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• IntroducUon to Primordial Black holes (PBHs) 

• PBH binary formaUon and merger rates 

• Signatures of PBH mergers in the UHF-GW window
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The “birth” of PBHs

• Zel’dovich-Novikov (1966)
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• Carr, Carr-Hawking (1974)

• Chapline (1975)
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the structure of the accretion disk. This requirement can be 
verified only when more is known about the interactions at 
the Alfven radius. 

Finally, this model imposes some conditions on the properties 
of the plasma in the accretion column. Limits on turbulence 
and convection during the descent are required so that vari-
ations in the density of the infalling plasma are not smoothed 
out beyond the timescale of features observed in the Her X-1 
pulse profile (rise time 50 ms). Since the total free-fall time 
from RA 1r to the surface of the neutron star is 100 ms, this 
condition would be violated only by very largescale effects 
in the column or by significant delays at shock fronts or 
deceleration zones. The model further demands that each 
spurt of plasma cool within 50 ms. This has been sub-
stantiated by preliminary calculations8• 
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Fig. 2 Relative position of magnetic funnel and accretion 
disk as a function of phase, and the resulting pulse shape: 
a, double-peaked pulse; b, single-peaked pulse after precession 

of the neutron star or accretion disk. 

None of the conditions listed here seem insurmountable, 
though several may warrant further investigation. 

Since the rotation axis and the accretion plane are not 
perpendicular in this model, either the neutron star or the 
accretion disk will be precessing. Precession has been proposed 
by several authors as the source of the 35-d periodicity of 
Her Evidence for variation in the shape of the 1.24 s 
pulse across the 35-d cycle would provide strong evidence for 
the present model. Qualitatively, it predicts the secondary 
minimum to be more pronounced in the middle of the 9-d 'on' 
state, and more single-peaked pulses to be observed at the 
beginning and end of each 'on' state (Fig. 2a and b). 

Short term variations in pulse shape and 1-10 s) 
observed in Uhuru sightings (unpublished) of Her X-1 may be 
explained in this model in terms of fluctuations in accretion 
disk density. The fluctuation frequency is expected to be 
roughly equal to the orbital period at RA1r. t 27t (GM/R3Au)112 

1 s (ref. 10), as observed. This model, like the standard 

251 

model, cannot easily account for reported asymmetries in 
the pulse profile. 

I thank Drs W. Tucker, R. B. Partridge, and L. C. Green 
for discussions and Dr R. Giacconi for giving his time and 
making this work possible. 

ERIC D. FEIGELSON 
Haverford College, 
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Cosmological effects of 
primordial black holes 
ALTHOUGH only black holes with masses;:;::; 1.5Mo are expected 
to result from stellar evolution1 black holes with much smaller 
masses may be present throughout the Universe 2• These small 
black holes are the result of density fluctuations in the very 
early Universe. Density fluctuations on very large mass scales 
were certainly present in the early universe as is evident from 
the irregular distribution of galaxies in the sky". Evidence of 
density fluctuations on scales smaller than the size of galaxies 
is generally thought to have been destroyed during the era of 
radiation recombination•. But fluctuations in the metric of 
order unity may be fossilised in the form of black holes. 
Observation of black holes, particularly those with masses 
M < M o . could thus provide information concerning con-
ditions in the very early Universe. 

One indication that many black holes exist at present in the 
Universe is the evidence that the average density of matter in 
the Universe greatly exceeds the observed density of matter. 
Application of the virial theorem to galactic clusters'• implies 
that the density of matter is at least Jive times the observed 
density. Measurements of the deceleration' and rositions'\ of 
galaxies suggest that the density of matter may be larger than 
the observed density by a factor I 00- perhaps enough to 
make the Universe closed, although these measurements are 
rather uncertain. On the other hand, there are reasons7 for 
believing that the observed deuterium in the Universe was 
formed in the early radiation era. This would place an upper 
limit on the free nucleon density during the first 15 min of the 
Universe. This upper limit on the nucleon density implies 
that the present-day matter density ;s 6 :< 10 · "cm-3

; that is, 
- I 0 times the observable matter density. This upper limit on 
the total matter density would be consistent with applications 
of the virial theorem to galactic clusters but would not be 
consistent with the above-mentioned measurements suggesting 
a higher density. If evidence for a cosmologically fiat or closed 
Universe holds up then it follows that during the first 15 min 
most of the matter in the universe must have existed in some 
other form than free nucleons-in other words, black holes. 

If many small black holes (M < Me> exist at the present 
time then their presence may be revealed because they radiate 
electromagnetic radiation. Indeed, during collapse the metric 
will be changing rapidly on a time scale 1: "' 10-5 (Mj M c ) s,so 
that production of massless particles with energy of order h/1: is 
expected". Thus masses smaller than about 10"" g will radiate 
X rays and gamma rays when they undergo gravitational 
collapse. Hawking" has suggested that the emission of massless 
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Recent aDenUon devoted to PBHs
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Figure 1.5: Both absolute and relative number of papers posted on the arXiv with the phrase “Pri-
mordial black holes” either in the title or abstract. One can recognise how the GW detection in 2015
jump-started the current wave of interest in PBHs. Data from Ref. [163].

perturbations responsible for the PBH formation. A considerable amount of work was conducted
to search and constrain the abundance of PBHs by leveraging on their peculiar properties at small
scales, potentially leading to visible e↵ects such as lensing, electromagnetic emission from accretion
processes, gravitational waves, just to name a few.

Starting from the 1980’s, many formation mechanisms were devised. The most studied scenario
predicts that PBHs come from large fluctuations generated at small scales by the inflationary dynamics
[77–107], while many other models envision PBHs as a consequence of an early matter era [108–
112], modified gravity [113], scalar field instabilities [114–116], collapse of cosmic strings [117–123]
and domain walls [124–130], phase transitions [131–133], bubble collisions [134–136] and standard
model Higgs instability [137, 138]. At same time, the phenomenon of PBH formation started being
investigated with the aid of dedicated numerical relativity simulations showing it follows the properties
of a critical collapse [139–151].

In recent years, the scientific community has experienced multiple waves of interest for PBHs, see
Fig. 1.5. The first spark of interest was ignited in the late 1990s as a consequence of the reported
detection by the MACHO collaboration 2yr results [152, 153] of multiple Large Magellanic Cloud
microlensing events. These events, if interpreted as due to PBHs in our Milky Way, would suggest
a significant fraction of the mass in our galaxy to be composed of subsolar compact objects. This
suggestive result was, however, outdated by the EROS [154] and OGLE [155–158] results, finding
only a reduced fraction of the milky way mass could be in the form of subsolar PBHs, setting more
stringent constraints on the PBH abundance in this mass range.

A second wave, which we are still experiencing today, was ignited by the first detection of GWs
coming from a black hole merger performed by the LIGO/Virgo collaboration [159]. Indeed, it was
soon realised that such a signal would be compatible with a merger of PBHs [160–162]. Also, those
groups showed that PBH models could have a merger rate compatible with the GW observation
without violating the obvious bound requiring PBHs to be at most as abundant as the dark matter in
our universe. Since then, many subsequent works have tried to address the question of whether PBHs
could be responsible for all, or a part of, the GW events observed by the LIGO/Virgo collaboration,
an endeavour which will also be pursued in this thesis.

Before entering in some details of the PBH model, it is interesting to stress that PBHs, if they
were discovered, could have numerous consequences on our current understanding of the universe
even if they comprise only a small portion of the dark matter. Here are a few points motivating this
statement.

