Ultra-high frequency gravitational waves from inflaton decay

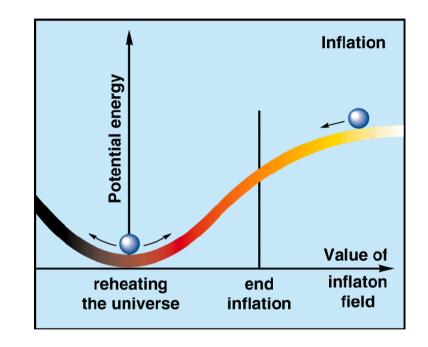
Anna Tokareva

Hangzhou Institute for Advanced Study

Imperial College London Based on PLB 2211.02070 (A. Koshelev, A. Starobinsky, AT) and ongoing work

Realization of inflation and reheating

$$p = -\rho. \qquad a(t) = \text{const} \cdot e^{H_{vac} t}$$


$$S = \int d^4 x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

$$\rho = \frac{1}{2} \dot{\phi}^2 + V(\phi), \qquad \text{Slowly rolling scalar field}$$

$$p = \frac{1}{2} \dot{\phi}^2 - V(\phi). \qquad \text{is a solution!}$$


Oscillations after inflation decay to the SM particles \implies reheating of the Universe

12/07/2023

Reheating temperature is unknown: from 1 GeV to 10¹⁵ GeV

Planck Constraints on the Potential

Inflation can be described by Effective Field Theory valid until the scale $\Lambda < M_P$ and $\Lambda > H_{inf}$

12/07/2023

EFT of inflaton and gravity

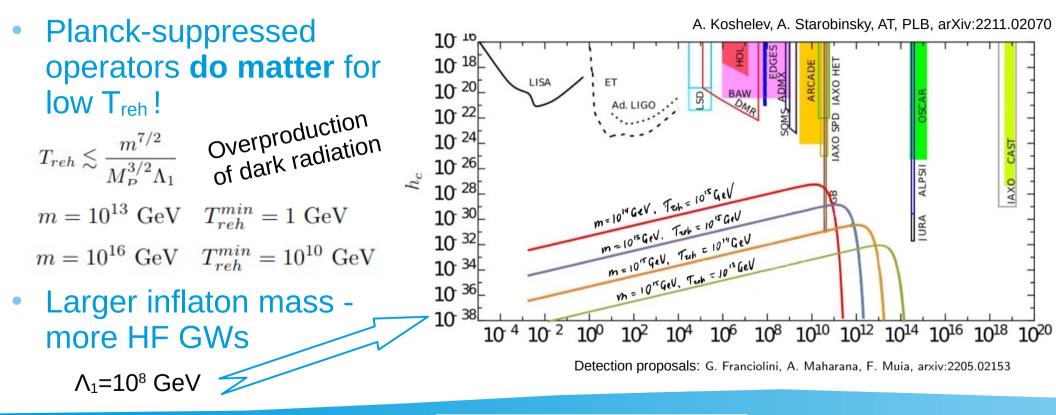
Expansion around the flat space:

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) \\ S_{NR} &= \int d^4 x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right) \\ S_{int}^{SM} &= \int d^4 x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^{\dagger} H + \frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^{\dagger} D^\nu H \right) \end{split}$$

Leading contribution to graviton production after inflation?

EFT of inflaton and gravity

Expansion around the flat space:

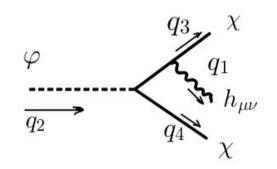

$$\begin{split} S &= \int d^4 x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) & \text{Decay to gravitons} \quad \Gamma = \frac{m^7}{32\pi M_p^4 \Lambda_1^2} \\ S_{NR} &= \int d^4 x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right) \\ S_{int}^{SM} &= \int d^4 x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^{\dagger} H \right) + \frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^{\dagger} D^\nu H \right) \\ \text{reheating} \qquad \text{bremsstrahlung} \end{split}$$

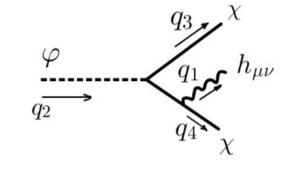
Other operators are suppressed by higher powers of Λ s

Results are valid for ANY UV completion for quantum gravity

12/07/2023

Inflaton decay to gravitons: selected results



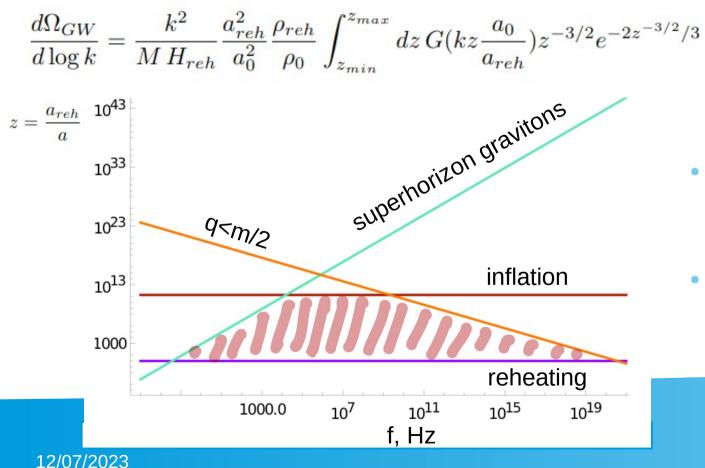

$$\Delta N_{eff} \lesssim 0.2$$
12/07/2023
$$\Delta N_{eff} = 2.85 \frac{\rho_{GW}}{\rho_{SM}} = 2.85 \frac{\Gamma_{GW}}{\Gamma_H}$$

