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MOTIVATION
• Recent experimental detection of GWs by LIGO-VIRGO Collaboration 

has strongly renewed the interest in other GW sources, both
cosmological and astrophysical, in different frequency ranges. 
• There is a growing theoretical and experimental effort in search for 

GWs in the High and Ultra-High Frequency band (up to GHz and 
beyond).
• UHFGWs will presumably require completely different detection

techniques at the sub-metre scales, maybe involving other matter
fields.
• According to some people, a promising route could be based on the 

interaction with E.M. fields, as in the celebrated inverse 
Gertsenshtein effect [see, e.g., the criticized Li & Baker proposal].
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• In this talk we aim to explore possible non-linear effects arising from the 

interaction between a VHFGW and an EM wave in a waveguide.

• We will show the existence of a Second Harmonic Generation (SHG) effect, 

resembling a similar effect occurring in non-linear optics.

• As we will see, although theoretically interesting, 

from an experimental point of view such effect

represents indeed a distant dream. 
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TEn0 MODES 
IN A RECTANGULAR WAVEGUIDE
• Solving the Maxwell equations with the required b.c. yields
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where kz =
p

!2 � !2
c and !c is the cuto↵ frequency,

giving the lowest frequency limit for wave propagation

inside the guide. We use the notation
�
(·) to represent the

electromagnetic field in the waveguide on lack of gravi-
tational perturbation.

In what follows we will focus on the fundamental TE10

mode. So we will put n = 1 in (1).

III. TEn0 MODES IN A GRAVITATIONAL
WAVE BACKGROUND

We consider a weak gravitational wave, modeled as a
plane wave. Gravitational waves come with two polar-
ization states, named plus, + and cross, ⇥. Assuming,
for the sake of simplicity, a single state of polarization,
say +, the line element representing a gravitational wave
propagating along the z axis reads

ds2 = �dt2 + (1 + h)dx2 + (1� h)dy2 + dz2, (2)

where

h ⌘ h(t� z) = Heikgze�i!gt (3)

is a small perturbation (|h| ⌧ 1) around the flat
Minkowski metric ⌘µ⌫ . The wave amplitude H repre-
sents the gravitational strain induced by the gravitational
wave. In order to extract physical information, let us in-
troduce an orthonormal tetrad frame adapted to an ob-
server at rest in the field of the gravitational perturbation
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1̂
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2
h, eµ

2̂
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h, eµ

3̂
= 1,

(4)
which can be easily checked to be Fermi-Walker trans-
ported, hence representing the best approximation to an
inertial reference frame in a curved background. In a
curved spacetime Maxwell equations in a vacuum can be
conveniently written in terms of the Faraday tensor Fµ⌫

and of its Hodge dual F̃µ⌫

r⌫F
µ⌫ = 0,

r⌫ F̃
µ⌫ = 0. (5)

For an anti-symmetric tensor, r⌫ ⌘ [@⌫ (ln
p
�g) + @⌫ ].

Limiting ourselves to O(h) quantities and recalling that,
given the metric (2), �g = 1 + O(h2), we immediately
find

@⌫F
µ⌫ = 0,

@⌫ F̃
µ⌫ = 0. (6)

Let us now introduce the tetrad field (4), writing Fµ⌫ =

eµâF
âb̂e ⌫

b̂
(a similar relation holding for F̃µ⌫). Given the

waveguide geometry and assuming a preexisting electro-
magnetic mode TE10 [see (1)], we expect that (at least to

the lowest order in h) the gravitational wave will excite
only modes involving Ey, Bx and Bz. So, we write the
electromagnetic fields as

~E =
�
~E +

•
~E,

~B =
�
~B +

•
~B, (7)

where
•
~E and

•
~B represent the gravitationally induced per-

turbations. Combining (4) and (6) we obtain the follow-
ing non-identically satisfied equations
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Placing (7) in (8) and taking into account that
�
~E and

�
~B satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra we
get the following inhomogeneous wave equations for the
perturbations (an overdot means time derivative)
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Bz= ḣ@x(

�
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Equations (9)-(11) are quite general, referring to the in-
teraction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
in (1). Consider first eq. (9). Using (1) and (3) we get
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In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
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= cutoff frequency ( = 𝜋/𝑎)

and         = EM fields in flat background (no GW)
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
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B(0)
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!
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a
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E(0)y = i"a
!
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(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
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a
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(
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!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining
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⎪
⎨
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a
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!
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(
!x
a

)
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(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations
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⎪
⎪
⎨
⎪
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]
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[(
1 − h

2

)
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]
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2

)
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]
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(
1 − h

2

)
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(
1 − h

2

)
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(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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TE MODES 
IN A GRAVITATIONAL WAVE BACKGROUND

• GWs come with two polarization states, plus (+) and cross (x).
• For sake of simplicity, let’s assume a single polarization state, plus (+)
• For GW propagating along z axis, the line element reads (in the TT gauge)

• We may also assume

where 𝐻 ≪ 1 is the gravitational strain and

2

where kz =
p

!2 � !2
c and !c is the cuto↵ frequency,

giving the lowest frequency limit for wave propagation

inside the guide. We use the notation
�
(·) to represent the

electromagnetic field in the waveguide on lack of gravi-
tational perturbation.

In what follows we will focus on the fundamental TE10

mode. So we will put n = 1 in (1).

