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Introduction
[ Jelele]

Measuring SGWBs with LISA

SGWABs detection

The data d (in frequency space) can be expressed as
d=35+n
For an isotropic SGWB —  (ha(K) P (K)) = Py (K)(2r)36,0 0(k — K')
Assuming (5h) = 0 and Gaussian signal and noise
(@)= (&) +(F)=RP +N=R[P} + S|

where we have introduced
@ The response function of the instrument R
@ The signal power spectrum Pj (in 1/Hz)
@ The noise power spectrum N (in 1/Hz)
@ The (square of the) Strain sensitivity S, (in 1/Hz)
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[ Jelele]

Measuring SGWBs with LISA

SGWABs detection

The data d (in frequency space) can be expressed as
d=5%+n

For an isotropic SGWB —  (h(K) h(K)) = Pr(k)(2r)%0an 6(K — K')
Assuming (5h) = 0 and Gaussian signal and noise
<82> = <§2> + <F72> =RPP+N=R [Pﬁ + Sn]

where we have introduced
@ The response function of the instrument R
@ The signal power spectrum Pj (in 1/Hz)

@ The noise power spectrum N (in 1/Hz)
@ The (square of the) Strain sensitivity S, (in 1/Hz)

In order to compare with cosmological predictions it's customary to introduce

_ 1 Opew 472 3 472 3
oV = 31EME Dinf ~ BHE ZP” and  n(f) = gppSn(0).

where Hy ~ 3.24 x 10~ '® hy Hz is the Hubble constant today. 3/30
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Measuring SGWBs with LISA

Some common assumptions...

LISA will have three
(correlated) data streams
dubbed XYZ basis

{
Diagonalize to get
the (uncorrelated) AET basis
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Measuring SGWBs with LISA

Some common assumptions...

LISA will have three
(correlated) data streams
dubbed XYZ basis
3
Diagonalize to get
the (uncorrelated) AET basis

Time Delay Interferometry (TDI) to
reduce huge laser noise

Low frequencies are dominated by
Test Mass (TM) noise
large frequencies by Optical
Metrology System (OMS) noise:

Pm(f, A) = A2 x 1073 x Fry(f) ,
:Do/\/]s(f7 P) = P2 X 10724 X Fo/\//s(f) s

where Fry(f), Fous(f) are some
functions of frequency.

10736

10—38

10—40

PSD [Hz™1]

10-42

— Pm
— Pows

1074

103 102
Frequency [Hz]

1071

4/30



Introduction
[e]e] o]

Measuring SGWBs with LISA

In reality LISA won’t have equal arms...

time evolution of arm-length ineguality using ESA orbits and SC proper time

— deltar(t)

0.012 4

E 0.010 1

Fluctuations in the 2 4,008 {
arm-lengths of order up to 8

102 are expected! £ 0006

s 0.004 4

0.002 4

0 200 400 600 800 1000 1200 1400
t[day]
Response functions and noise Orthogonality of TDI variables
spectra will be modified might be affected

An accurate description is necessary to avoid biases in the analysis
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Measuring SGWBs with LISA

... hor the same noise levels in all links!

Let us have a closer look at the problem of noise characterization
(still stick with TM and OMS noise only with known templates)

Each spacecraft contains two test . 12 (6 Acc +6 OMS) independent
masses and two lasers noise components are expected!
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@ Noise components propagate differently in different TDI variables
@ Higher dimensionality of the parameter space
@ Correlations between the noise parameters

Again, an accurate analysis of the scenario is required
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Time Delay Interferometry (TDI) and TDI variables

Single link signal model

The observable is the difference in the travel time of a photon from j to i:

Ly 7:7 7:7 . . oW,y _ d
Aty(t) ~ 5 hap(t(s), X(s)) ds, or alternatively, »;™(t) = aAt,,-(t) .
0

7/30



Introduction
[ Jelele]

Time Delay Interferometry (TDI) and TDI variables

Single link signal model

The observable is the difference in the travel time of a photon from j to i:

ki , . ow g _ d
Aty(t) ~ 5 hap(t(s), X(s)) ds, or alternatively, »;™(t) = aAt,,-(t) .
0

To compute this quantity we first expand the signal in plane waves:
haot) = [ af [ oy 20D S hu(r, Ryelh(h)
o "

and assuming homogeneity, isotropy and no-chirality for the SGWB:
PE(f)
160 '

(ha(f, k) Bg(f , K')) = 6(f—F)6(k—k')o a5 (ha(f, k) ha(f k') = 0.