• PBHs are a unique probe to test the universe at the very small scales, leading to the current
most stringent constraint on the amplitude of early universe perturbations [164–167] at subparsec

S. Bird et al Phys. Rev. LeD. 116, 201301 (2016), [arXiv:1603.00464] 

M. Sasaki, et al Phys. Rev. LeD. 117, 061101 (2016), [arXiv:1603.08338] 

S. Clesse and J. Garcìa-Bellido, Phys. Dark Univ. 15 (2017), 142-147 [arXiv:1603.05234] 
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PBHs or not) by searching for the lensing signatures of
the ultradense compact halos formed by the enhanced
perturbations?1 Borrowing the analytic description of
ultradense halo formation developed in Ref. [66], we will
show that large primordial curvature perturbations at
O(0.1) pc scales, which correspond to the formation of
solar mass PBHs and nanohertz stochastic GW back-
grounds, can lead to observable lensing signatures.

II. ULTRADENSE DARK MATTER HALOS
FROM AN ENHANCED CURVATURE

SPECTRUM

In this section, we describe the abundance and proper-
ties of the ultradense dark matter halos formed in scenar-
ios with an enhanced power spectrum at small scales. For
concreteness, we consider the scenario described by model
A of Ref. [30], which produces PBHs around 10 M§ com-
prising roughly ¥ 0.05% of the dark matter and maximize
the current upper bound set by LVK observations. Again,
the ultradense halos are not connected to PBHs directly;
they only emerge from the same cosmological scenario
(see Fig. 1). Ultradense halos can arise with or without
PBHs, and we will discuss implications for alternative
(and agnostic) scenarios in Sec. IV.

Figure 2 shows the primordial curvature power spec-
trum P’(k) (dashed curve) in this model, which grows
as P’ Ã k

4 at scales smaller than those constrained by
CMB and large-scale structure data until it reaches a
peak around P’ ≥ 10≠2 near the pc≠1 scale. The PBHs
form around that scale. We also show the matter power
spectrum P(k, a) (solid curve) at a = 10≠5, approximated
as

P(k, a) = I
2

1

5
log

3
Ô

2I2

k

keq

a

aeq

462

P’(k) (1)

with I1 ƒ 6.4 and I2 ƒ 0.47 [81]. Here aeq ƒ 3◊10≠4 and
keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
relevant scales of about a comoving parsec.

1
References [53, 77] previously considered microlensing by halos

arising in similar scenarios. Related approaches have also been

proposed, including astrometric photolensing [78] and distortions

in strongly lensed images [79, 80].
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/

Ô
5), (2)

where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,

e = (
Ô

5”c/‡)≠1 (3)

(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])

df

d log M
=

Ú
2
fi

(‹ + 0.556)e≠ 1

2
(‹+1.34)

2

(1 + 0.0225‹≠2)0.15

----
d log ‡M

d log M

---- (4)

describing the di�erential dark matter mass fraction in
collapsed regions of mass M , where ‹ © 3/‡M . Here ‡M

is the rms density contrast in spheres of mass M , i.e.

‡
2

M
=

⁄ Œ

0

dk

k
P(k)W 2(kr), (5)

with W (x) © 3(sin x≠x cos x)/x
3 and M = (4fi/3)flm,0r

3,
where flm,0 ƒ 33 M§ kpc≠3 is the comoving dark matter

FormaUon of PBHs
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Collapse of large over densiUes in the early universe

Density perturbaUons
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• PBHs on large scales behave as a cold and collisionless fluid 

• PBH abundance expressed in terms of the dark maDer

(can be thought as a proxy for the average PBH number density)
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MaDer dominaUonRadiaUon dominaUon
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•  ….

• Cosmological 1st order phase transiUons: Hawking, Moss, Stewart, PRD 26 (1982) 

Baker, Breitbach, Kopp and MiDnacht, [arXiv:2105.07481] 

Liu et al, Phys. Rev. D 105 (2022) no.2, L021303 [arXiv:2106.05637] 

Lewicki, Toczek, Vaskonen, 2305.04924 

GouDenoire and Volansky, [arXiv:2305.04942] 

…

• Enhanced curvature perturbaUons at small scales: P. Ivanov, P. Naselsky, and I. Novikov, PRD 50, 7173 (1994). 

J. Garcia-Bellido, A. D. Linde, and D. Wands, PRD 54, 6040 (1996) 

…

• Ultra-slow roll inflaUon  
• MulU-field models 
• Curvaton  
• ….

• Bubble wall collisions 
• Collapse of the last false vacuum 

remnants in a first-order phase transiUon 
• … 

Primordial Black Holes from Supercooled Phase Transitions

Yann Gouttenoire1, * and Tomer Volansky1, †

1School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

Cosmological first-order phase transitions (1stOPTs) are said to be strongly supercooled when the nucleation
temperature is much smaller than the critical temperature. These are often encountered in theories that admit
a nearly scale-invariant potential, for which the bounce action decreases only logarithmically with tempera-
ture. During supercooled 1stOPTs the equation of state of the universe undergoes a rapid and drastic change,
transitioning from vacuum-domination to radiation-domination. The statistical variations in bubble nucleation
histories imply that distinct causal patches percolate at slightly different times. Patches which percolate the lat-
est undergo the longest vacuum-domination stage and as a consequence develop large over-densities triggering
their collapse into primordial black holes (PBHs). We derive an analytical approximation for the probability
of a patch to collapse into a PBH as a function of the 1stOPT duration, ��1, and deduce the expected PBH
abundance. We find that 1stOPTs which take more than 12% of a Hubble time to complete (�/H . 8) produce
observable PBHs. Their abundance is independent of the duration of the supercooling phase, in agreement with
the de Sitter no hair conjecture.

I. INTRODUCTION

Primordial black holes (PBHs) have been the object of in-
tense research activities since the detection of gravitational
waves from mergers of solar-mass black holes in 2015 [1].
The detection of black holes with sub-solar masses would
be considered evidence for the gravitational collapse of large
overdensities which pre-existed in the primordial plasma [2].
A variety of mechanisms have been proposed for generat-
ing such inhomogeneities, e.g. inflaton ultra slow-roll [3, 4],
collapse of cosmic strings [5–8], of domain walls [9–12],
of scalar condensates [13–16] or in a dissipative dark sec-
tor [17, 18]. Overdensities and the formation of PBHs can
also be associated with cosmological first-order phase transi-
tions (1stOPTs) where by and large, four mechanisms have
been identified: bubble collisions [19, 20], matter squeezing
by bubble walls [21–24], transitions to a metastable vacuum
during inflation [25–28] and the collapse of delayed false vac-
uum patches [29–38].

In this letter, we revisit the last of these mechanisms and
show that PBHs can be abundantly produced in the supercool-
ing regime, e.g. when the energy density of the universe is
dominated by the latent heat of a phase transition. The latent
heat acts as a cosmological constant which causes the uni-
verse to inflate until the transition completes and the energy is
converted into radiation once bubbles nucleate and percolate.
As illustrated in Fig. 1, since bubble nucleation is a stochas-
tic event, and since regions outside bubbles expand faster than
those inside, a delayed nucleation within a causal patch would
develop high curvature and collapse into a PBH. We find that
any 1stOPT whose “duration” ��1 is longer than one tenth of
Hubble time,

� ⌘ 1

�V

d�V

dt
. 8H , (1)

produces PBHs with observational consequences. Here �V ⌘
�/V is the bubble nucleation rate per unit of volume (and
hence a dimension-4 parameter). The mass of these PBHs is
given by the mass inside the sound horizon, cf. Eq. (17).

H�1

PBH

Old vacuum-dominated region (outside bubbles)

New radiation-dominated region (inside bubbles)

a) b)

c) d)

late-bloomer

Figure 1. The supercooled late-blooming mechanism:
a) The nucleation of bubbles through quantum or thermal tunneling
is a random process. Within certain causal patches – such as the
one delimited with a black dotted circle and labeled “late-bloomer”
– bubble nucleation can start later than the background. b) and c)
In the supercooled limit, false vacuum regions in gray are vacuum-
dominated while true vacuum regions in brown are energetically
dominated by components which redshift like radiation (see App. B).
As a result, the background is rapidly redshifting while late-bloomers
admit a nearly constant energy density. d) This inhomogeneity in the
equation of state generates a Hubble-size over-density in the radia-
tion fluid which, above a certain threshold, collapses into a PBH.
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tions (1stOPTs) where by and large, four mechanisms have
been identified: bubble collisions [19, 20], matter squeezing
by bubble walls [21–24], transitions to a metastable vacuum
during inflation [25–28] and the collapse of delayed false vac-
uum patches [29–38].