III. TEn0 MODES IN A GRAVITATIONAL
WAVE BACKGROUND

We consider a weak gravitational wave, modeled as a
plane wave. Gravitational waves come with two polar-
ization states, named plus, + and cross, ⇥. Assuming,
for the sake of simplicity, a single state of polarization,
say +, the line element representing a gravitational wave
propagating along the z axis reads

ds2 = �dt2 + (1 + h)dx2 + (1� h)dy2 + dz2, (2)

where

h ⌘ h(t� z) = Heikgze�i!gt (3)

is a small perturbation (|h| ⌧ 1) around the flat
Minkowski metric ⌘µ⌫ . The wave amplitude H repre-
sents the gravitational strain induced by the gravitational
wave. In order to extract physical information, let us in-
troduce an orthonormal tetrad frame adapted to an ob-
server at rest in the field of the gravitational perturbation

eµ
0̂
= 1, eµ

1̂
= 1� 1

2
h, eµ

2̂
= 1+

1

2
h, eµ

3̂
= 1,

(4)
which can be easily checked to be Fermi-Walker trans-
ported, hence representing the best approximation to an
inertial reference frame in a curved background. In a
curved spacetime Maxwell equations in a vacuum can be
conveniently written in terms of the Faraday tensor Fµ⌫

and of its Hodge dual F̃µ⌫

r⌫F
µ⌫ = 0,

r⌫ F̃
µ⌫ = 0. (5)

For an anti-symmetric tensor, r⌫ ⌘ [@⌫ (ln
p
�g) + @⌫ ].

Limiting ourselves to O(h) quantities and recalling that,
given the metric (2), �g = 1 + O(h2), we immediately
find

@⌫F
µ⌫ = 0,

@⌫ F̃
µ⌫ = 0. (6)

Let us now introduce the tetrad field (4), writing Fµ⌫ =

eµâF
âb̂e ⌫

b̂
(a similar relation holding for F̃µ⌫). Given the

waveguide geometry and assuming a preexisting electro-
magnetic mode TE10 [see (1)], we expect that (at least to

the lowest order in h) the gravitational wave will excite
only modes involving Ey, Bx and Bz. So, we write the
electromagnetic fields as

~E =
�
~E +

•
~E,

~B =
�
~B +

•
~B, (7)

where
•
~E and

•
~B represent the gravitationally induced per-

turbations. Combining (4) and (6) we obtain the follow-
ing non-identically satisfied equations
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Placing (7) in (8) and taking into account that
�
~E and

�
~B satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra we
get the following inhomogeneous wave equations for the
perturbations (an overdot means time derivative)
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•
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ḣ(
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⇤
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2
ḣ@t

�
Ey, (10)

2
•
Bz= ḣ@x(

�
Ey +

�
Bx). (11)

Equations (9)-(11) are quite general, referring to the in-
teraction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
in (1). Consider first eq. (9). Using (1) and (3) we get
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tational perturbation.

In what follows we will focus on the fundamental TE10

mode. So we will put n = 1 in (1).

III. TEn0 MODES IN A GRAVITATIONAL
WAVE BACKGROUND

We consider a weak gravitational wave, modeled as a
plane wave. Gravitational waves come with two polar-
ization states, named plus, + and cross, ⇥. Assuming,
for the sake of simplicity, a single state of polarization,
say +, the line element representing a gravitational wave
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is a small perturbation (|h| ⌧ 1) around the flat
Minkowski metric ⌘µ⌫ . The wave amplitude H repre-
sents the gravitational strain induced by the gravitational
wave. In order to extract physical information, let us in-
troduce an orthonormal tetrad frame adapted to an ob-
server at rest in the field of the gravitational perturbation

eµ
0̂
= 1, eµ

1̂
= 1� 1

2
h, eµ

2̂
= 1+

1

2
h, eµ

3̂
= 1,

(4)
which can be easily checked to be Fermi-Walker trans-
ported, hence representing the best approximation to an
inertial reference frame in a curved background. In a
curved spacetime Maxwell equations in a vacuum can be
conveniently written in terms of the Faraday tensor Fµ⌫

and of its Hodge dual F̃µ⌫

r⌫F
µ⌫ = 0,

r⌫ F̃
µ⌫ = 0. (5)

For an anti-symmetric tensor, r⌫ ⌘ [@⌫ (ln
p
�g) + @⌫ ].

Limiting ourselves to O(h) quantities and recalling that,
given the metric (2), �g = 1 + O(h2), we immediately
find

@⌫F
µ⌫ = 0,

@⌫ F̃
µ⌫ = 0. (6)

Let us now introduce the tetrad field (4), writing Fµ⌫ =

eµâF
âb̂e ⌫

b̂
(a similar relation holding for F̃µ⌫). Given the

waveguide geometry and assuming a preexisting electro-
magnetic mode TE10 [see (1)], we expect that (at least to

the lowest order in h) the gravitational wave will excite
only modes involving Ey, Bx and Bz. So, we write the
electromagnetic fields as

~E =
�
~E +

•
~E,

~B =
�
~B +

•
~B, (7)

where
•
~E and

•
~B represent the gravitationally induced per-

turbations. Combining (4) and (6) we obtain the follow-
ing non-identically satisfied equations
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Placing (7) in (8) and taking into account that
�
~E and

�
~B satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra we
get the following inhomogeneous wave equations for the
perturbations (an overdot means time derivative)
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Equations (9)-(11) are quite general, referring to the in-
teraction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
in (1). Consider first eq. (9). Using (1) and (3) we get

𝑘( = 𝜔(.



SOLVING MAXWELL EQUATIONS
• Let us introduce the following Orthonormal Tetrad, 

• Such a tetrad is Fermi-Walker transported, hence representing the 
best approximation to an inertial reference frame in a curved
background.
• Maxwell eqs. in a vacuum read
• To the lowest order O(h):
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where kz =
p

!2 � !2
c and !c is the cuto↵ frequency,

giving the lowest frequency limit for wave propagation

inside the guide. We use the notation
�
(·) to represent the

electromagnetic field in the waveguide on lack of gravi-
tational perturbation.

In what follows we will focus on the fundamental TE10

mode. So we will put n = 1 in (1).