7/30
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Time Delay Interferometry (TDI) and TDI variables

Single link signal model

The observable is the difference in the travel time of a photon from j to i:

127
At,',-(t):/ol TV ha(t(s), X(s)) ds, or alternatively, n;" (t) = %At,,-(t).

To compute this quantity we first expand the signal in plane waves:
haot) = [ af [ oy 20D S hu(r, Ryelh(h)
o "

and assuming homogeneity, isotropy and no-chirality for the SGWB:

7a, (Pa(t. k) el K') =

The cross-spectral density for the single link measurement thus reads

oL —
S:,S,:V(f) = ZR;\!M PAA(f) = ——e 2mif(Lj—Lmn) Z PAA(F) T?,mn(f) 7
A

ij'mn

(halt, KYFis(1' K)) = 5(7—1)3(k—K')oe

where Rf,‘,mn is the single link response and we introduced:

A% i X .
V() = [ G E e 5 Gt k) (1, )
7/30
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Time Delay Interferometry (TDI) and TDI variables

Single link noise model

N

As we did for the signal, we want to express the single link noise »; .

In general this might be quite complicated.
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Time Delay Interferometry (TDI) and TDI variables

Single link noise model

As we did for the signal, we want to express the single link noise 77,?’
In general this might be quite complicated.

Assuming TDI cancels primary noises and only TM and OMS are present:
mi =Dy () + " (1) + n"S(t)

where Dj is the delay operator.
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Time Delay Interferometry (TDI) and TDI variables

Single link noise model

As we did for the signal, we want to express the single link noise 77,?’
In general this might be quite complicated.

Assuming TDI cancels primary noises and only TM and OMS are present:
ny =Dy (8) + (1) + 0 o(t)
where Dj is the delay operator.
Assuming stationarity, zero-mean and uncorrelated:
MO () = 3 S~ 1),

(7S (1) VS (1)) = 3 SP() o(F 1)

the only non-zero cross spectral densities are:
Sy (f) = i () + SiM(F) + SPM(F)

ii,ij
S;;];\I( ) 27'rIfL STM( )+ eizﬂifLijS-'}—M(f) ,
where SjV(f) = A} x Fru(f) and SPYS(f) = P2 x Fous(f) .

8/30
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Time Delay Interferometry (TDI) and TDI variables

Time Delay Interferometry

Compare measurements at
different times (delay operator)

— Noise reduction!

Let us start with two possibilities:

@ Michelson variables, dubbed XYZ, defined as (YZ are permutations):
X = (1 — Di3Ds1)(m12 + Dionz1) + (D12Doy — 1) (m13 + Disnat)

@ Sagnac variables, dubbed a3+, defined as (8~ permutations):
o = 112 + Diangs + Di2Dosnzt — (13 + Diznse + DizDsanpy)

Dj; delay operator, n; measurement in i coming from j

9/30
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Time Delay Interferometry (TDI) and TDI variables

Time Delay Interferometry

Compare measurements at

. — i ion!
different times (delay operator) Noise reduction!
Let us start with two possibilities:

@ Michelson variables, dubbed XYZ, defined as (YZ are permutations):
X = (1 — Di3Ds1)(m12 + Dionz1) + (D12Doy — 1) (m13 + Disnat)

@ Sagnac variables, dubbed a3+, defined as (8~ permutations):
o = 112 + Diangs + Di2Dosnzt — (13 + Diznse + DizDsanpy)

Dj; delay operator, n; measurement in i coming from j
Both signal and noise are correlated in these variables!

For equal arms, diagonalization via: N (_1/\@ 0 1/\@)

(diagonal variables dubbed AET and AET) %ﬁ ‘12/%6 %g
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Time Delay Interferometry (TDI) and TDI variables

Time Delay Interferometry

Compare measurements at

. . — i ion!
different times (delay operator) Noise reduction!
Let us start with two possibilities:

@ Michelson variables, dubbed XYZ, defined as (YZ are permutations):
X = (1 — Di3Ds1)(m12 + Dionz1) + (D12Doy — 1) (m13 + Disnat)

@ Sagnac variables, dubbed a3+, defined as (8~ permutations):
o = 112 + Diangs + Di2Dosnzt — (13 + Diznse + DizDsanpy)

Dj; delay operator, n; measurement in i coming from j
Both signal and noise are correlated in these variables!