In this letter, we revisit the last of these mechanisms and
show that PBHs can be abundantly produced in the supercool-
ing regime, e.g. when the energy density of the universe is
dominated by the latent heat of a phase transition. The latent
heat acts as a cosmological constant which causes the uni-
verse to inflate until the transition completes and the energy is
converted into radiation once bubbles nucleate and percolate.
As illustrated in Fig. 1, since bubble nucleation is a stochas-
tic event, and since regions outside bubbles expand faster than
those inside, a delayed nucleation within a causal patch would
develop high curvature and collapse into a PBH. We find that
any 1stOPT whose “duration” ��1 is longer than one tenth of
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temperature is much smaller than the critical temperature. These are often encountered in theories that admit
a nearly scale-invariant potential, for which the bounce action decreases only logarithmically with tempera-
ture. During supercooled 1stOPTs the equation of state of the universe undergoes a rapid and drastic change,
transitioning from vacuum-domination to radiation-domination. The statistical variations in bubble nucleation
histories imply that distinct causal patches percolate at slightly different times. Patches which percolate the lat-
est undergo the longest vacuum-domination stage and as a consequence develop large over-densities triggering
their collapse into primordial black holes (PBHs). We derive an analytical approximation for the probability
of a patch to collapse into a PBH as a function of the 1stOPT duration, ��1, and deduce the expected PBH
abundance. We find that 1stOPTs which take more than 12% of a Hubble time to complete (�/H . 8) produce
observable PBHs. Their abundance is independent of the duration of the supercooling phase, in agreement with
the de Sitter no hair conjecture.
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Primordial black holes (PBHs) have been the object of in-
tense research activities since the detection of gravitational
waves from mergers of solar-mass black holes in 2015 [1].
The detection of black holes with sub-solar masses would
be considered evidence for the gravitational collapse of large
overdensities which pre-existed in the primordial plasma [2].
A variety of mechanisms have been proposed for generat-
ing such inhomogeneities, e.g. inflaton ultra slow-roll [3, 4],
collapse of cosmic strings [5–8], of domain walls [9–12],
of scalar condensates [13–16] or in a dissipative dark sec-
tor [17, 18]. Overdensities and the formation of PBHs can
also be associated with cosmological first-order phase transi-
tions (1stOPTs) where by and large, four mechanisms have
been identified: bubble collisions [19, 20], matter squeezing
by bubble walls [21–24], transitions to a metastable vacuum
during inflation [25–28] and the collapse of delayed false vac-
uum patches [29–38].

In this letter, we revisit the last of these mechanisms and
show that PBHs can be abundantly produced in the supercool-
ing regime, e.g. when the energy density of the universe is
dominated by the latent heat of a phase transition. The latent
heat acts as a cosmological constant which causes the uni-
verse to inflate until the transition completes and the energy is
converted into radiation once bubbles nucleate and percolate.
As illustrated in Fig. 1, since bubble nucleation is a stochas-
tic event, and since regions outside bubbles expand faster than
those inside, a delayed nucleation within a causal patch would
develop high curvature and collapse into a PBH. We find that
any 1stOPT whose “duration” ��1 is longer than one tenth of
Hubble time,
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produces PBHs with observational consequences. Here �V ⌘
�/V is the bubble nucleation rate per unit of volume (and
hence a dimension-4 parameter). The mass of these PBHs is
given by the mass inside the sound horizon, cf. Eq. (17).
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Figure 1. The supercooled late-blooming mechanism:
a) The nucleation of bubbles through quantum or thermal tunneling
is a random process. Within certain causal patches – such as the
one delimited with a black dotted circle and labeled “late-bloomer”
– bubble nucleation can start later than the background. b) and c)
In the supercooled limit, false vacuum regions in gray are vacuum-
dominated while true vacuum regions in brown are energetically
dominated by components which redshift like radiation (see App. B).
As a result, the background is rapidly redshifting while late-bloomers
admit a nearly constant energy density. d) This inhomogeneity in the
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GouDenoire and Volansky, [arXiv:2305.04942]
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PBHs from false vacuum domains
1. Collapse of the last false vacuum remnants 
in a first-order phase transition.
Hawking, Moss, Stewart, PRD 26 (1982);   Kodama, Sasaki, Sato, PTEP 68 (1982);   
Lewicki & Vaskonen, Phys. Dark U. 30 (2020);   Liu et al. PRD 105 (2022);   
Kawana & Xie, PLB 824 (2022);   Baker et al. 2105.07481 and 2110.00005;   
Lewicki, Toczek, Vaskonen, 2305.04924;   Gouttenoire & Volansky, 2305.04942;

Garriga, Vilenkin, Zhang, JCAP 02 (2016);   Deng & Vilenkin, JCAP 12 (2017);   
Deng, JCAP 09 (2020);   Kusenko et al. PRL 125 (2020);   
Veermäe et al. JCAP 02 (2022)

2. Collapse of false vacuum bubbles nucleated 
during inflation.

GF, Urbano, PRD (2022)
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Primordial black hole dark maDer searches

Probing Primordial-Black-Hole Dark Matter with Gravitational Waves

Ely D. Kovetz1

1
Department of Physics and Astronomy, Johns Hopkins University,

3400 N. Charles St., Baltimore, MD 21218, USA

Primordial black holes (PBHs) have long been suggested as a candidate for making up some or
all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark
matter has been ruled out with various null observations of expected signatures of their interaction
with standard astrophysical objects. However, current constraints are significantly less robust in the
20M� . MPBH . 100M� mass window, which has received much attention recently, following the
detection of merging black holes with estimated masses of ⇠ 30M� by LIGO and the suggestion
that these could be black holes formed in the early Universe. We consider the potential of advanced
LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the
mass spectrum of detected events. To quantify the background, which is due to black holes that are
formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate
its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH
and stellar-black-hole merger rates, we show that ⇠ 5 years of aLIGO data can be used to detect
a contribution of > 20M� PBHs to dark matter down to fPBH < 0.5 at > 99.9% confidence level.
Combined with other probes that already suggest tension with fPBH=1, the obtainable independent
limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.

One of the cornerstones of ⇤CDM, the concordance
cosmological standard model, is the cold dark matter
(DM) component that makes up ⇠ 25% of the energy
density in the Universe today. While the evidence for its
existence are compelling [1, 2], the nature of it is still
unknown. As the limits on models of particle dark mat-
ter (in particular weakly-interacting massive particles,
known as WIMPs [3]) are tightening [4–6], it is becoming
ever more important to consider alternative models.

An especially intriguing candidate to make up the in-
visible form of matter in the Universe is primordial black
holes (PBHs), which are black holes that are formed
deep in the radiation era of the infant Universe [7–11].
Based on various observations, the contribution of PBHs
to dark matter has been strongly constrained across more
than 30 orders of magnitude of their theoretically pos-
sible mass range [12–14]. Still, in several mass win-
dows existing constraints are less stringent and addi-
tional probes are called for. This is especially true for
the 20M� . MPBH . 100M� window, which has at-
tracted much interest as a result of the first detection of
merging black holes with measured masses of ⇠ 30M�
by the LIGO observatory [15], following the demonstra-
tion in Ref. [16] that the predicted merger rate for PBHs
in this mass range is consistent with the estimated event
rate for high mass mergers from the O1 aLIGO data [17].