III. TEn0 MODES IN A GRAVITATIONAL
WAVE BACKGROUND

We consider a weak gravitational wave, modeled as a
plane wave. Gravitational waves come with two polar-
ization states, named plus, + and cross, ⇥. Assuming,
for the sake of simplicity, a single state of polarization,
say +, the line element representing a gravitational wave
propagating along the z axis reads

ds2 = �dt2 + (1 + h)dx2 + (1� h)dy2 + dz2, (2)

where

h ⌘ h(t� z) = Heikgze�i!gt (3)

is a small perturbation (|h| ⌧ 1) around the flat
Minkowski metric ⌘µ⌫ . The wave amplitude H repre-
sents the gravitational strain induced by the gravitational
wave. In order to extract physical information, let us in-
troduce an orthonormal tetrad frame adapted to an ob-
server at rest in the field of the gravitational perturbation

eµ
0̂
= 1, eµ

1̂
= 1� 1

2
h, eµ

2̂
= 1+

1

2
h, eµ

3̂
= 1,

(4)
which can be easily checked to be Fermi-Walker trans-
ported, hence representing the best approximation to an
inertial reference frame in a curved background. In a
curved spacetime Maxwell equations in a vacuum can be
conveniently written in terms of the Faraday tensor Fµ⌫

and of its Hodge dual F̃µ⌫

r⌫F
µ⌫ = 0,

r⌫ F̃
µ⌫ = 0. (5)

For an anti-symmetric tensor, r⌫ ⌘ [@⌫ (ln
p
�g) + @⌫ ].

Limiting ourselves to O(h) quantities and recalling that,
given the metric (2), �g = 1 + O(h2), we immediately
find

@⌫F
µ⌫ = 0,

@⌫ F̃
µ⌫ = 0. (6)

Let us now introduce the tetrad field (4), writing Fµ⌫ =

eµâF
âb̂e ⌫

b̂
(a similar relation holding for F̃µ⌫). Given the

waveguide geometry and assuming a preexisting electro-
magnetic mode TE10 [see (1)], we expect that (at least to

the lowest order in h) the gravitational wave will excite
only modes involving Ey, Bx and Bz. So, we write the
electromagnetic fields as

~E =
�
~E +

•
~E,

~B =
�
~B +

•
~B, (7)

where
•
~E and

•
~B represent the gravitationally induced per-

turbations. Combining (4) and (6) we obtain the follow-
ing non-identically satisfied equations
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Placing (7) in (8) and taking into account that
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~B satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra we
get the following inhomogeneous wave equations for the
perturbations (an overdot means time derivative)
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Equations (9)-(11) are quite general, referring to the in-
teraction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
in (1). Consider first eq. (9). Using (1) and (3) we get
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ḣ(

�
Ey +

�
Bx)

⇤
, (9)

2
•
Bx= ḧ(
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Bz= ḣ@x(

�
Ey +

�
Bx). (11)

Equations (9)-(11) are quite general, referring to the in-
teraction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
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ḣ@t

�
Ey, (10)

2
•
Bz= ḣ@x(
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�
Ey +

�
Bx)�

1

2
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gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
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)
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E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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SOLVING MAXWELL EQUATIONS
• We expect that (to the lowest O(h) order) the GW will excite only modes

involving Ex, By and Bz . So let us write:

• Using Maxwell eqs. and projecting
onto the ON tetrad we find:

gravitationally induced
perturbations

See, e.g., «Radio wave emission due to 
gravitational radiation», Marklund M, 
Brodin G, and Dunsby P K S,
Ap.J. 536, 875 (2000) 
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.

Ann. Phys. (Berlin) 2023, 2300228 © 2023Wiley-VCH GmbH2300228 (3 of 7)

 15213889, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300228 by D

r. A
m

erigo B
eneduci, W

iley O
nline Library on [11/10/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



SOLVING MAXWELL EQUATIONS
• Putting all things together we get the following

inhomogeneous wave eqs.: 

• These are the evolution equations for the EM perturbation due to the 
interaction with the GW.

Notice: no wave propagation
of the EM perturbation, in the 
case of a freely propagating
background EM wave! 
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
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)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
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)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0
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1 − h
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)
Bx

]
− *z
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2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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SECOND HARMONIC GENERATION (SHG)

• Let us specialize previous results to the case of  VHFGW, whose
frequency is the same as the frequency of the TE10 EM mode:

• From we get:

2

where kz =
p

!2 � !2
c and !c is the cuto↵ frequency,

giving the lowest frequency limit for wave propagation

inside the guide. We use the notation
�
(·) to represent the

electromagnetic field in the waveguide on lack of gravi-
tational perturbation.

In what follows we will focus on the fundamental TE10

mode. So we will put n = 1 in (1).

III. TEn0 MODES IN A GRAVITATIONAL
WAVE BACKGROUND

We consider a weak gravitational wave, modeled as a
plane wave. Gravitational waves come with two polar-
ization states, named plus, + and cross, ⇥. Assuming,
for the sake of simplicity, a single state of polarization,
say +, the line element representing a gravitational wave
propagating along the z axis reads

ds2 = �dt2 + (1 + h)dx2 + (1� h)dy2 + dz2, (2)

where

h ⌘ h(t� z) = Heikgze�i!gt (3)

is a small perturbation (|h| ⌧ 1) around the flat
Minkowski metric ⌘µ⌫ . The wave amplitude H repre-
sents the gravitational strain induced by the gravitational
wave. In order to extract physical information, let us in-
troduce an orthonormal tetrad frame adapted to an ob-
server at rest in the field of the gravitational perturbation

eµ
0̂
= 1, eµ

1̂
= 1� 1

2
h, eµ

2̂
= 1+

1

2
h, eµ

3̂
= 1,

(4)
which can be easily checked to be Fermi-Walker trans-
ported, hence representing the best approximation to an
inertial reference frame in a curved background. In a
curved spacetime Maxwell equations in a vacuum can be
conveniently written in terms of the Faraday tensor Fµ⌫

and of its Hodge dual F̃µ⌫

r⌫F
µ⌫ = 0,

r⌫ F̃
µ⌫ = 0. (5)

For an anti-symmetric tensor, r⌫ ⌘ [@⌫ (ln
p
�g) + @⌫ ].