For equal arms, diagonalization via: N (_1/\@ 0 1/\@)

(diagonal variables dubbed AET and AET) %ﬁ ‘12/%6 %g

Let us also introduce the fully symmetric ¢ variable:
¢ = Dia(na1 — ma2) + Dos(m2 — m13) + Da1(n2s — n21) - 9/30
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Time Delay Interferometry (TDI) and TDI variables

Single link to TDI in a more formal way

It is convenient to define TDI variables using vector notation:
V()= ¢ (f (),
jez

i.e., starting from the (FTs of the) 6 single link measurement 7j;(f),
we use a 3 x 6 matrix (c,-}’(f)), to project onto any TDI basis.
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Time Delay Interferometry (TDI) and TDI variables

Single link to TDI in a more formal way

It is convenient to define TDI variables using vector notation:

V(f)y=>_ cf (N iii(h)

ez

i.e., starting from the (FTs of the) 6 single link measurement 7j;(f),
we use a 3 x 6 matrix (c,-}’(f)), to project onto any TDI basis.

In this formalism, the cross spectral densities
OO 7 (1) = 5 SR -1,
can be expressed as:

OOV = > o () cmn(F) () mn(F))

ij mneZl
5 Z ¢ (1) con (1) S} m(f) 6(F = 1') .
// mnel\—’_/
eV ()
ij, mn
SUV(f)

Study the properties of C,-%,,(f) — make general statements on TDI basis. 10/30
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Data generation and pre-processing

Data generation (in frequency domain)

Assuming signal and noise to be Gaussian, stationary, and isotropic

independent realizations for each data segment and frequency are drawn:

su(f) = MOV () + 1 N(0, /()

V2
o v N(0,1/Qn(f)) + 1 N(0, \/Qn(f))
nc(fi) = \/é

so that the spectra (Qcw and Q) quantify the variance of fluctuations

11/30



Introduction
L]

Data generation and pre-processing

Data generation (in frequency domain)

Assuming signal and noise to be Gaussian, stationary, and isotropic

independent realizations for each data segment and frequency are drawn:

su(f) = MOV () + 1 N(0, /()

V2
o v N(0,1/Qn(f)) + 1 N(0, \/Qn(f))
nc(fi) = \/é

so that the spectra (Qcw and Q) quantify the variance of fluctuations

Given that:
@ LISA will be operating for 4yrs (and assume also 75% efficiency)
@ We choose data segments of roughly 12 days
in practice we have:
@ Roughly 95 independent measurements at each frequency.
@ A frequency resolution of around 10~ ®Hz
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Data generation and pre-processing

Data modeling and likelihood

Which likelihood should we use for our dataset?

Whittle likelihood should work (see any of the existing reviews):

—21In £(d|0) Zd, 7 (F10)d" + In [det C;(f10)]

where Cj is the covariance matrix for (did*) given by:

Ci(1,0) = S (£, ) + Ny (£.60) -

12/30
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Data generation and pre-processing

DEIE]

modeling and likelihood

Which likelihood should we use for our dataset?

Whittle likelihood should work (see any of the existing reviews):

—21In £(d|0) Zd,,/ (f10)d" + In [det C;(f|0)] ,

where Cj is the covariance matrix for (did*) given by:
Cy(1,0) = S (1. 0:) + Ny (1,0n) -

For fast estimates of the errors on parameter reconstruction use Fisher:
Pinc(de)| 10 10C
7672 Tr|C™ ()QC a6,
0

Fi= = o000,

1

However, this cannot tell us anything about possible biases!