One could describe the search for PBH dark matter in
analogy to the one for particle dark matter, as is illus-
trated in Fig. 1. The constraints on the former to date
have been solely based on “direct” detection searches,
involving possible interactions between PBHs and stan-
dard astrophysical objects. In this Letter, we consider
the prospects of the “indirect” search path for PBH dark
matter, namely the production of standard (cosmologi-
cal) model signals in the form of gravitational waves as

FIG. 1. Hunting for dark matter: the left panel is the popu-
lar illustration of the different search methods for dark mat-
ter particles. One avenue is direct detection, whereby dark
matter particles are targeted by looking for their effect on
standard model particles (e.g. recoil on heavy nuclei in under-
ground experiments). The second is known as indirect detec-
tion, where the goal is to observe the products of dark matter
self-interaction (e.g. gamma-rays produced from annihilating
WIMPs [18]). Analogously, we group all the methods focus-
ing on the effect of PBHs on standard astrophysical objects as
“direct” detection (including probes such as microlensing [19–
21], CMB anisotropies [22–24], dynamical heating of ultra-
faint dwarf galaxies [25, 26], number counts of compact X-ray
objects [27], etc.; and in the future, strong lensing of FRBs
[28] and pulsar-timing [29]). “Indirect” detection of PBH dark
matter involves looking for gravitational waves emitted when
a PBH pair is “annihilated” by merging into a larger BH [30].

a result of PBH self-interaction (or “annihilation”). The
key to this approach is to understand and quantify the
background as well as possible, and to identify unique fea-
tures in the dark matter signal that can tell them apart.

Examples of such features are the orbital eccentricity
of the coalescing binary and the black hole spins. The
former was investigated recently in Ref. [31], but unfor-
tunately the prospects for detecting events with a non-
zero trace of the initial eccentricity in aLIGO are quite
dim. As for the spin, the problem is twofold. The ini-
tial spin distribution of PBHs is unclear on the one hand
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Primordial black holes (PBHs) have long been suggested as a candidate for making up some or
all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark
matter has been ruled out with various null observations of expected signatures of their interaction
with standard astrophysical objects. However, current constraints are significantly less robust in the
20M� . MPBH . 100M� mass window, which has received much attention recently, following the
detection of merging black holes with estimated masses of ⇠ 30M� by LIGO and the suggestion
that these could be black holes formed in the early Universe. We consider the potential of advanced
LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the
mass spectrum of detected events. To quantify the background, which is due to black holes that are
formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate
its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH
and stellar-black-hole merger rates, we show that ⇠ 5 years of aLIGO data can be used to detect
a contribution of > 20M� PBHs to dark matter down to fPBH < 0.5 at > 99.9% confidence level.
Combined with other probes that already suggest tension with fPBH=1, the obtainable independent
limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.

One of the cornerstones of ⇤CDM, the concordance
cosmological standard model, is the cold dark matter
(DM) component that makes up ⇠ 25% of the energy
density in the Universe today. While the evidence for its
existence are compelling [1, 2], the nature of it is still
unknown. As the limits on models of particle dark mat-
ter (in particular weakly-interacting massive particles,
known as WIMPs [3]) are tightening [4–6], it is becoming
ever more important to consider alternative models.

An especially intriguing candidate to make up the in-
visible form of matter in the Universe is primordial black
holes (PBHs), which are black holes that are formed
deep in the radiation era of the infant Universe [7–11].
Based on various observations, the contribution of PBHs
to dark matter has been strongly constrained across more
than 30 orders of magnitude of their theoretically pos-
sible mass range [12–14]. Still, in several mass win-
dows existing constraints are less stringent and addi-
tional probes are called for. This is especially true for
the 20M� . MPBH . 100M� window, which has at-
tracted much interest as a result of the first detection of
merging black holes with measured masses of ⇠ 30M�
by the LIGO observatory [15], following the demonstra-
tion in Ref. [16] that the predicted merger rate for PBHs
in this mass range is consistent with the estimated event
rate for high mass mergers from the O1 aLIGO data [17].

One could describe the search for PBH dark matter in
analogy to the one for particle dark matter, as is illus-
trated in Fig. 1. The constraints on the former to date
have been solely based on “direct” detection searches,
involving possible interactions between PBHs and stan-
dard astrophysical objects. In this Letter, we consider
the prospects of the “indirect” search path for PBH dark
matter, namely the production of standard (cosmologi-
cal) model signals in the form of gravitational waves as

FIG. 1. Hunting for dark matter: the left panel is the popu-
lar illustration of the different search methods for dark mat-
ter particles. One avenue is direct detection, whereby dark
matter particles are targeted by looking for their effect on
standard model particles (e.g. recoil on heavy nuclei in under-
ground experiments). The second is known as indirect detec-
tion, where the goal is to observe the products of dark matter
self-interaction (e.g. gamma-rays produced from annihilating
WIMPs [18]). Analogously, we group all the methods focus-
ing on the effect of PBHs on standard astrophysical objects as
“direct” detection (including probes such as microlensing [19–
21], CMB anisotropies [22–24], dynamical heating of ultra-
faint dwarf galaxies [25, 26], number counts of compact X-ray
objects [27], etc.; and in the future, strong lensing of FRBs
[28] and pulsar-timing [29]). “Indirect” detection of PBH dark
matter involves looking for gravitational waves emitted when
a PBH pair is “annihilated” by merging into a larger BH [30].

a result of PBH self-interaction (or “annihilation”). The
key to this approach is to understand and quantify the
background as well as possible, and to identify unique fea-
tures in the dark matter signal that can tell them apart.

Examples of such features are the orbital eccentricity
of the coalescing binary and the black hole spins. The
former was investigated recently in Ref. [31], but unfor-
tunately the prospects for detecting events with a non-
zero trace of the initial eccentricity in aLIGO are quite
dim. As for the spin, the problem is twofold. The ini-
tial spin distribution of PBHs is unclear on the one hand
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ProbingPrimordial-Black-HoleDarkMatterwithGravitationalWaves

ElyD.Kovetz1
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Primordialblackholes(PBHs)havelongbeensuggestedasacandidateformakingupsomeor
allofthedarkmatterintheUniverse.MostofthetheoreticallypossiblemassrangeforPBHdark
matterhasbeenruledoutwithvariousnullobservationsofexpectedsignaturesoftheirinteraction
withstandardastrophysicalobjects.However,currentconstraintsaresignificantlylessrobustinthe
20M�.MPBH.100M�masswindow,whichhasreceivedmuchattentionrecently,followingthe
detectionofmergingblackholeswithestimatedmassesof⇠30M�byLIGOandthesuggestion
thatthesecouldbeblackholesformedintheearlyUniverse.Weconsiderthepotentialofadvanced
LIGO(aLIGO)operatingatdesignsensitivitytoprobethismassrangebylookingforpeaksinthe
massspectrumofdetectedevents.Toquantifythebackground,whichisduetoblackholesthatare
formedfromdyingstars,wemodeltheshapeofthestellar-black-holemassfunctionandcalibrate
itsamplitudetomatchtheO1results.AdoptingveryconservativeassumptionsaboutthePBH
andstellar-black-holemergerrates,weshowthat⇠5yearsofaLIGOdatacanbeusedtodetect
acontributionof>20M�PBHstodarkmatterdowntofPBH<0.5at>99.9%confidencelevel.
CombinedwithotherprobesthatalreadysuggesttensionwithfPBH=1,theobtainableindependent
limitsfromaLIGOwillthusenableafirmtestofthescenariothatPBHsmakeupallofdarkmatter.

Oneofthecornerstonesof⇤CDM,theconcordance
cosmologicalstandardmodel,isthecolddarkmatter
(DM)componentthatmakesup⇠25%oftheenergy
densityintheUniversetoday.Whiletheevidenceforits
existencearecompelling[1,2],thenatureofitisstill
unknown.Asthelimitsonmodelsofparticledarkmat-
ter(inparticularweakly-interactingmassiveparticles,
knownasWIMPs[3])aretightening[4–6],itisbecoming
evermoreimportanttoconsideralternativemodels.