Limiting ourselves to O(h) quantities and recalling that,
given the metric (2), �g = 1 + O(h2), we immediately
find

@⌫F
µ⌫ = 0,

@⌫ F̃
µ⌫ = 0. (6)

Let us now introduce the tetrad field (4), writing Fµ⌫ =

eµâF
âb̂e ⌫

b̂
(a similar relation holding for F̃µ⌫). Given the

waveguide geometry and assuming a preexisting electro-
magnetic mode TE10 [see (1)],

8
>>><

>>>:

�
Bx= � ikza

⇡ B0 sin
�
⇡x
a

�
eikzze�i!t

�
Bz= B0 cos

�
⇡x
a

�
eikzze�i!t

�
Ey=

i!a
⇡ B0 sin

�
⇡x
a

�
eikzze�i!t

(7)

we expect that (at least to the lowest order in h) the
gravitational wave will excite only modes involving Ey,
Bx and Bz. So, we write the electromagnetic fields as

~E =
�
~E +

•
~E,

~B =
�
~B +

•
~B, (8)

where
•
~E and

•
~B represent the gravitationally induced per-

turbations. Combining (4) and (6) we obtain the follow-
ing non-identically satisfied equations

@t

✓
1 +

h

2

◆
Ey

�
+ @xBz � @z

✓
1 +

h

2

◆
Bx

�
= 0,

@t

✓
1� h

2

◆
Bx

�
� @z

✓
1� h

2

◆
Ey

�
= 0,

@tBz +

✓
1� h

2

◆
@xEy = 0,

@zBz +

✓
1� h

2

◆
@xBx = 0. (9)

Placing (8) in (9) and taking into account that
�
~E and

�
~B satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra we
get the following inhomogeneous wave equations for the
perturbations (an overdot means time derivative)

2
•
Ey= �1

2
(@t � @z)

⇥
ḣ(

�
Ey +

�
Bx)

⇤
, (10)

2
•
Bx= ḧ(

�
Ey +

�
Bx)�

1

2
ḣ@t

�
Ey, (11)

2
•
Bz= ḣ@x(

�
Ey +

�
Bx). (12)

Equations (10)-(12) are quite general, referring to the
interaction between a gravitational plane wave and the
electromagnetic TEn0. The only asumption is that the
gravitational wave propagates along the z direction, just
as the electromagnetic wave inside the waveguide.

IV. SECOND HARMONIC GENERATION

In this section we will specialize the above results to
the case of a UHFGW, whose frequency is the same as
the frequency of the TE10 mode, propagating inside the
waveguide. So, we have !g = ! = kg. Also we put n = 1
in (1). Consider first eq. (10). Using (1) and (3) we get
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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SECOND HARMONIC GENERATION (SHG)

• Look for a solution like:

where A(z) is a slowly varying function of z and  kz
’ =

• Neglecting we get:

• where L is the waveguide length.

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x .

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an

electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect
closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.

Cutoff frequency

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x .

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an

electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect
closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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SECOND HARMONIC GENERATION (SHG)
• Evaluating A(z) at the waveguide end, z = L, we find

• Using the total electric field at the waveguide end is:

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x .

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an

electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect
closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.

background TE10 mode GW-induced EM perturbation

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x and �k = kz + kg � k0z.

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an
electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect

closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.
Following the same procedure, from (11) we find the x

component of the total magnetic field at the waveguide
end:

Bx(L) = � ikza

⇡
B0 sin

⇣⇡x
a

⌘
eikzze�i!t +

HB0aL!2

4⇡

! � 2kz
k0z

eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (19)

We can now evaluate the the electromagnetic power at
the waveguide output z = L computing the component
of the Poynting vector ~S along the z direction. According
to the general definition, the mean time average of ~S is

given by

h~Si = 1

2
<
⇣
~E ⇥ ~B⇤

⌘
. (20)

In the present case, the contribution to the Poynting vec-
tor due to the electromagnetic wave at frequency 2! in-
duced by the gravitational wave is

h�Szi =
1

32

H2B2
0!

3(! � 2kz)(3! + kz)

k02z (! + kz)
L2sinc2

✓
L�k

2

◆
sin2

⇣⇡x
a

⌘
. (21)

The corresponding power �P at the waveguide output is
then obtained integrating all over the waveguide section

S = ab. A crude estimate of �P is then obtained writing

�P ' 1

32
H2B2

0!
2L2, (22)

wavevector mismatch
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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Solving the Maxwell equations with the required boundary con-
ditions, we find[26 ]

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
n!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
n!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
n!x
a

)
eikzze−i"t

(1)

where kz =
√

"2 − "2
c and "c =

n!
a
is the cutoff frequency (of the

corresponding mode), giving the lowest frequency limit for wave
propagation inside the guide. We will use the notation E⃗(0) and
B⃗(0) to represent the electric and magnetic fields in the waveg-
uide on lack of gravitational perturbation. In what follows, we
will focus on the fundamental TE10 mode (n = 1).

