Interferometry (TDI) and TDI variables

Single link noise model
As we did for the signal, we want to express the single link noise ηN

ij .

In general this might be quite complicated.

Assuming TDI cancels primary noises and only TM and OMS are present:

ηN
ij = DijnTM

ji (t) + nTM
ij (t) + nOMS

ij (t) ,

where Dij is the delay operator.

Assuming stationarity, zero-mean and uncorrelated:

⟨ñTM
ij (f ) ñTM*

ij (f ′)⟩ = 1
2

STM
ij (f ) δ(f − f ′) ,

⟨ñOMS
ij (f ) ñOMS*

ij (f ′)⟩ = 1
2

SOMS
ij (f ) δ(f − f ′) ,

the only non-zero cross spectral densities are:

Sη,N
ij,ij (f ) = STM

ij (f ) + STM
ji (f ) + SOMS

ij (f ) ,

Sη,N
ij,ji (f ) = e2πifLji STM

ij (f ) + e−2πifLij STM
ji (f ) ,

where STM
ji (f ) = A2

ij × FTM(f ) and SOMS
ji (f ) = P2

ij × FOMS(f ) .
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Time Delay Interferometry (TDI) and TDI variables

Time Delay Interferometry
Compare measurements at
different times (delay operator)

−→ Noise reduction!

Let us start with two possibilities:

Michelson variables, dubbed XYZ, defined as (YZ are permutations):
X ≡ (1 − D13D31)(η12 + D12η21) + (D12D21 − 1)(η13 + D13η31)

Sagnac variables, dubbed αβγ, defined as (βγ permutations):
α ≡ η12 + D12η23 + D12D23η31 − (η13 + D13η32 + D13D32η21)

Dij delay operator, ηij measurement in i coming from j

Both signal and noise are correlated in these variables!

For equal arms, diagonalization via:
(diagonal variables dubbed AET and AET )

−→

−1/
√

2 0 1/
√

2
1/

√
6 −2/

√
6 1/

√
6

1/
√

3 1/
√

3 1/
√

3


Let us also introduce the fully symmetric ζ variable:
ζ = D12(η31 − η32) + D23(η12 − η13) + D31(η23 − η21) .
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Time Delay Interferometry (TDI) and TDI variables

Single link to TDI in a more formal way
It is convenient to define TDI variables using vector notation:

Ṽ (f ) =
∑
ij∈I

cV
ij (f ) η̃ij(f ) ,

i.e., starting from the (FTs of the) 6 single link measurement η̃ij(f ),
we use a 3 × 6 matrix (cV

ij (f )), to project onto any TDI basis.

In this formalism, the cross spectral densities

⟨Ũ(f ) Ṽ ∗(f ′)⟩ = 1
2

SUV (f ) δ(f − f ′) ,

can be expressed as:

⟨Ũ(f )Ṽ ∗(f ′)⟩ =
∑

ij,mn∈I

cU
ij (f ) cV∗

mn (f
′)⟨η̃ij(f ) η̃∗

mn(f
′)⟩ ,

=
1
2

∑
ij,mn∈I

cU
ij (f ) cV∗

mn (f )︸ ︷︷ ︸
CUV

ij,mn(f )

Sη
ij,lm(f )

︸ ︷︷ ︸
SUV (f )

δ(f − f ′) .

Study the properties of CUV
ij,mn(f ) → make general statements on TDI basis.
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Data generation and pre-processing

Data generation (in frequency domain)
Assuming signal and noise to be Gaussian, stationary, and isotropic

independent realizations for each data segment and frequency are drawn:

s̃c(fi) =
N (0,

√
ΩGW(fi)) + i N (0,

√
ΩGW(fi))√

2

ñc(fi) =
N (0,

√
Ωn(fi)) + i N (0,

√
Ωn(fi))√

2

so that the spectra (ΩGW and Ωn) quantify the variance of fluctuations

Given that:

LISA will be operating for 4yrs (and assume also 75% efficiency)

We choose data segments of roughly 12 days

in practice we have:

Roughly 95 independent measurements at each frequency.