Anespeciallyintriguingcandidatetomakeupthein-
visibleformofmatterintheUniverseisprimordialblack
holes(PBHs),whichareblackholesthatareformed
deepintheradiationeraoftheinfantUniverse[7–11].
Basedonvariousobservations,thecontributionofPBHs
todarkmatterhasbeenstronglyconstrainedacrossmore
than30ordersofmagnitudeoftheirtheoreticallypos-
siblemassrange[12–14].Still,inseveralmasswin-
dowsexistingconstraintsarelessstringentandaddi-
tionalprobesarecalledfor.Thisisespeciallytruefor
the20M�.MPBH.100M�window,whichhasat-
tractedmuchinterestasaresultofthefirstdetectionof
mergingblackholeswithmeasuredmassesof⇠30M�
bytheLIGOobservatory[15],followingthedemonstra-
tioninRef.[16]thatthepredictedmergerrateforPBHs
inthismassrangeisconsistentwiththeestimatedevent
rateforhighmassmergersfromtheO1aLIGOdata[17].

OnecoulddescribethesearchforPBHdarkmatterin
analogytotheoneforparticledarkmatter,asisillus-
tratedinFig.1.Theconstraintsontheformertodate
havebeensolelybasedon“direct”detectionsearches,
involvingpossibleinteractionsbetweenPBHsandstan-
dardastrophysicalobjects.InthisLetter,weconsider
theprospectsofthe“indirect”searchpathforPBHdark
matter,namelytheproductionofstandard(cosmologi-
cal)modelsignalsintheformofgravitationalwavesas

FIG.1.Huntingfordarkmatter:theleftpanelisthepopu-
larillustrationofthedifferentsearchmethodsfordarkmat-
terparticles.Oneavenueisdirectdetection,wherebydark
matterparticlesaretargetedbylookingfortheireffecton
standardmodelparticles(e.g.recoilonheavynucleiinunder-
groundexperiments).Thesecondisknownasindirectdetec-
tion,wherethegoalistoobservetheproductsofdarkmatter
self-interaction(e.g.gamma-raysproducedfromannihilating
WIMPs[18]).Analogously,wegroupallthemethodsfocus-
ingontheeffectofPBHsonstandardastrophysicalobjectsas
“direct”detection(includingprobessuchasmicrolensing[19–
21],CMBanisotropies[22–24],dynamicalheatingofultra-
faintdwarfgalaxies[25,26],numbercountsofcompactX-ray
objects[27],etc.;andinthefuture,stronglensingofFRBs
[28]andpulsar-timing[29]).“Indirect”detectionofPBHdark
matterinvolveslookingforgravitationalwavesemittedwhen
aPBHpairis“annihilated”bymergingintoalargerBH[30].

aresultofPBHself-interaction(or“annihilation”).The
keytothisapproachistounderstandandquantifythe
backgroundaswellaspossible,andtoidentifyuniquefea-
turesinthedarkmattersignalthatcantellthemapart.

Examplesofsuchfeaturesaretheorbitaleccentricity
ofthecoalescingbinaryandtheblackholespins.The
formerwasinvestigatedrecentlyinRef.[31],butunfor-
tunatelytheprospectsfordetectingeventswithanon-
zerotraceoftheinitialeccentricityinaLIGOarequite
dim.Asforthespin,theproblemistwofold.Theini-
tialspindistributionofPBHsisunclearontheonehand
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ref. target diff. diff.-PSF

Figure 4 The single remaining candidate that passed all the criteria we impose to select microlensing events.
The images in the upper panels show the postage-stamped images around the candidate: the reference
image, the target image, the difference image and the residual image after subtracting the best-fit PSF image,
respectively. The lower panel shows that the best-fit microlensing model (blue curve) gives an acceptable fit
to the measured light curve. The error bars denote photometric errors in the brightness measurement in the
different image at each epoch.

difference images by estimating the PSF photometry at 1,000 random points in each HSC patch region (see
Fig. 1). We keep only those candidates which yield a best fit reduced �-squared value, �2

best�fit
/185 < 3.5

(the degrees of freedom are 185 = 188 � 3). This criterion is sufficiently conservative (the P-value is
⇠ 10�5) for us not to miss a real microlensing candidate, if it exists. We further impose the condition
that the light curve has a symmetric shape around the peak. These selections leave us with a total of 66
candidates.

Finally we perform a visual inspection of each of the remaining candidates. We found various impostors
that are not removed by the above automated criteria. Most of them are a result of imperfect image subtrac-
tion; in most cases the difference image has significant residuals near the edges of CCD chip or around a
bright star. In particular, bright stars cause a spiky residual in the difference image, which result in impostors
with a microlensing-like light curve if the PSF flux is measured at a fixed position. We found 44 such impos-
tors which were a result of such spike-like images around bright stars. Of the remaining, 20 impostors were
located at the edges of the CCDs. We also identified 1 impostor event caused by a moving object, an asteroid.
If the light curve is measured at a fixed position where the asteroid passes, it results in a light curve which
mimics microlensing. In summary, the visual inspection left us with a single candidate which passed all
our cuts and visual checks. The candidate position is (RA, dec) = (00h 45m 33.413s, +41d 07m 53.03s).
Fig. 4 shows the images and the light curve for the remaining candidate. Although the light curve looks
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FIG. 5: Comparison of the 5-years OGLE data with the model predictions. The histogram with errorbars denotes the OGLE
data in each logarithmic bin of tE, where the errorbar is the 1� Poisson uncertainties on the counts. The bold-blue solid
curve shows the best-fit model assuming the stellar components in the bulge and disk regions. Other dashed curves show
each contribution of brown dwarfs (BD), main sequence (MS) stars, white dwarfs (WD) and neutron stars (NS) to the total
microlensing events, respectively (see Fig. 1). The contribution of astrophysical black holes is outside the plotting range. As a
demonstration, the purple curve shows the prediction if all DM is PBHs with mass MPBH = 10�3M� (Jupiter mass scales) for
fPBH = 1. A sum of the PBH and astrophysical object contributions is too high compared to the OGLE events, and therefore
such a PBH scenario is ruled out by the OGLE data.

Fig. 2 shows the expected di↵erential number of mi-
crolensing events per logarithmic interval of the light
curve timescale tE, for a single source star in the bulge
region, assuming the 5-years observation as in the OGLE
data. For PBH microlensing, we adopt the model ingre-
dients in Sections III for the mass density profile and
velocity distribution, assuming the monochromatic mass
scale. We assumed that all DM is made of PBHs of
each mass scale: fPBH = 1. If we consider lighter-mass
PBHs, the number density of PBHs increases and such
PBHs yield a higher frequency of microlensing events
with shorter timescales. In particular, for microlensing
events with timescales shorter than a few days, PBHs
with MPBH

<⇠ 10�1
M� could produce a larger number of

microlensing events than MS stars of ⇠ 1 M� do, if such
PBHs constitute a significant fraction of DM.

In Fig. 3 we study relative contributions of MS stars in
the bulge and disk regions to the total of MS microlens-

ing events. It can be found that stars in the disk region
gives a dominant contribution, while the bulge star con-
tribution is significant for shorter timescale events.

C. Comparison with the 5-years OGLE data

We now compare the model predictions of microlens-
ing events with the 5-years OGLE data. The OGLE
data contains 2622 events over the range of light curve
timescales, tE = [10�1

, 300] days (see Extended Data
Table 4 in Mróz et al. [43]). The expected number
of microlensing events per a given timescale interval of
[tE � �tE/2, tE + �tE/2] is computed as

Nexp(tE) = tobsNsfA

Z tE+�tE/2

tE��tE/2
d ln t

0
E

d2�

d ln t0
E

✏(t0
E
), (36)
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PBHs or not) by searching for the lensing signatures of
the ultradense compact halos formed by the enhanced
perturbations?1 Borrowing the analytic description of
ultradense halo formation developed in Ref. [66], we will
show that large primordial curvature perturbations at
O(0.1) pc scales, which correspond to the formation of
solar mass PBHs and nanohertz stochastic GW back-
grounds, can lead to observable lensing signatures.