4. TEn0 Modes in a Gravitational Wave Background

Let us consider a weak gravitational wave, modeled as a plane
wave. Gravitational waves come with two polarization states,
named plus, (+) and cross, (×) (see also Appendix A for further
details). Assuming, for the sake of simplicity, a single state of po-
larization, say (+), the line element representing a gravitational
wave propagating along the z axis reads

ds2 = −dt2 + (1 + h(u))dx2 + (1 − h(u))dy2 + dz2 (2)

where u = t − z and

h(u) ≡ h(t − z) = Heikgze−i"g t (3)

is a small perturbation (|h| ≪ 1) around the flat Minkowski met-
ric %&' . The amplitude H represents the strain induced by the
gravitational wave. In order to extract physical information, let us
introduce an orthonormal tetrad frame adapted to an observer at
rest in the field of the gravitational perturbation

e&
0̂
= 1, e&

1̂
= 1 − 1

2
h(u), e&

2̂
= 1 + 1

2
h(u), e&

3̂
= 1 (4)

The tetrad (4) can be easily checked to be Fermi-Walker
transported,[27 ] hence representing the best approximation to an
inertial reference frame in a curved background. In a curved
spacetime, Maxwell equations in a vacuum can be conveniently
written in terms of the Faraday tensor F&' and of its Hodge dual
F̃&'

{
∇'F&' = 0

∇' F̃&' = 0
(5)

For an anti-symmetric tensor, ∇' ≡ [*'(ln
√
−g) + *' ]. Limiting

ourselves to O(h) quantities and recalling that, given the metric
(2), −g = 1 +O(h2), we immediately find

{
*'F&' = 0

*' F̃&' = 0
(6)

Using the tetrad field (4), we write F&' = e&âF
âb̂e '

b̂
(a similar re-

lation holding for F̃&'). Assuming a preexisting electromagnetic
mode TE10 propagating along the waveguide, we put n = 1 in (1),
thus obtaining

⎧
⎪
⎪
⎨
⎪
⎪⎩

B(0)
x = − ikza

!
B0 sin

(
!x
a

)
eikzze−i"t

B(0)
z = B0 cos

(
!x
a

)
eikzze−i"t

E(0)y = i"a
!
B0 sin

(
!x
a

)
eikzze−i"t

(7)

We expect that (at least to the lowest order in h) the gravitational
wave will excite only modes involving Ey, Bx, and Bz. So, we ex-
pand the electromagnetic fields as

{
E⃗ = E⃗(0) + E⃗(1)

B⃗ = B⃗(0) + B⃗(1)
(8)

where E⃗(1) and B⃗(1) represent the gravitationally induced pertur-
bations. Combining (4) and (6) we obtain the following relevant
equations

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

*t
[(
1 + h

2

)
Ey
]
+ *xBz − *z

[(
1 + h

2

)
Bx

]
= 0

*t
[(
1 − h

2

)
Bx

]
− *z

[(
1 − h

2

)
Ey
]
= 0

*tBz +
(
1 − h

2

)
*xEy = 0

*tBz +
(
1 − h

2

)
*xBx = 0

(9)

Substituting the expansions (8) in (9) and taking into account that
E⃗(0) and B⃗(0) satisfy the unperturbed Maxwell equations in a vac-
uum, after some lenghty but straightforward algebra, we get the
following inhomogeneous wave equations, governing the evolu-
tion of the electromagnetic perturbation

□E(1)y = −
(
E(0)y + B(0)

x

)
*2t h − h*2xE

(0)
y (10)

□B(1)
x =

(
E(0)y + B(0)

x

)
*2t h (11)

□B(1)
z = (*th)*x

(
E(0)y + B(0)

x

)
(12)

Equations (10)–(12) are quite general, describing the interaction
between a gravitational plane wave and the electromagnetic TEn0
modes. The only assumption is that the gravitational wave prop-
agates along the z direction, just as the electromagnetic wave in-
side the waveguide. Notice, in passing that - as pointed out in
the Introduction - a weak gravitational wave cannot give rise to
a wavelike electromagnetic perturbation when interacting with a
background electromagnetic wave freely propagating in the same
direction, since in such latter case *xE

(0)
y = 0 and E(0)y + B(0)

x = 0.
In that respect, we see that the confinement of the electromagnetic
field (due to the presence of the waveguide) plays a crucial role in
giving rise to an effective interaction with the gravitational wave.
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SECOND HARMONIC GENERATION (SHG)
• Following the same steps we find the Bx component of the total magnetic

field at the waveguide end:

• We see that the induced EM perturbation propagates along the waveguide
at a frequency which is twice the frequency of the original TE10 mode.
• Such result is an example of a non-linear effect induced by the VHFGW on 

the EM wave propagating inside the waveguide.

background TE10 mode GW-induced EM perturbation
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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SECOND HARMONIC GENERATION (SHG)
• CONTRIBUTION TO THE POYNTING VECTOR

According to the general definition:

In the present case, the contribution due to the induced Second 
Harmonic EM wave at the waveguide end, x = L, is: 

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x .

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an
electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect

closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.
Following the same procedure, from (11) we find the x

component of the total magnetic field at the waveguide
end:

Bx(L) = � ikza

⇡
B0 sin

⇣⇡x
a

⌘
eikzze�i!t +

HB0aL!2

4⇡

! � 2kz
k0z

eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (19)

We can now evaluate the the electromagnetic power at
the waveguide output z = L computing the component
of the Poynting vector ~S along the z direction. According
to the general definition, the mean time average of ~S is

given by

h~Si = 1

2
<
⇣
~E ⇥ ~B⇤

⌘
. (20)

In the present case, the contribution to the Poynting vec-
tor due to the electromagnetic wave at frequency 2! in-
duced by the gravitational wave is

h�Szi =
1

32

H2B2
0!

