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Levitated optomechanics - brief introduction

1. Polarisable neutral glass particles act as high field seekers -
trapped in laser focus

2. When particle is approximately spherical, acts as 3 
decoupled harmonic oscillators. 

3. Characteristic length scale 10’s nanometers to 10’s 
microns.

4. High Q factors ~ 10^12  excellent force sensors
5. Can reduce the effective motional ‘temperature’ of such 

objects through feedback schemes

● Ashkin, Bell Labs, 1970s
● Ashkin (76) Levitation in high vacuum

Optical tweezers  biology, biophysics



(Ground) state of the art:

Dynamical backaction: Measurement based cooling:



Fundamental limitation: thermal noise

• Random “kicks” are given to sensor due to finite T of oscillator

Brownian motion – random “kicks” given to particle due to thermal bath
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Improving sensitivity

CM motion decoupled 
from environment – 
no clamping, materials 
losses

Limitations on Q: Clamping, surface 
imperfections, internal materials losses

Levitate the force sensor!
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Lens
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Projected Force sensivity

Z. Yin, A. Geraci, T. Li,  Int. J. Mod. Phys. B 27,1330018 (2013).
20 zN/Hz1/2 Gieseler, Novotny, Quidant (Nature Phys. 2013)

Seen recently by 
Novotny group
V. Jain et. al., 
PRL 116, 243601 
(2016)

Photon recoil heating
Cantilever sensors



Trap loading
Vdriver

~107 g for R=150nm!
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Weisman etl.al, Review of Scientific Instruments 93, 115115 (2022)






Trapping instabilities
• Radiometric forces

Crooke’s Radiometer

Trap instabilities arise from 
uneven heating of the sphere 
surface

Important when mean free 
path ~ object size



Radiometric forces

1% temp gradient across surface
R=1.5 µm, I=2 x 109 W/m2

Heating rate > gas damping rate
 Particle loss  Need feedback!

Ranjit et.al., PRA 91, 051805(R) 
(2015).



3D feedback cooling of a nanosphere
Needed to stabilize the particle, damp and cool it
Mitigate photon recoil heating
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Ranjit et.al., PRA 91, 051805(R) (2015).



Calibrated zN force sensitivity
Ripples in space-time
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zeptonewton sensitivity in a standing wave trap 
w/ 3-D laser feedback cooling –

6 zN

G. Ranjit, et.al. , Phys. Rev. A, 93, 053801 (2016)

Standing wave trap with 
counter-propagating beams



Gravitational waves

• One of last predictions of GR to be 
tested

• Discovered by LIGO Sep 2015 !!
• Sources:

• Inspirals of astrophysical objects
• Inflation, Phase transitions, etc.
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 (2016).

Ripples in space-time
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Dark Matter
• Zwicky detected its influence on cluster motions in the mid-

1930s, Rubin detected it in galaxy rotation curves in the 1960s
• Its nature and origin is one of the most vexing problems in 

physics and astronomy
• One of strongest hints of physics beyond the Standard Model

Corbelli, E.; Salucci, P. (2000), Monthly Notices of the Royal Astronomical Society. 311 (2): 441–447

Galactic Rotation Curves: much more gravity 
than from ordinary matter

Gravitational Lensing:  “Bullet” cluster – 
separation of lensing from visible matter

Also: Structure formation, Cosmic Microwave background, …
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https://en.wikipedia.org/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society


The Dark Sector 
• New particles, fields, and forces may be lurking undetected 

because of their extremely weak coupling to ordinary matter 

Evidence supporting a universe of                 
dark matter and energy. Image: Kowalski              
et al, Astrophys. J. 686, 794 (2008).                          

Our best estimate for composition
of universe. Image credit: ADMX

• ~95% of the energy content of our universe is unknown to us!
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Hubble
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Neutrinos
Dark Energy

Standard 
Model LHC

Possible Dark Matter Mass Range

Axions WIMPs

10-2110-33

~10-1000 GeV

10-22

1eV/c2Wave-like Particle-like

~10-2eV to 10-11eV

Dark Matter
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Novel gravitational wave detector for > 10 kHz

Ripples in space-time
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A. Arvanitaki and AG, Phys. Rev. Lett. 110, 071105 (2013), 

GW Strain h = ∆L/L

1-100m 

• Laser intensity changed to match trap frequency to GW frequency

• For a 10m cavity, h ~ 10-22 Hz -1/2 at high frequency (100kHz) 

• Limited by thermal noise in sensor (not laser shot noise)  much better at high frequency!

Aggarwal et. al., Phys. Rev. Lett. 128, 111101 (2022).

http://link.aps.org/doi/10.1103/PhysRevLett.128.111101


Frequency landscape for gravitational waves

axion cloud

black hole

Distance to source: 10 kpc
(within our galaxy)

Axions:

PBHs:

Distance to source: 1 kpc
(within our galaxy)



1-meter Levitated Sensor Detector (LSD) prototype

The LSD Collaboration --  Experiment: AG(PI), Nancy Aggarwal (co-I), Geroge Winstone (PD), Shelby Klomp (G), Aaron Wang (G),
Peter J. Pauzauskie (UW), Greg Felsted (UW, G) Theory: Jacob Sprague (G), Shane Larson (co-I), Vicky Kalogera (co-I)  



SiO2 spheres SiO2 disks & 
NaYF hexagons

• Less isotropic scattering reduces photon recoil noise
19

• High-index end caps 
with low-index spacer

• Increased mass and 
internal reflections

Aggarwal et. al., Phys. Rev. Lett. 128, 111101 (2022).

Levitated object optimization: disc/plate vs sphere
Ideal sensor: high mass, high frequency, low photon recoil

SiN/SiO2/SiN stacks 

http://link.aps.org/doi/10.1103/PhysRevLett.128.111101


Optical trapping of NaYF hexagonal prisms

Hexagonal plate “stands up” with normal 
vector to face along the axis of the 
standing wave trap

Axial frequency (z-) highest due to 
intensity gradient along optical lattice 

G. Winstone et.al., Phys. Rev. Lett. 129, 053604 (2022)

Fabrication: Pauzauskie group (UW) 



Figure of merit η
for GW detection

Thermal noise dominated

Photon recoil noise dominated

Ideal sensor: high mass, high frequency, 
low photon recoil

G. Winstone et.al., Phys. Rev. Lett. 129, 053604 (2022)



Future goal: Laser refrigeration of NaYF material
• Particles could withstand higher intensities
   Pathway for MHz trapping frequencies  high bandwidth accelerometers and 
gravitational wave detectors

Danika R. Luntz-Martin, R. Greg Felsted, Siamak 
Dadras, Peter J. Pauzauskie, and A. Nick Vamivakas, 
"Laser refrigeration of optically levitated sodium 
yttrium fluoride nanocrystals," Opt. Lett. 46, 3797-
3800 (2021)



Search Range for the Levitated Sensor Detector (LSD)

Aggarwal et. al., Phys. Rev. Lett. 128, 111101 (2022).
Source modeling: Next talk by Jacob Sprague:

http://link.aps.org/doi/10.1103/PhysRevLett.128.111101


Summary

• Calibrated zeptonewton force sensing with optically levitated nanospheres
  new approach for high frequency gravitational waves 
 Geometric methods to mitigate recoil heating, improve sensitivity
 Materials allow solid-state cooling higher frequency detectors
• Source modeling in process - PBHs, BH superradiance (axions, vector 

bosons)
• Future outlook: network of detectors planned: GOLDEN (Gravitational wave 

Observatory Levitated DEtector Network (UC Davis – N. Aggarwal, 
University College London – P. Barker,  others?)
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