$$\frac{d\Omega_{GW}}{d\log E} = \frac{16E^4}{M^4} \frac{\rho_{reh}}{\rho_0} \frac{\Gamma_{GW}}{H_{reh}} \frac{1}{\gamma(E)} e^{-\gamma(E)} \qquad \gamma$$

$$\gamma(E) = \left(\left(\frac{g_{reh}}{g_0} \right)^{1/3} \frac{T_{reh}}{T_0} \frac{2E}{M} \right)^{3/2}$$

Graviton bremsstrahlung during reheating

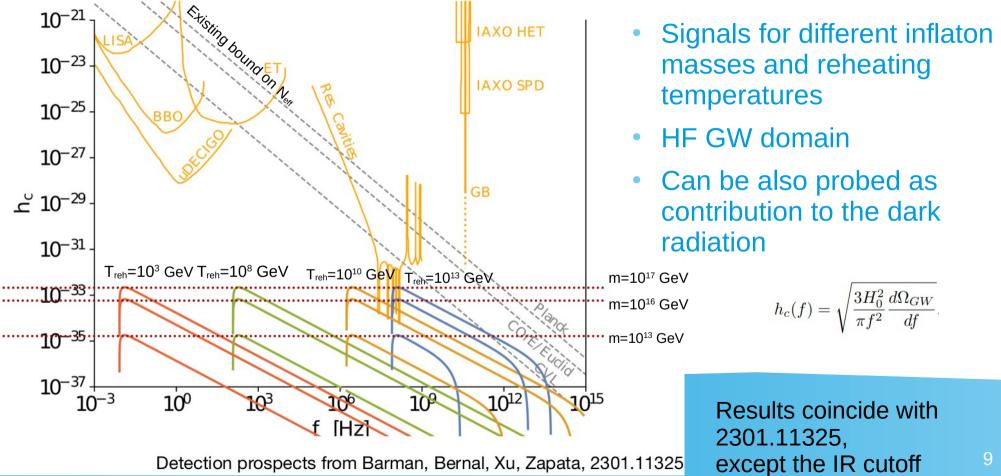
$$G(k) = \frac{\partial \Gamma}{\partial k} = A \frac{(m-2k)^2}{m k}, \ A = \frac{1}{64\pi^3} \frac{\mu^2}{3M_p^2} \left(1 + \frac{m^4}{\Lambda_5^4}\right)$$


= 0

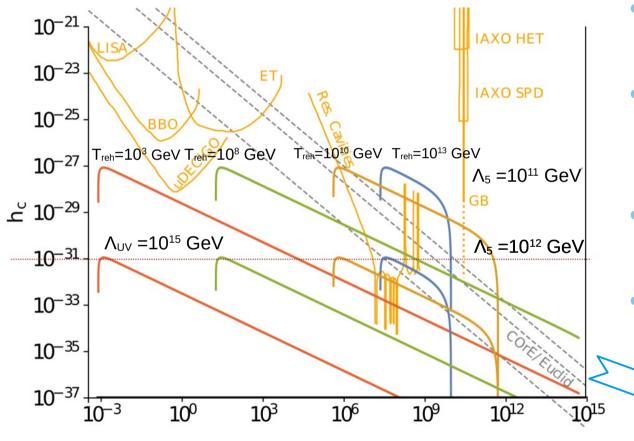
$$\frac{d\rho_{GW}}{dk} = \int \frac{kdN}{a_0^3} = \int dt \frac{kn_{\phi}(t)a(t)^3}{a_0^3} G(k\frac{a_0}{a(t)}) \qquad n_{\phi} = \frac{\rho_{reh}}{M} \left(\frac{a_{reh}}{a}\right)^3 e^{-\Gamma_{tot}t}$$

12/07/2023

)-


Limits on GW frequencies

Kinematic bound – comoving momentum is less than m/2


- Causality requirement no superhorizon gravitons!
- Gravitons were emitted between inflation and reheating

Gravitational waves from bremsstrahlung: $\Lambda_5 = M_P$

Detection prospects from Barman, Bernal, Xu, Zapata, 2301.11325

What if the quantum gravity scale is lower?

- GW signals for inflaton mass m=10¹³ GeV
- The shape does not change, the amplitude is becoming higher
- The unitarity breaking scale is $\Lambda_{UV}=(\Lambda_5 M_P)^{1/2} > m$

• From Λ_{UV} =10¹⁵ GeV – tension with N_{eff} bound

Reheating-dependend bounds on quantum gravity scale!

Detection prospects from Barman, Bernal, Xu, Zapata, 2301.11325

Conclusions

- High frequency gravitational waves can be sensitive to the quantum gravity effects
- Perturbative decay of inflation to gravitons can be non-negligible for low reheating temperatures \rightarrow high frequency GWs
- Graviton bremsstrahlung during reheating can provide a sizable HF GW signal \rightarrow constraints on EFT
- Reheating-dependent constraints on quantum gravity scale from gravitational waves !

Thank you!