12/30
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining D¢(f;) (our new data), as:
Do(f)) = (A2 (£)) = ((3e(F) + Pe(£))?) = (35(£)) + (FE(£)) -

We can reduce the complexity of the problem by performing two operations:
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??
Let us start by defining D¢(f;) (our new data), as:
Do(f) = (d2(£)) = ((Be(f) + Pe(£))?) = (33(F)) + (FE(F)) -
We can reduce the complexity of the problem by performing two operations:

@ We average over the (95) data segments:
This leaves us with some D(f;) (the averaged data) and
an estimate of the error o(f;) (the standard deviation or the data).
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining D¢(f;) (our new data), as:
De(f) = (JR(£)) = ((3a(F) + Pel(£))?) = (82(£)) + (FA(£)) .
We can reduce the complexity of the problem by performing two operations:

@ We average over the (95) data segments:

This leaves us with some D(f;) (the averaged data) and

an estimate of the error o(f;) (the standard deviation or the data).
@ We coarse grain (i.e. bin) the data (in frequency):

i.e. from the initial linear 10~®Hz spacing (~ 5 x 10° points)

— we go to some final (and less dense) set of frequencies f;
This leaves us with the final data set f;, D; and errors o;.
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Data generation and pre-processing

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining D¢(f;) (our new data), as:
De(f) = (JR(£)) = ((3a(F) + Pel(£))?) = (82(£)) + (FA(£)) .
We can reduce the complexity of the problem by performing two operations:

@ We average over the (95) data segments:
This leaves us with some D(f;) (the averaged data) and
an estimate of the error o(f;) (the standard deviation or the data).

@ We coarse grain (i.e. bin) the data (in frequency):
i.e. from the initial linear 10~®Hz spacing (~ 5 x 10° points)
— we go to some final (and less dense) set of frequencies f;
This leaves us with the final data set f;, D; and errors o;.

To gain a factor ~ ©O(100 x 100) in computation time!

13/30
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Data generation and pre-processing

An accurate likelihood for the compressed data

A Gaussian likelihood would give a systematic low bias!
(astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801 .0554)

Consider the Gaussian likelihood:
2 (k) 2 20y [ §(k)
chunks Wt D’/ — Qe (f’/ ’ 0) — 1 Qn (fll ’ )
InLg (9 n) X — Z Z -
Qe (11, 0) + 10 (1, 7)
and the Lognormal likelihood:

InLin (é: ﬁ) x 7% ;; Wl;k) In2 (hzﬂGW (fll ) ) + PPQp (f’l ,ﬁ))

k
Dy

2

Then we define our likelihood as (astro-ph/0302218, 2009.11845 )

1 2
InL = §In£g+§|n£LN

which removes the skewness contributions and thus is more accurate.
14/30



Towards realistic data
[ Je}

Responses, spectra and strain noise

Signal and noise Michelson

Solid lines — equal arms

Dashed lines — unequal arms

Most TDI variables
are mildly affected

@ Slight displacement
of the zeros

@ T Michelson looses
signal orthogonality!

@ (is clearly more robust to
unequal arm corrections!

107

5

10-%

SN/R(A) [1/Hz]
g

10-3

107
10°°
10718
102
1077

107"
107
1072
1073
107

SN T

10 10°2 102 10~
Frequency [Hz]

107

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore

1073 1072 107!

Frequency [Hz]
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Towards realistic data
oe

Responses, spectra and strain noise

Signal and noise Sagnac

apy AETIT
100 107
10~ 10-5
§ 107 107
107 —a — B —yy 107:
. . -— — 10~
Solid lines — equal arms Sl w4
107 10~ 102 107!
Dashed lines — unequal arms ;=
e . . —1073
Sensitivity is similar ¥
. . S10°%
to Michelson variables 2
(but less zeros) 10
1074
T is way more robust than T! 104 100 107 107 0 100 107 107
T and (’s signal orthogonality o 107
are comparable! 30w \ 10
- 1072
g0 108
R M| 10 o
107 1073 102 107! 104 1073 1072 10!
Frequency [Hz] Frequency [Hz]

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 1 6/30



Towards realistic data
[ Jele}

Noise and signal correlations

Noise correlations

2 \/TVi\ ~Y V4
" VI |
fnﬁ 1072 R
Solid lines — equal arms z .
107 —x —xz —z | — o —ay — By
. 0 . -
Dashed lines — unequal arms =~ | x * 2] s @ « B
107 1072 1072 107! 1074 1073 1072 1071

Unequal arms break

orthogonality

@ Correlations involving T are
most affected

1SGuI 7V sty sty

AET is again more robust

Replacing T with ¢

10°
might help =

3’%10'7 i
@ No real benefit > 1
in trading 7 for ¢ S — —«
a - A &

10

107 1073 1072 107! 1074 107 1072 107!