3(! � 2kz)(3! + kz)

k02z (! + kz)
L2sinc2

✓
L�k

2

◆
sin2

⇣⇡x
a

⌘
. (21)

The corresponding power �P at the waveguide output is
then obtained integrating all over the waveguide section

S = ab. A crude estimate of �P is then obtained writing

�P ' 1

32
H2B2

0!
2L2, (22)

mean time average
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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SECOND HARMONIC GENERATION (SHG)
• The power carried by the Second Harmonic at the waveguide end can be 

obtained integrating all over the waveguide section, 

The photon flux, namely the number of photons created with frequency 2f, 
(i.e., twice the frequency f of the initial waveguide mode) is:

ØNotice that
so in general is not possible to make

3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then

A(L) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
,

(17)
where sinc(x) ⌘ sin x

x .

The total electric field Ey at the end of the waveguide
is [recall (8)]

Ey(L) =
i!aB0

⇡
sin

⇣⇡x
a

⌘
eikzLe�i!t � ⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (18)

The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an
electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect

closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.
Following the same procedure, from (11) we find the x

component of the total magnetic field at the waveguide
end:

Bx(L) = � ikza

⇡
B0 sin

⇣⇡x
a

⌘
eikzze�i!t +

HB0aL!2

4⇡

! � 2kz
k0z

eiL�k/2sinc

✓
L�k

2

◆
sin

⇣⇡x
a

⌘
eik

0
zLe�2i!t. (19)

We can now evaluate the the electromagnetic power at
the waveguide output z = L computing the component
of the Poynting vector ~S along the z direction. According
to the general definition, the mean time average of ~S is

given by

h~Si = 1

2
<
⇣
~E ⇥ ~B⇤

⌘
. (20)

In the present case, the contribution to the Poynting vec-
tor due to the electromagnetic wave at frequency 2! in-
duced by the gravitational wave is

h�Szi =
1

32

H2B2
0!

3(! � 2kz)(3! + kz)

k02z (! + kz)
L2sinc2

✓
L�k

2

◆
sin2

⇣⇡x
a

⌘
. (21)

The corresponding power �P at the waveguide output is
then obtained integrating all over the waveguide section

S = ab. A crude estimate of �P is then obtained writing

�P ' 1

32
H2B2

0!
2L2, (22)
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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5. Results and Discussion: Second Harmonic
Generation

In this section, we will specialize the above results to the case
of a VHF gravitational wave, whose frequency is the same as the
frequency of the TE10 mode. So, we have! = !g = kg . As recalled
above, we put n = 1 in (1). Consider first Equation (10). Using (7)
and (3) we get

□E(1)y =
i"HB0!

a

(
2!g + kz
! + kz

)
sin

("x
a

)
ei(kz+kg )ze−2i!t (13)

We look for a solution like

E(1)y = A(z) sin
("x
a

)
eik

′
zze−2i!t (14)

where A(z) is a slowly varying function of z and k′z =√
(2!)2 − !2

c , with !c =
"
a
. Substituting (14) in (13) and apply-

ing the slowly varying amplitude approximation, we neglect the
terms involving #2zA, thus obtaining

#zA(z) = −
i"HB0!
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z (15)

Then A(z) reads

A(z) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
ei(kz+kg−k

′
z)z − 1

iL(kz + kg − k′z)
(16)

where, we have introduced the waveguide length, L. Finally, we
evaluate A(z) at the end of the waveguide (z = L)

A(L) = −
"HB0!L
4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2sinc

(
LΔk
2

)
(17)

where sinc(x) ≡ sin x
x

and

Δk = kz + kg − k′z (18)

is the so-called wavevector mismatch. The total electric field Ey at
the end of the waveguide is [recall (8)]

Ey(L) =
i!aB0

"
sin

("x
a

)
eikzLe−i!t

−
{"HB0!L

4ak′z

(
2! + kz
! + kz

)
eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(19)

The quantity enclosed in curly brackets in (19) represents an
induced electromagnetic perturbation propagating inside the
waveguide with a frequency that is twice the frequency of the
original TE10 mode. The amplitude of the perturbation is pro-
portional to the amplitude H of the gravitational wave. This ef-
fect closely resembles a Second Harmonic Generation (SHG) ef-
fect, well-known in non-linear optics (see, e.g., [28, 29]). Here, the

role of non-linear medium is played by the high-frequency gravi-
tational wave.
Following the same procedure, from (11) we find the x com-

ponent of the total magnetic field at the waveguide end:

Bx(L) = −
ikza
"

B0 sin
("x
a

)
eikzze−i!t

+
{
HB0aL!2

4"
! − kz
k′z

eiLΔk∕2

× sinc
(
LΔk
2

)
sin

("x
a

)
eik

′
zLe−2i!t

}
(20)

We can now evaluate the the electromagnetic power at the waveg-
uide output z = L, computing the component of the Poynting
vector S⃗ along the z direction. According to the general defini-
tion, the mean time average of S⃗ is given by

⟨S⃗⟩ = 1
2
ℜe

(
E⃗ × B⃗∗

)
(21)

Combining (19), (20), and (21) we readily isolate the contribution
to the Poynting vector at the waveguide output, due to the elec-
tromagnetic wave at frequency 2!, induced by the gravitational
wave

⟨%Sz⟩ =
H2B2

0

32
!3(! − kz)(2! + kz)

k′2z (! + kz)

× L2sinc2
(
LΔk
2

)
sin2

("x
a

)
(22)

The corresponding power %P at the waveguide output is then ob-
tained integrating all over the waveguide section  = ab

%P = ∫
⟨%Sz⟩ dx dy (23)

and the photon flux, i.e., the number of created photons per unit
time (each of energy 2ℏ!), at the waveguide output is

dN
dt

= %P
2ℏ!

