lisa

monitors for LISA

Effectiveness of null channels as noise Impact of noise knowledge uncertainty on SGWB parameter estimation

M. Muratore (AEI Hannover/Potsdam),

J.Gair and L. Speri (AEI Potsdam), O. Hartwig (SYRTE, Observatoire de Paris), D. Vetrugno, S. **Speaker: Co-authors: Vitale, W. J. Weber (Universita di Trento)**

DA challenges for SGWB 2023, CERN

Effectiveness of null channels as noise monitors for LISA

M.Muratore in collaboration with O. Hartwig (SYRTE, Observatoire de Paris), D. Vetrugno, S. Vitale, W. J. Weber (Universita di Trento)

Noise knowledge for LISA Why do we care?

- Methods for SGWB detection often rely on accurate (sometimes perfect) knowledge of the instrumental noise
- LISA is the first mission of its kind, cannot be fully tested end-to-end on ground and signal cannot be turned off
 - A-priori Noise knowledge must be expected to be poor
- LISA cannot use cross-correlation with other detectors, such that 'intrinsic' noise monitors are desirable
- Candidate: the 'null' TDI channel
- Goals here:

*Understand how well we can constrain the noise in X with ζ

*Understand the impact of noise knowledge uncertainty on SGWB parameter estimation

^o Up to ~50 mHz, ζ has suppressed GW response wrt. X

• At high frequencies, response is similar

					_
I	'	1	'		' =
					-
					-
					1
					-
					1
					-
					-
					-
					-
					-
					-
					-
					_
					-
					-
					-
					1
					-
					-
					-
					ſ.
		N	V	N	V
	Ŋ	U	v		-
УY					
					-
					-
					-
					-
					1

Noise example: TM motion in LISA Pathfinder

- Total noise model for TM noise in LPF is sum of several physical effects
 - Different effects have different driving parameters, which can be different for the 6 test masses
- At low frequency, large part of noise model is **still un-explained**
- Some parameters for higher frequencies are inferred from the observed noise level (e.g., residual gas pressure)
- Given these uncertainties, noise model should allow for significant freedom in noise shape & amplitude

LISA Observables Single link measurements

- LISA will monitor distance fluctuations between the 6 TMs housed in the 3 S/C
- Simple model for these single-link measurements:

$$\eta_{12}(t) \sim H_{12}(t) + x_{21}^g(t-\tau) + x_{12}^g(t)$$

- $H_{12}(t)$: Pathlength change from GW
- $x_{ii}^{g}(t)$: TM deviation from geodesic motion
- $x_{ii}^m(t)$: Noise from optical metrology (e.g., shot noise)
- **Remark: This is strongly simplified** ullet
 - Each of these noises results from a superposition of different physical \bullet effects
 - Current performance model: 8 TFs for non-suppressed noise groups + complicated couplings for suppressed ones (laser, clock, TTL)

 $) + x_{12}^m(t)$

LISA Observables TDI channels

- LISA admits the construction **2 Michelson-like** channels sensitive to GWs
 - For simplicity, we focus on the single Michelson X channel: ullet

$$X \approx (1 - D^4)(1 - D^2)(\eta_{12} + D\eta_{21} - \eta_{13} - D\eta_{31})$$

- In addition, we can construct **one 'null' channel** with suppressed GW response
 - We use the so-called ζ channel, ullet

$$\zeta \approx (1 - D)(\eta_{12} - \eta_{13} + \eta_{23} - \eta_{21} +$$

Remark: some noise correlations cancel in ζ but not in X! lacksquare

*Massimo Tinto, F.B. Estabrook, and J.W. Armstrong D. A. Shaddock, Phys. Rev. D 69, 022001 (2004) and more...

$$\eta_{31} - \eta_{13}$$
)

Noise assumptions to check the effectiveness of null channels as noise monitors

Single link measurements

- No assumptions on any spectral shape or amplitude \bullet
 - But for evaluating plots: assume noise levels from requirements
- $H_{ii}(t)$: Assume response to isotropic SGWB with PSD S_h
- $x_{ii}^{g}(t)$: Assume motion of different TMs to be fully uncorrelated, with PSDs $S_{g_{ii}}^{disp}$
 - In reality, TM motion in same S/C might have some correlation \bullet
- $x_{ii}^m(t)$: Assume OMS noises to be fully uncorrelated, with PSDs $S_{omS_{ii}}$
 - True for shot noise, but not the full picture

LISA Observables Noise response

Muratore et all On the effectiveness of null TDI channels as instrument noise monitors in LISA e-Print: 2207.02138