Frequency [Hz]

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore

Frequency [Hz]
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Towards realistic data
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Noise and signal correlations

Signal correlations
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Solid lines — equal arms : — T AR Teaae

Dashed lines — unequal arms

All bases are affected
(~ in the same way)!

Leakageinto T, T, ¢
induces correlations

Signal-sensitive channels
stay orthogonal
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Frequency [Hz]
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In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore
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Towards realistic data
ooe

Noise and signal correlations

Noise correlations v2 (unequal noise levels)

10°]

1SOul 7V sty Shy

1074

Solid lines — equal arms

Dashed lines — unequal arms o’

Equal arms also have
non-zero correlations!

[EHVVAVEN TS

Correlations in all TDI bases 10

Again, Michelson performs 100
worse than other bases

— A — A —E — 4 — AN — &
- AE - N E R 4 &

ISBu1 7V S8y Sty

10 107 1072 107 10 107 1072 10!
Frequency [Hz] Frequency [Hz]

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 1 9/30



Towards realistic data
0000

Impact on parameter estimation

Case study

Let’s test the impact of including these effects on parameter reconstruction.

Let us consider the following scenario:
Constant but unequal armlenghts
Noise described by a template (controlled by some parameters)
Constant (check both equal and unequal) noise parameters
Signal described by a power law H*Qgw = 102P"3(f/£.)™
Injection with quite large SNR (a« = —11.5, it = 0 — SNR ~ 270)
Fisher matrix to get uncertainties and assess the impact of CSDs

MCMC to validate Fisher results and look for biases

Compressed data only uses the diagonal (still can check biases)

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore
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Towards realistic data
O@000

Impact on parameter estimation

Low frequency (equal noise) analysis

AET diag Fisher low freq AEZ diag MCMC low freq
AET Fisher low freq /
® o & | y
€0 I3 @ € o7 N /"\
& e — I I/ s JWZHIN
) 5 & !
m n y
| | Q"
LY LY <o
o N "
), p N
> | ¥
N ' ¢
| &
o
3 L
& aliY ¢ i f
PN G s o "‘vﬂgxumses 0 609 & o
Qx § @ o » /Q o n &c) “@ Q,p Qv« QQ % O % h 0 N /DQ bm QQ FBENN a@ gbe Q.Qx“c b'ﬁ %Q
. mr A[1e-3] . . AT[IEJ] Plle-3) i r A P

@ MCMC (diagonal only): Fisher approximation works quite well
@ Fisher: Neglecting correlations is dangerous for AET, but not much for AE(!
@ MCMC/Fisher: AET performs much worse than AE¢

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 21 /30



Towards realistic data
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Impact on parameter estimation

Full frequency (equal noise) analysis

AET diag Fisher AEC diag MCMC
AET Fisher AET diag MCMC

, :
N o |
£ e s oS-
N ) c ¢
S ..

Alle-3]

Alle—3] _

U
L)

Y v _ vyt | {
T 3 7.l AL 1A !
by @ 8 ! : :

. . o1 ’ |

» » 2

PO S g 9 gs O w6 @ b » LI S O R I S e ¢ S o 9
) P » ~ 5 ¢ ' fe-3) » ° Alle-3]
1e-4] " Alle3] ppeny) [1e-4] N A3l ppecy) [le-3] e3l 5y

@ MCMC (diagonal only): Fisher approximation works quite well
@ Fisher: Neglecting correlations only marginally affects the reconstruction
@ MCMC/Fisher: AET slightly underestimates errors (wrt AE() 25/30

In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore



Towards realistic data
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Impact on parameter estimation

Full frequency (unequal noise) analysis

TM AEC diag Fisher OMS AEC diag Fisher
TM AEC full Fisher OMS AEZ full Fisher
K H

N |
-4
® =
N

» 1 :
D @ ﬂi e NI
2 R [ f ]
ot - | a o
< S , | s 19 N
(’ J d a j \/ \4 n/
> ! 1 € s
DPE PP PSP AP pee g P LIS ° PP ISS P O
’ ’ ’ _ _ Pa [1e-3] 7 _ Prs [le-4]
Tz Az Ao n A3 A P P B P