II. ULTRADENSE DARK MATTER HALOS
FROM AN ENHANCED CURVATURE

SPECTRUM

In this section, we describe the abundance and proper-
ties of the ultradense dark matter halos formed in scenar-
ios with an enhanced power spectrum at small scales. For
concreteness, we consider the scenario described by model
A of Ref. [30], which produces PBHs around 10 M§ com-
prising roughly ¥ 0.05% of the dark matter and maximize
the current upper bound set by LVK observations. Again,
the ultradense halos are not connected to PBHs directly;
they only emerge from the same cosmological scenario
(see Fig. 1). Ultradense halos can arise with or without
PBHs, and we will discuss implications for alternative
(and agnostic) scenarios in Sec. IV.

Figure 2 shows the primordial curvature power spec-
trum P’(k) (dashed curve) in this model, which grows
as P’ Ã k

4 at scales smaller than those constrained by
CMB and large-scale structure data until it reaches a
peak around P’ ≥ 10≠2 near the pc≠1 scale. The PBHs
form around that scale. We also show the matter power
spectrum P(k, a) (solid curve) at a = 10≠5, approximated
as

P(k, a) = I
2

1

5
log

3
Ô

2I2

k

keq

a

aeq

462

P’(k) (1)

with I1 ƒ 6.4 and I2 ƒ 0.47 [81]. Here aeq ƒ 3◊10≠4 and
keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
relevant scales of about a comoving parsec.

1
References [53, 77] previously considered microlensing by halos

arising in similar scenarios. Related approaches have also been

proposed, including astrometric photolensing [78] and distortions

in strongly lensed images [79, 80].
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/

Ô
5), (2)

where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,

e = (
Ô

5”c/‡)≠1 (3)

(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])

df

d log M
=

Ú
2
fi

(‹ + 0.556)e≠ 1

2
(‹+1.34)

2

(1 + 0.0225‹≠2)0.15

----
d log ‡M

d log M

---- (4)

describing the di�erential dark matter mass fraction in
collapsed regions of mass M , where ‹ © 3/‡M . Here ‡M

is the rms density contrast in spheres of mass M , i.e.

‡
2

M
=

⁄ Œ

0

dk

k
P(k)W 2(kr), (5)

with W (x) © 3(sin x≠x cos x)/x
3 and M = (4fi/3)flm,0r

3,
where flm,0 ƒ 33 M§ kpc≠3 is the comoving dark matter
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keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
relevant scales of about a comoving parsec.
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/
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where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,

e = (
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(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])
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PBHs or not) by searching for the lensing signatures of
the ultradense compact halos formed by the enhanced
perturbations?1 Borrowing the analytic description of
ultradense halo formation developed in Ref. [66], we will
show that large primordial curvature perturbations at
O(0.1) pc scales, which correspond to the formation of
solar mass PBHs and nanohertz stochastic GW back-
grounds, can lead to observable lensing signatures.
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SPECTRUM

In this section, we describe the abundance and proper-
ties of the ultradense dark matter halos formed in scenar-
ios with an enhanced power spectrum at small scales. For
concreteness, we consider the scenario described by model
A of Ref. [30], which produces PBHs around 10 M§ com-
prising roughly ¥ 0.05% of the dark matter and maximize
the current upper bound set by LVK observations. Again,
the ultradense halos are not connected to PBHs directly;
they only emerge from the same cosmological scenario
(see Fig. 1). Ultradense halos can arise with or without
PBHs, and we will discuss implications for alternative
(and agnostic) scenarios in Sec. IV.

Figure 2 shows the primordial curvature power spec-
trum P’(k) (dashed curve) in this model, which grows
as P’ Ã k

4 at scales smaller than those constrained by
CMB and large-scale structure data until it reaches a
peak around P’ ≥ 10≠2 near the pc≠1 scale. The PBHs
form around that scale. We also show the matter power
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keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
relevant scales of about a comoving parsec.
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
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prising roughly ¥ 0.05% of the dark matter and maximize
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keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is
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where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,
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(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])
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prising roughly ¥ 0.05% of the dark matter and maximize
the current upper bound set by LVK observations. Again,
the ultradense halos are not connected to PBHs directly;
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(see Fig. 1). Ultradense halos can arise with or without
PBHs, and we will discuss implications for alternative
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keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/
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where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,

e = (
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(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])
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number at matter-radiation equality, respectively. We
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practice, for many dark matter models, the matter power
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/
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where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,

e = (
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5”c/‡)≠1 (3)

(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])
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(*unless specific local non-GaussianiUes are introduced in the model)
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describing the evolution of matter perturbations, where
zeq = 3402 is the redshift at the matter-radiation equality.
Thus, the condition for collapse translates into an equation
for the formation redshift of PBH minihalos as a function
of number N as

zf = 3
2

(1 + zeq)
”c

Ô
N ≠ 1

≠ 1 ƒ 0.890 zeq
Ô

N
. (19)

When virialized, and in the approximation of top-hat
collapse, newly born PBH minihalos have an average
density given by flcl ƒ 200 · flcr(zf ) in terms of the critical
density of the Universe flcr(zf ) evaluated at the redshift
of cluster formation. The symbol M = Nm denotes the
mass of the cluster with N members, and the size of the
system R is determined by the condition 4

3 fiR
3
flcl = M .

The characteristic velocity dispersion ‡v is then evaluated
by applying the virial theorem as ‡

2
v = 0.8GM/R [82].

One can describe the distribution of halos formed from
the collapse of increasingly large overdense regions adopt-
ing the Press-Schechter theory [51]. The di�erential co-
moving number density of clusters with N objects is found
to be

dncl(N, t)
dN

= n
Ô

fi

5
N

Nú(t)

6≠ 1
2 e

≠N/Nú(t)

N2 , (20)

where we introduced the mean number of PBHs per unit
comoving volume [32]

n © fPBH
flDM

m
= 1.1 kpc≠3

fPBH

3
m

30M§

4≠1
. (21)

The characteristic halo size Nú(t) is instead fixed by eval-
uating the number of objects whose Poisson perturbations
(¥ 1/

Ô
N) are able to meet the threshold at the given

epoch and turns out to be [20, 83]

Nú(t) ƒ f
2
PBH

3
2600
1 + z

42
. (22)

It is important to stress that small PBH clusters are
characterized by a finite lifespan. Indeed, internal evo-
lution of the cluster via two-body relaxation causes the
evaporation of PBHs from the system until the minihalo
dissolves completely or is engulfed in a larger halo. The
lifetime of minihalos is characterized by tev ƒ 140trlx

where the relaxation timescale is (e.g. [84])

trlx ƒ
1
10

N

ln N

3
R

‡v

4
. (23)

Therefore the evaporation time is given by

tev ƒ
1.4Gyr
ln N

3
N

100

41/2 3
m

30M§

4≠1/2 3
R

pc

43/2
(24)

as a function of the typical cluster virialization radius R.
We derived an accurate fit of the size of the cluster which

FIG. 2. Number density of PBH minihalos dncl/dN in units of
comoving volume (Mpc≠3) as a function of the number N of
PBH members in the cluster for a set of redshift values. The
hard cuto� in the left part of the halo mass function comes
from the fact that smaller halos that formed at even larger
redshift have evaporated by the observation redshift. This
plot neglects adiabatic perturbations responsible for large-scale
structure development at low redshift.

is expected to evaporate at redshift zev. This takes the
form

Nev(zev) = 2190
(1 + zev)0.9734 ≠

526.5
(1 + zev)1.909 (25)

and is valid for redshifts in the range zev œ [0, 103].
As structure formation proceed hierarchically from the

bottom up, there is also a nonvanishing probability of
larger halos engulfing smaller PBH clusters. The finite
lifespan of small halos is, therefore, dictated by both evap-
oration timescale and survival probability (see Ref. [20]
and references therein). We include these e�ects in the
computation of the halo mass function by accounting for
the time evolution of dncl/dN and cutting the contribu-
tion from clusters smaller than Nev(t), which is the size
of the clusters whose evaporation time is tev = t. In other
words, we write

dn
ev
cl (N, t)
dN

= dncl(N, t)
dN

◊ �(N ≠ Nev(z)) , (26)

where � is the Heaviside function. We plot the halo mass
distribution at various epochs in Fig. 2.