(24)

Notice that, since kz =
√

!2 − !2
c and k

′
z =

√
(2!)2 − !2

c , it is not
possible to exactly make Δk = 0 in (18). So, perfect matching is
essentially ruled out. This results in a reduction in the efficency of
the SHG effect, which is controlled by the phase mismatch factor,
sinc2( LΔk

2
). Such a reduction can be minimized, provided that L

does not exceed 2∕Δk, the latter quantity playing the role of a
coherence length.[28 ]

5.1. A Numerical Estimate

Let us give a numerical estimate of the expected effect. Consider
a (background) electromagnetic wave, propagating in the TE10
mode with B0 = 0.003 T and frequency f = 10 GHz in a WR102
waveguide, whose parameters are a = 25.9 mm, b = 12.95 mm
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3

2
•
Ey=

i⇡HB0!

a

✓
3!g + kz
! + kz

◆
sin

⇣⇡x
a

⌘
ei(kz+kg)ze�2i!t. (13)

We look for a solution like

•
Ey= A(z) sin

⇣⇡x
a

⌘
eik

0
zze�2i!t, (14)

where A(z) is a slowly varying function of z and k0z =p
(2!)2 � !2

c . Substituting (14) in (13) and neglecting
the terms involving @2

zA, we obtain

@zA(z) = � i⇡HB0!

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z. (15)

Then A(z) reads

A(z) = �⇡HB0!L

4ak0z

✓
3! + kz
! + kz

◆
ei(kz+kg�k0

z)z � 1

iL(kz + kg � k0z)
, (16)

where we have introduced the waveguide length, L. If we
evaluate A(z) at the end of the waveguide, hence putting
z = L, then
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where sinc(x) ⌘ sin x

x and �k = kz + kg � k0z.

The total electric field Ey at the end of the waveguide
is [recall (8)]
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The second term in (18) represents an electromagnetic
wave propagating inside te waveguide with a frequency
doubled with respect to the frequency of the original
TE10 mode. The amplitude of this term is proportional
to the amplitude H of the gravitational wave. Such an
electromagnetic wave has been excited as a consequence
of the interaction with the gravitational wave. The e↵ect

closely resembles a Second Harmonic Generation (SHG)
e↵ect, well-known in non-linear optics. Here, the role of
non-linear medium is played by the high freuqency grav-
itational wave.
Following the same procedure, from (11) we find the x

component of the total magnetic field at the waveguide
end:
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We can now evaluate the the electromagnetic power at
the waveguide output z = L computing the component
of the Poynting vector ~S along the z direction. According
to the general definition, the mean time average of ~S is

given by
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2
<
⇣
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⌘
. (20)

In the present case, the contribution to the Poynting vec-
tor due to the electromagnetic wave at frequency 2! in-
duced by the gravitational wave is

h�Szi =
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⌘
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The corresponding power �P at the waveguide output is
then obtained integrating all over the waveguide section

S = ab. A crude estimate of �P is then obtained writing

�P ' 1

32
H2B2

0!
2L2, (22)

Recall that the 
mismatch is:



SHG – A NUMERICAL ESTIMATE
Assume:
Ø GW with f = 10 GHz 
Ø waveguide WR102 (EIA) with parameters: 
• a =25.9  mm, b = 12.95 mm, fc = 5.786 GHz, B0 =0.003 T
Then (in SI units):

ØThe Maximum dN/dt value

is obtained for optimal waveguide length:
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
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where we have restored, for clarity, SI units, and
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Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output
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Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
H2B2
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Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output
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≃ 3 × 10−4
H2B2

0c
3

!0hff 2
c

⎛
⎜
⎜
⎜⎝

sin
(

"fL
c
ΔΦ(fc∕f )

)

ΔΦ(fc∕f )

⎞
⎟
⎟
⎟⎠

2

(25)

where we have restored, for clarity, SI units, and

ΔΦ(fc∕f ) =
cΔk
#

=

√
1 −

(
fc
f

)2

− 2

√
1 −

(
fc
2f

)2

+ 1 (26)

Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
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The integration time required to detect a number of photons at
least equal to the noise background is then
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8.1 × 10−31
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(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output
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)2

− 2

√
1 −

(
fc
2f

)2

+ 1 (26)

Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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SHG – A NUMERICAL ESTIMATE
• Compare with the blackbody noise from waveguide cavity:
Ø cryogenic temperature operation T = 4 K
Ø narrow detection bandwidth

The background is (photons)

ØThe integration time required to detect a number of photons at least
equal to the noise background is
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
H2B2
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where we have restored, for clarity, SI units, and

ΔΦ(fc∕f ) =
cΔk
#

=

√
1 −

(
fc
f

)2

− 2

√
1 −

(
fc
2f

)2

+ 1 (26)

Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
H2B2
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⎜
⎜⎝
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where we have restored, for clarity, SI units, and

ΔΦ(fc∕f ) =
cΔk
#

=

√
1 −

(
fc
f

)2

− 2

√
1 −

(
fc
2f

)2

+ 1 (26)

Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
H2B2
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⎜
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where we have restored, for clarity, SI units, and

ΔΦ(fc∕f ) =
cΔk
#

=

√
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(
fc
f
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− 2

√
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(
fc
2f
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Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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SHG – A NUMERICAL ESTIMATE
Ø Assuming an integration time = 1 hour, the gravitational strain

detection threshold is

Ø The above sensitivity could perhaps be improved using a high-
finesse Fabry-Perot resonator at the waveguide output.