Noise upper limits

- OMS noise is dominating ζ at all frequencies
- We can still derive an upper bound on the noise in X by finding a function satisfying

$$F(S_{\zeta_{\text{oms}}} + S_{\zeta_g}) \ge S_{X_{\text{oms}}} + S_{X_g}$$

We can take the larger of the two TFs to scale the noise

$$F = \operatorname{Max}(T_{X_{\text{oms}}}/T_{\zeta_{\text{oms}}}, T_{X_g}/T_{\zeta_g}) = 256 \operatorname{cos}^4\left(\frac{\omega\tau}{2}\right) \sigma$$

SGWB upper limit + detection threshold

- SGWB upper limit: we will know it's below the observed noise level
- Considering just these noises, we can use the upper bound + the known response to identify a strong SWGB
- Reminder: plots evaluated with noise levels from SciRD, but method is fully agnostic to noise levels.

Impact of noise knowledge uncertainty on SGWB parameter estimation

M. Muratore in collaboration with J.Gair and L. Speri (AEI Potsdam)

Impact of noise knowledge uncertainty on SGWB estimation

- 4 SGWB signal models*
- Set of 3 (first gen.) TDI channels A,E, ζ
- Splines to model noise knowledge uncertainty
- Fisher parameter space:
 - 117 for the total noise + 1 for GB amplitude + n. param. for the specific GW signal model

Source: M. Muratore, J. Gair and L.Speri in prep.

* Source: LISA Redbook and C. Caprini private conversation

	•
Α	
E	
ζ	
A MARK	
10	0 ⁰
	Α Ε ζ

Splines to model PSD and CSD

ullet

$$S_{AA}(f) = \bar{S}_{AA}(f) 10^{C(f|\log_{10}(f_i),w_i)}$$

$$C_{AE}(f) = \sqrt{S_{AA}(f)S_{EE}(f)}\sigma_R 10^{C(f|\log_{10}(f_i),w_i)}$$

$$+\sqrt{S_{AA}(f)S_{EE}(f)}I\sigma_I 10^{C(f|\log_{10}(f_i),w_i)}$$

- 13 equally spaced knots [1e-4 to 1 Hz]
- The weights wi are taken to be at the reference value
- We allow for 1 order of magnitude variation in the PSD/CSD
- <u>f</u> is the frequency

We use splines to model the noise uncertainty generic, slowly varying, fluctuations in the PSD and CSD

Α

Putting requirement on the noise ?

the impact on PE (with GB)

• We now vary the prior uncertainty on the spline weights from very small to very big to see

- Two dominant noise sources, uncorrelated TM and OMS noise, appear very differently in null- and sensitive channels - different noise transfer functions are important
- Assuming requirement noise levels, **noise upper bound** from null channel **is poor** at low frequency (factor 50)
 - At higher frequency, between 30-100 mHz, we have a noise estimate below a factor 4 of the • promised detector noise power a limit
- We could only **distinguish a SGWB** if it becomes significantly larger than the instrumental noise
- Null channels are completely insensitive to some forms of correlated noise

Conclusions

Conclusion and few 'caveats"

- LISA noise will be driven by multitude of physical parameters (some will be known, some might be completely unknown)
- The LISA data analysis, particularly in the search for a stochastic GW background, should be as robust as possible to ignorance of the noise model
- Efforts to characterize the noise based on in-flight observables should be **exploited** as much as possible
- In case of generic, slowly varying, fluctuations in the PSD and CSD things are measurable and we have modelled SGWBs but the precision decreases by 2/3 order of magnitude

Estimating correlated noise with the null channels

Intermediary TDI variables:

$$\eta_{ij}(t) = x_{ji}^g(t-\tau) + x_{ij}^g(t) + x_{ij}^m(t)$$
TM acc. noise

 It is instructive to consider the expression for ζ in the equal-armlength limit with **D** = 1-L and **D** $\eta_{ii} = \eta_{ii} (t-L)$

 $\zeta = (1 - D) \left(\eta_{12} - \eta_{13} + \eta_{23} - \eta_{21} + \eta_{31} - \eta_{32} \right)$

 ζ is insensitive to correlated noise entering equally in the two single-link measurements recorded on-board a single spacecraft (e.g. correlated TM acc. noise)

2 Movable optical sub-assembly (MOSA)

OMS noise

Payload strawman conceptual design. Images courtesy of Airbus D&S GmbH, Friedrichshafen. LISA proposal