B. PBH cluster properties

The rate of dynamical interactions crucially depends
on the number density of PBHs and their characteristic
relative velocity. Therefore, it is important to include
modeling of the cluster density profiles in the estimates
for the rate.

Here we follow the analytical description of the PBH
cluster profiles derived in Ref. [20], which is consistent

• Press-Schecter descripUon: in the maDer-dominated 

era density perturbaUons grow with scale factor and 

collapse to form virtualised halos (of N PBHs) when 

reaching the “linear” threshold 
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To evaluate the integral in Eq. (11), we rewrite the Dirac
delta as ”(÷ ≠ ÷0(j)) times the appropriate Jacobian of
the transformation. The symbol ÷0(j) corresponds to
the hardness ratio as a function of angular momentum
for which ·mrg(j, ÷) = T has a solution. The argument
of the Dirac delta in Eq. (11) has a solution as long as
j takes values above some minimum value jmin and ÷

does not exceed a maximum value ÷max. Physically, the
former case corresponds to the widest binary we allow to
form with ÷ = 5 which requires the maximum possible
eccentricity (smallest j) to merge within T . The latter
case corresponds to the tightest binary which merges in
time T if it starts with zero initial eccentricity. Notice
that since the joint PDF is strongly tilted toward small
values of ÷, the result of the integration is insensitive to
the exact value of ÷max. To find the minimum angular
momentum, we solve the equation ·mrg(jmin, ÷ = 5) = T

and obtain

jmin ƒ 5.0
1

‡v

c

2 8
7

3
cT

Rs

4 1
7

ƒ 2.9 ◊ 10≠3
3

m

30M§

4≠ 1
7

3
‡v

km/s

4 8
7

3
T

13.8Gyr

4 1
7

.

(13)

Therefore, the integral over ÷ can be performed first, and
then we are left with the integration over j. This inte-
gration can be performed analytically in the low angular
momentum approximation to get

Q = 7 · 57/2(1 + “)
2

⁄ 1

jmin

dj
j

“

(÷0(j)) 9
2

----
ˆ·mrg(j, ÷0(j))

ˆ÷

----
≠1

.

(14)

Finally, we find the probability to merge within T per
unit time

Q ƒ
7(1 + “)
41 ≠ 8“

3
212500

3

4 (1+“)
7 1
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c

2 8(1+“)
7

3
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Rs

4 (1+“)
7 1

T
.

(15)

Depending on the value of the angular momentum distri-
bution exponent, one finds (fixing m = 30M§)

Q(“ = 0) ƒ
3.5 · 10≠5
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3
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4≠ 6
7

,

Q(“ = 1) ƒ
2.5 · 10≠7
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3
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7

3
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4≠ 5
7

. (16)

As we will see in the following sections, the majority of
the 3b-assembled BPBHs are e�ciently formed in PBH
minihalos with a relatively small number of members
N < 102. As those environments quickly evaporate, those
binaries essentially have to merge within a time window
comparable to a Hubble time in order to be visible today.
To give a back of the envelope estimate, if we assume
that BPBH production is ongoing for ¥ 22 Myr at high

redshift (which corresponds to the evaporation time of a
cluster with 30 PBHs), then the probability that a binary
formed via the 3b channel merges at the present epoch
is ¥ 4 · 10≠6. This means that only a few out of millions
of PBH binaries assembled via 3b interactions at high
redshift would be able to merge today. Finally, as 3b
binary formation is only e�ective at high redshift, the
merger rate evolution observed at z . O(10) is dictated
by the Q factor alone.

IV. 3b CHANNEL IN PBH-INDUCED
SMALL-SCALE STRUCTURE

We now compute the contribution to the total PBH
merger rate coming from binaries formed through 3b
interactions in the PBH small-scale structure. We will
consider the standard formation scenario, where PBHs
follow a Poisson spatial distribution at formation [49, 77–
81]. We will first assume PBHs to be a large fraction of the
DM abundance. We will consider di�erent environments
and discuss how this result would scale with the PBH
abundance fPBH © flPBH/flDM in the following section.

A. PBH halo mass function

In this section, we analytically describe the small-scale
structure induced by a population of PBHs dominating the
DM budget formed with Poisson initial conditions (see e.g.
Refs. [20, 50]). This analytical description matches recent
cosmological N -body simulations presented in Ref. [49].
Models boosting the PBH correlation function at forma-
tion (e.g. with non-Gaussian curvature perturbations) are
expected to enhance the formation of PBH small-scale
structures, leading to higher 3b rates. For this reason,
the vanilla scenario we study here may be considered a
conservative example of the relevance of the binary for-
mation channel considered in this work. We will come
back to this point in the conclusions.

As the Universe evolves and structures form during
the matter-dominated era, overdensities in the random
field of PBHs at some point surpass the critical threshold
for collapse ”c ƒ 1.686 and decouple from the expansion
to create virialized PBH minihalos. Depending on the
number of objects N in the cluster, this collapse occurs
when the number variance ‡(N, zf ) = ”c, where zf is the
redshift of formation of a cluster with N PBHs. Since
on small scales Poisson perturbations dominate over adi-
abatic ones, the characteristic density variance can be
factorized into the product of the variance around the
matter-radiation equality

‡(N, zeq) ƒ 1/

Ô

N (17)

and the growth factor [49]

D(z) = 1 + 3
2(1 + zeq)/(1 + z) (18)

• CharacterisUc density variance:
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To evaluate the integral in Eq. (11), we rewrite the Dirac
delta as ”(÷ ≠ ÷0(j)) times the appropriate Jacobian of
the transformation. The symbol ÷0(j) corresponds to
the hardness ratio as a function of angular momentum
for which ·mrg(j, ÷) = T has a solution. The argument
of the Dirac delta in Eq. (11) has a solution as long as
j takes values above some minimum value jmin and ÷

does not exceed a maximum value ÷max. Physically, the
former case corresponds to the widest binary we allow to
form with ÷ = 5 which requires the maximum possible
eccentricity (smallest j) to merge within T . The latter
case corresponds to the tightest binary which merges in
time T if it starts with zero initial eccentricity. Notice
that since the joint PDF is strongly tilted toward small
values of ÷, the result of the integration is insensitive to
the exact value of ÷max. To find the minimum angular
momentum, we solve the equation ·mrg(jmin, ÷ = 5) = T

and obtain

jmin ƒ 5.0
1
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Therefore, the integral over ÷ can be performed first, and
then we are left with the integration over j. This inte-
gration can be performed analytically in the low angular
momentum approximation to get

Q = 7 · 57/2(1 + “)
2

⁄ 1

jmin

dj
j

“

(÷0(j)) 9
2

----
ˆ·mrg(j, ÷0(j))
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----
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(14)

Finally, we find the probability to merge within T per
unit time

Q ƒ
7(1 + “)
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Depending on the value of the angular momentum distri-
bution exponent, one finds (fixing m = 30M§)

Q(“ = 0) ƒ
3.5 · 10≠5
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As we will see in the following sections, the majority of
the 3b-assembled BPBHs are e�ciently formed in PBH
minihalos with a relatively small number of members
N < 102. As those environments quickly evaporate, those
binaries essentially have to merge within a time window
comparable to a Hubble time in order to be visible today.
To give a back of the envelope estimate, if we assume
that BPBH production is ongoing for ¥ 22 Myr at high

redshift (which corresponds to the evaporation time of a
cluster with 30 PBHs), then the probability that a binary
formed via the 3b channel merges at the present epoch
is ¥ 4 · 10≠6. This means that only a few out of millions
of PBH binaries assembled via 3b interactions at high
redshift would be able to merge today. Finally, as 3b
binary formation is only e�ective at high redshift, the
merger rate evolution observed at z . O(10) is dictated
by the Q factor alone.