Ø With a finesse F = 105, one woud reach
@ f = 10 GHz  with  1 hour integration time.
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and frequency cutoff fc = 5.786 GHz. Using (22), (23), and (24),
we get the photon flux at frequency 2f = 20 GHz at the cavity
output

dN
dt

≃ 3 × 10−4
H2B2
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where we have restored, for clarity, SI units, and

ΔΦ(fc∕f ) =
cΔk
#

=

√
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fc
f

)2

− 2

√
1 −

(
fc
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Themaximum value of (25) is obtained for an optimal waveguide
length

Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)

So, in the case of an incoming gravitational wave having ampli-
tude H and frequency fg = f = 10 GHz, the number of photons
at frequency 2f = 20 GHz per unit time at the waveguide output
is

dN
dt

≃ (8.6 × 1027)H2 (28)

Following,[13 ] let us compare this tiny flux with the background
blackbody noise from the waveguide cavity. Assuming a cryo-
genic operation at a temperature T = 4 K, and a narrow detec-
tor bandwidth Δf ≃ 100 kHz around the detection frequency
2f = 20 GHz, the mean number of background photons is

Nbg =
8"abL
c3

(2f )2Δf

exp
(
2hf
kT

)
− 1

≃ 7 × 10−3 (29)

The integration time required to detect a number of photons at
least equal to the noise background is then

$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)

So, for an integration time of - say - 1 h, the corresponding grav-
itational strain detection threshold would roughly be

Hth =
9 × 10−16√$eq

≃ 1.5 × 10−17 (31)

This result should be compared to the most recent upper limit
on stochastic VHF gravitational waves obtained by means of a
graviton-magnon detector.[21 ] The reported values are H ≤ 9.1 ×
10−17 at 14 GHz andH ≤ 1.1 × 10−15 at 8.2 GHz.
The above sensitivity could perhaps be improved using a high

finesse Fabry-Perot resonator at the waveguide output.[13 ] With a
finesse F = 105, one would reach the value Hth ≃ 4.7 × 10−20 at
10 GHz with 1 h of integration time.

6. Conclusion

In this paper, we have considered the interaction between a high-
frequency, weak gravitational wave and an electromagnetic wave
propagating in a rectangular waveguide.
Assuming that the gravitational and electromagnetic wave

share the same frequency and direction of propagation, we have
shown the existence of a Second Harmonic Generation (SHG)
effect. The gravitational perturbation acts as a sort of non-linear
medium, causing the excitation of a tiny flux of photons whose
frequency is twice the frequency of those initially propagating
inside the waveguide. In principle, these photons could be de-
tected, being well distinguishable in frequency (and energy) from
the background.
Unfortunately, also when assuming optimistic values of the

involved parameters, the number of such photons is indeed very
small. As recalled in the Introduction, the expected values of the
gravitational strain in the GHz region are typicallyH ≈ 10−26 or
less, hence several order of magnitude below the above estimated
sensitvity threshold, also employing a high-finesse Fabry-Perot
cavity, as suggested, e.g., in [13].
Other severe issues are the termal noise and the related fre-

quency drift, partly due to the small changes in the parameters of
the waveguide and the microwave generator. Besides, frequency
fluctuations reduce the expected sensitivity, eventually requiring
an impractical integration time.
Being the present paper is basically theoretical, we do not claim

to propose a novel experimental method devoted to VHF gravita-
tional wave detection. Nevertheless, we would like to briefly com-
ment on some possible routes to face to the smallness of the ex-
pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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where we have restored, for clarity, SI units, and
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Lopt =
c

2f |ΔΦ| ≃ 0.15 m (27)
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dN
dt

≃ (8.6 × 1027)H2 (28)
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Nbg =
8"abL
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(2f )2Δf

exp
(
2hf
kT

)
− 1
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The integration time required to detect a number of photons at
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$eq =
Nbg

dN∕dt =
8.1 × 10−31

H2
(30)
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Hth =
9 × 10−16√$eq
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pected signal, deeply buried in the noise. The above cited difficul-
ties might be partly overcome, exploiting the fact that we already
know the frequency of the signal we are looking for (actually, twice
the frequency of the original background electromagneticmode).
A possible detection technique could rely on the lock-in amplifi-
cation, which is insensitive to frequency drift, once locked to the
frequency 2f . As regards the noise from frequency fluctuation,
this is randomly distributed and not phase-correlated to the sig-
nal frequency. In lock-in amplification, noise at frequencies very
close to the reference frequency will result in very low frequency
AC output. Efficient low-pass filtering could remove such unde-
sired noise, leaving an (almost) DC output, proportional the sig-
nal, we want to measure.
Furthermore, depending on our technological ability to follow

the SHG signal with a 2f phase-locked reference frequency, we
could perhaps succeed in obtaining an output proportional to the
strain H (not to H2). This would enormously amplify the sensi-
tivity. This latter point could really be a matter for further deep
investigation, being also in touch with the recent proposals con-
cerning the detection of VHF gravitational waves by means of
first-order perturbed electromagnetic fields. An almost exhaustive
review on such a topic can be found, e.g., in [30].
Leaving aside the issue of experimental detectability, the stud-

ied effect seems theoretically appealing in its own right, repre-
senting a non-trivial example of interaction between electromag-
netic and gravitational waves. In that respect, it could also be in-
teresting to extend the analysis to the case of a gravitational wave
whose direction of propagation is not along the waveguide.
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CONCLUSIONS
• An interesting feature of the effect is that the produced photons have a

frequency doubled w.r.t. that of photons originally propagating in the
waveguide. Hence such photons could be easily discriminated.
• Unfortunately, also when assuming optimistic values of the involved

parameters, the number of such photons is indeed very small.
• A possible amplification could be obtained using a high-finesse Fabry-Perot

cavity. But also imagining a F = 109 value, only a few photons could be obtained
in any reasonable integration time.
• Nevertheless, the effect seems interesting in its own right, representing a non-

trivial example of non-linear interaction between quantum fields (EM) and
VHFGWs.
• All this also suggests that any promising route towards a quantum theory of

gravity will probably need to face VHFGWs, searching for graviton evidence.
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