A frequency resolution of around 10−6Hz

11/30
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Data generation and pre-processing

Data modeling and likelihood

Which likelihood should we use for our dataset?

Whittle likelihood should work (see any of the existing reviews):

−2 lnL(d̃ |θ) ∝
∑

f

d̃iC−1
ij (f |θ)d̃∗

j + ln [detCij(f |θ)] ,

where Cij is the covariance matrix for ⟨d̃i d̃∗
j ⟩ given by:

Cij(f , θ) = Sij

(
f , θ⃗s

)
+ Nij

(
f , θ⃗n

)
.

For fast estimates of the errors on parameter reconstruction use Fisher:

Fij ≡ −∂2 lnL(d̃ |θ)
∂θi∂θj

∣∣∣∣∣
θ0

=
∑

f

= Tr
[
C−1 ∂C

∂θi
C−1 ∂C

∂θj

]
,

However, this cannot tell us anything about possible biases!
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining Dc(fi) (our new data), as:

Dc(fi) ≡ ⟨d̃2
c (fi)⟩ = ⟨(s̃c(fi) + ñc(fi))

2⟩ = ⟨s̃2
c (fi)⟩+ ⟨ñ2

c(fi)⟩ .

We can reduce the complexity of the problem by performing two operations:

We average over the (95) data segments:
This leaves us with some D(fi) (the averaged data) and
an estimate of the error σ(fi) (the standard deviation or the data).

We coarse grain (i.e. bin) the data (in frequency):
i.e. from the initial linear 10−6Hz spacing (∼ 5 × 105 points)
−→ we go to some final (and less dense) set of frequencies fi
This leaves us with the final data set fi ,Di and errors σi .

To gain a factor ∼ O(100 × 100) in computation time!
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Data generation and pre-processing

An accurate likelihood for the compressed data
A Gaussian likelihood would give a systematic low bias!

(astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801.0554)

Consider the Gaussian likelihood:

lnLG

(
θ⃗, n⃗

)
∝ −Nchunks

2

∑
i,j

∑
k

w (k)
ij

D(k)
ij − h2ΩGW

(
f (k)ij , θ⃗

)
− h2Ωn,ij

(
f (k)ij , n⃗

)
h2ΩGW

(
f (k)ij , θ⃗

)
+ h2Ωn,ij

(
f (k)ij , n⃗

)
2

and the Lognormal likelihood:

lnLLN

(
θ⃗, n⃗

)
∝ −Nchunks

2

∑
i,j

∑
k

w (k)
ij ln2

h2ΩGW

(
f (k)ij , θ⃗

)
+ h2Ωn,ij

(
f (k)ij , n⃗

)
D(k)

ij


Then we define our likelihood as (astro-ph/0302218, 2009.11845 )

lnL =
1
3
lnLG +

2
3
lnLLN

which removes the skewness contributions and thus is more accurate.
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Responses, spectra and strain noise

Signal and noise Michelson

Solid lines → equal arms

Dashed lines → unequal arms

Most TDI variables
are mildly affected

Slight displacement
of the zeros

T Michelson looses
signal orthogonality!

ζ is clearly more robust to
unequal arm corrections!

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 15/30
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Responses, spectra and strain noise

Signal and noise Sagnac

Solid lines → equal arms

Dashed lines → unequal arms

Sensitivity is similar
to Michelson variables
(but less zeros)

T is way more robust than T!

T and ζ ’s signal orthogonality
are comparable!

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 16/30
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Noise and signal correlations

Noise correlations

Solid lines → equal arms

Dashed lines → unequal arms

Unequal arms break
orthogonality

Correlations involving T are
most affected

AET is again more robust

Replacing T with ζ
might help

No real benefit
in trading T for ζ

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 17/30
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Noise and signal correlations

Signal correlations

Solid lines → equal arms

Dashed lines → unequal arms

All bases are affected
(∼ in the same way)!

Leakage into T, T , ζ
induces correlations

Signal-sensitive channels
stay orthogonal

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 18/30
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Noise and signal correlations

Noise correlations v2 (unequal noise levels)

Solid lines → equal arms

Dashed lines → unequal arms

Equal arms also have
non-zero correlations!