@ MCMC (diagonal only): (not shown here but) Fisher approximation works quite well
@ Fisher: Neglecting correlations might be dangerous for both bases (here only AE()

@ MCMC/Fisher: more impact on worsley constrained (subdominant) parameters!
In collaboration with Olaf Hartwig, Marc Lilley and Martina Muratore 23/30



Towards realistic data

[elee]le] )

Impact on parameter estimation

Signal parameters

ny — nid

. AEC UA, EN
0.05 1 0.04 1 '
AEC EA, EN
E AET AE, EN
0.00 1 T 0.00 T
~
c
~0.051 ~0.041 !
0015 0000 0015 3 0 3
a-q™ a-(a) [1e-3]
Good news for theorists in the room:
Signal parameters don’t care much about all this!
(remember the caveats though)
24/30
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A new idea for SGWB data analysis
[ Jelele}

ML for SGWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are
quite efficient and guaranteed to converge (in some cases)

but
scale poorly with number of parameters and require explicit likelihoods

25/30
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A new idea for SGWB data analysis
[ Jelele}

ML for SGWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are
quite efficient and guaranteed to converge (in some cases)

but
scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?
Normally, with Bayesian inference, we try to study the posterior probability:

p(oie) = ELESE) = (. 0)m(o)

where we have introduced:
Hd.0) = PLAO) _ pOld) _ p(6.d)

p(d) — w(0) — p(d)m(6)
i.e. r(d,0) is the ratio between joint probability and marginal probability.
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A new idea for SGWB data analysis
[ Jelele}

ML for SGWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are
quite efficient and guaranteed to converge (in some cases)

but
scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?
Normally, with Bayesian inference, we try to study the posterior probability:

p(oie) = ELESE) = (. 0)m(o)

where we have introduced:
Hd.0) = PLAO) _ pOld) _ p(6.d)

p(d) — w(0) — p(d)m(6)
i.e. r(d,0) is the ratio between joint probability and marginal probability.
Given a pair (0, d), r(d, 6) can be used to assess whether 6 can generate d!

This can be cast in a minimization problem that can be solved with ML

the approach is typically referred to as Neural Ratio Estimation. 25/30)
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Can we recover it with the same level of accuracy?
10—
10733
10734
10—357
10—367

T 107
N
Z10-38F

% 10—39 L
107
1074
107421
10781

10744 MRy | MRy | M
1074 1073 1072

£t

26/30



A new idea for SGWB data analysis
[e] Jele}

Recover previous results | ...

107%

Assume we inject a power law signal:
Can we recover it with the same level of accuracy?

Al

1073
10734}
10—35 |
10—36 |
T 107
N
E107%p
% 10—39 L
107
1074
107421
10781
10-4

y.d

D

1

1074

1073 1072

e T e

£t

Good news!

In collaboration with James Alvey, Uddipta Bhardwaj, Christoph Weniger and Valerie Domcke 26/30
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10732 T T

Good news again!
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... plus something completely new!

What if there’s
something else beyond
SGWB and noise?

For example, assume
some sources slightly
below the threshold for
detection are randomly
injected.

Would this still work??
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Conclusions
Unequal arms jeopardize the standard orthogonalization procedure
Some TDI variables are more robust to unequal arm corrections
Similarly, unequal noise levels also introduce correlations
Signal reconstruction looks mildly affected (with caveats...)
ML techniques for SGWB look quite promising...
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Conclusions and future perspectives

Conclusions
Unequal arms jeopardize the standard orthogonalization procedure
Some TDI variables are more robust to unequal arm corrections
Similarly, unequal noise levels also introduce correlations
Signal reconstruction looks mildly affected (with caveats...)
ML techniques for SGWB look quite promising...

Future perspectives
Application to concrete cases (inflation, phase transitions, ...)
Keep improving on detector modeling
More realistic noise model and data generation procedure
Drop stationarity (both for signal and noise)
Include anisotropies
New techniques?
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The End

Thank you

30/30



	Introduction
	Measuring SGWBs with LISA
	Time Delay Interferometry (TDI) and TDI variables
	Data generation and pre-processing

	Towards realistic data
	Responses, spectra and strain noise
	Noise and signal correlations
	Impact on parameter estimation

	A new idea for SGWB data analysis
	Conclusions and future perspectives