Correlations in all TDI bases

Again, Michelson performs
worse than other bases

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 19/30
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Impact on parameter estimation

Case study
Let’s test the impact of including these effects on parameter reconstruction.

Let us consider the following scenario:

Constant but unequal armlenghts

Noise described by a template (controlled by some parameters)

Constant (check both equal and unequal) noise parameters

Signal described by a power law h2ΩGW = 10alpha(f/f∗)nT

Injection with quite large SNR (α = −11.5, nT = 0 → SNR ∼ 270)

Fisher matrix to get uncertainties and assess the impact of CSDs

MCMC to validate Fisher results and look for biases

Compressed data only uses the diagonal (still can check biases)

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore
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Impact on parameter estimation

Low frequency (equal noise) analysis

MCMC (diagonal only): Fisher approximation works quite well
Fisher: Neglecting correlations is dangerous for AET, but not much for AEζ!
MCMC/Fisher: AET performs much worse than AEζ

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 21/30
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Impact on parameter estimation

Full frequency (equal noise) analysis

MCMC (diagonal only): Fisher approximation works quite well
Fisher: Neglecting correlations only marginally affects the reconstruction
MCMC/Fisher: AET slightly underestimates errors (wrt AEζ)

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 22/30
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Impact on parameter estimation

Full frequency (unequal noise) analysis

MCMC (diagonal only): (not shown here but) Fisher approximation works quite well
Fisher: Neglecting correlations might be dangerous for both bases (here only AEζ)
MCMC/Fisher: more impact on worsley constrained (subdominant) parameters!

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 23/30
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Impact on parameter estimation

Signal parameters

Good news for theorists in the room:
Signal parameters don’t care much about all this!

(remember the caveats though)
In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 24/30
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ML for SGWB data analysis
Traditional methods (MCMC, nested sampling, whatever) are
quite efficient and guaranteed to converge (in some cases)

but
scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?

Normally, with Bayesian inference, we try to study the posterior probability:

p(θ|d) = p(d |θ)π(θ)
p(d)

≡ r(d , θ)π(θ) ,

where we have introduced:

r(d , θ) ≡ p(d |θ)
p(d)

=
p(θ|d)
π(θ)

=
p(θ, d)

p(d)π(θ)
,

i.e. r(d , θ) is the ratio between joint probability and marginal probability.
Given a pair (θ, d), r(d , θ) can be used to assess whether θ can generate d !

This can be cast in a minimization problem that can be solved with ML
the approach is typically referred to as Neural Ratio Estimation.

25/30
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Recover previous results I ...
Assume we inject a power law signal:

Can we recover it with the same level of accuracy?
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In collaboration with James Alvey, Uddipta Bhardwaj, Christoph Weniger and Valerie Domcke
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Recover previous results II...
Can we also do something ”template-free”?
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... plus something completely new!

What if there’s
something else beyond
SGWB and noise?

For example, assume
some sources slightly
below the threshold for
detection are randomly
injected.

Would this still work??

Pre
lim

ina
ry

In collaboration with James Alvey, Uddipta Bhardwaj, Christoph Weniger and Valerie Domcke
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Conclusions and future perspectives
Conclusions

Unequal arms jeopardize the standard orthogonalization procedure

Some TDI variables are more robust to unequal arm corrections

Similarly, unequal noise levels also introduce correlations

Signal reconstruction looks mildly affected (with caveats...)

ML techniques for SGWB look quite promising...

Future perspectives

Application to concrete cases (inflation, phase transitions, ...)

Keep improving on detector modeling

More realistic noise model and data generation procedure

Drop stationarity (both for signal and noise)

Include anisotropies

New techniques?
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Last Slide

The End
Thank you

30/30


	Introduction
	Measuring SGWBs with LISA
	Time Delay Interferometry (TDI) and TDI variables
	Data generation and pre-processing

	Towards realistic data
	Responses, spectra and strain noise
	Noise and signal correlations
	Impact on parameter estimation

	A new idea for SGWB data analysis
	Conclusions and future perspectives