IV. 3b CHANNEL IN PBH-INDUCED
SMALL-SCALE STRUCTURE

We now compute the contribution to the total PBH
merger rate coming from binaries formed through 3b
interactions in the PBH small-scale structure. We will
consider the standard formation scenario, where PBHs
follow a Poisson spatial distribution at formation [49, 77–
81]. We will first assume PBHs to be a large fraction of the
DM abundance. We will consider di�erent environments
and discuss how this result would scale with the PBH
abundance fPBH © flPBH/flDM in the following section.

A. PBH halo mass function

In this section, we analytically describe the small-scale
structure induced by a population of PBHs dominating the
DM budget formed with Poisson initial conditions (see e.g.
Refs. [20, 50]). This analytical description matches recent
cosmological N -body simulations presented in Ref. [49].
Models boosting the PBH correlation function at forma-
tion (e.g. with non-Gaussian curvature perturbations) are
expected to enhance the formation of PBH small-scale
structures, leading to higher 3b rates. For this reason,
the vanilla scenario we study here may be considered a
conservative example of the relevance of the binary for-
mation channel considered in this work. We will come
back to this point in the conclusions.

As the Universe evolves and structures form during
the matter-dominated era, overdensities in the random
field of PBHs at some point surpass the critical threshold
for collapse ”c ƒ 1.686 and decouple from the expansion
to create virialized PBH minihalos. Depending on the
number of objects N in the cluster, this collapse occurs
when the number variance ‡(N, zf ) = ”c, where zf is the
redshift of formation of a cluster with N PBHs. Since
on small scales Poisson perturbations dominate over adi-
abatic ones, the characteristic density variance can be
factorized into the product of the variance around the
matter-radiation equality

‡(N, zeq) ƒ 1/

Ô

N (17)

and the growth factor [49]

D(z) = 1 + 3
2(1 + zeq)/(1 + z) (18)
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FIG. 8: The abundance of halos containing a given number
of PBH, which we call the halo mass function. Solid lines
are determined from N -body simulations. Dashed lines are
theoretical predictions assuming Poisson statistics.

[86] computed the exact distribution arising from an ini-
tial density �

I
PBH

> �⇤ as:

NHL(N) =
NPBH

N

�⇤
1 + �⇤

✓
N

1 + �⇤

◆N�1 exp
h
�

N
1+�⇤

i

(N � 1)!

= �⇤
NPBH

N

(N/e)N

N !
e�N/N⇤

N⇤ ⌘

✓
log(1 + �⇤)�

�⇤
1 + �⇤

◆�1

, (46)

where NPBH = 105fPBH is the total number of PBHs.
For N � 1, we may use Stirling’s approximation for

the factorial and obtain

NHL(N) ⇡
�⇤ NPBH
p
2⇡N3/2

e�N/N⇤ . (47)

The fractional error of this approximation is 0.08/N , in-
dependent of �⇤; this approximation is therefore accurate
to better than 10% even for N ⇠ 1.

When �⇤ ⌧ 1, we may Taylor-expand N
�1

⇤ ⇡ �
2

⇤/2 +

O(�3⇤). Provided N ⌧ �
�3

⇤ ⇠ N
3/2
⇤ , we may neglect

terms of order N�
3

⇤ in the exponent and recover [86] the
Press-Schechter function [87]

NHL(N) ⇡
�⇤ NPBH
p
2⇡N3/2

exp


�
�
2

⇤
2
N

�
. (48)

In practice, this approximation always breaks down for
su�ciently large N and we only use Eqs. (46) or (47).
For a given scale factor a, the minimum initial PBH

overdensity �⇤ is determined as follows. We require that
the initial total CDM overdensity �

I
c = fPBH�⇤ has col-

lapsed into a halo by scale factor a (this assumes negligi-
ble fluctuations in the PDM component). This is equiv-
alent to requiring that the linearly-extrapolated CDM
overdensity �lin(a) = D+(a)�Ic has reached a critical value
�cr(a), where D+ is computed in Section IVA. This im-
plies

�⇤(a) =
�cr(a)

D+(a)fPBH

. (49)

When collapse occurs well inside matter domination, and
when baryons cluster like dark matter, the critical density
is �cr = 1.69. However, it can di↵er significantly from this
value as collapse occurs closer to matter-radiation equal-
ity, and on scales where baryons remain unclustered. We
explicitly compute �cr(acoll) in Appendix A. We find, for
instance, that �cr ⇡ 2.07 at z = 999, and even at z = 99,
�cr ⇡ 1.71. The minimum initial PBH overdensity is
therefore �⇤ ⇡ 0.43/fPBH and 0.052/fPBH at z = 999 and
99, respectively. We find that the Epstein mass function
(46), with �i given by Eq. (49), give a good match to our
halo mass function at z = 99, see lower panel of Fig. 8.
The Epstein function also matches our halo mass func-
tion reasonably well at z = 999 for fPBH . 10�1/2, see
upper panel of Fig. 8. The poorer match at fPBH = 1
could be due to our halo finder, which is exclusively based
on PDM particles and misses some PBH.

Given the number function, Eq. (46), we can now com-
pute the value of fPBH for which halo formation transi-
tions from the seed to the Poisson mechanism. Specifi-
cally, this is when half the PBH are in halos with 1 PBH,
or

NHL(1)

NPBH

=
�⇤

1 + �⇤
exp


�1

1 + �⇤

�
=

1

2
. (50)

This is satisfied for �⇤ = 2.175 so fPBH ' 0.02(1+z)/100.
This prediction is shown in Fig. 6 as the vertical grey line
and matches the numerical result quite well.

3. Halo Profiles

We now consider the PDM density profiles that form
around the halos in the simulation. We start by consid-
ering the single isolated PBH in the fPBH = 10�5 sim-
ulation and show its profile as a function of redshift in
Fig. 9. At early times (a = 10�3), we find a profile with

• Abundance of halos with N PBHs:
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describing the evolution of matter perturbations, where
zeq = 3402 is the redshift at the matter-radiation equality.
Thus, the condition for collapse translates into an equation
for the formation redshift of PBH minihalos as a function
of number N as

zf = 3
2

(1 + zeq)
”c

Ô
N ≠ 1

≠ 1 ƒ 0.890 zeq
Ô

N
. (19)

When virialized, and in the approximation of top-hat
collapse, newly born PBH minihalos have an average
density given by flcl ƒ 200 · flcr(zf ) in terms of the critical
density of the Universe flcr(zf ) evaluated at the redshift
of cluster formation. The symbol M = Nm denotes the
mass of the cluster with N members, and the size of the
system R is determined by the condition 4

3 fiR
3
flcl = M .

The characteristic velocity dispersion ‡v is then evaluated
by applying the virial theorem as ‡

2
v = 0.8GM/R [82].

One can describe the distribution of halos formed from
the collapse of increasingly large overdense regions adopt-
ing the Press-Schechter theory [51]. The di�erential co-
moving number density of clusters with N objects is found
to be

dncl(N, t)
dN

= n
Ô

fi

5
N

Nú(t)

6≠ 1
2 e

≠N/Nú(t)

N2 , (20)

where we introduced the mean number of PBHs per unit
comoving volume [32]

n © fPBH
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m
= 1.1 kpc≠3

fPBH

3
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. (21)

The characteristic halo size Nú(t) is instead fixed by eval-
uating the number of objects whose Poisson perturbations
(¥ 1/

Ô
N) are able to meet the threshold at the given

epoch and turns out to be [20, 83]

Nú(t) ƒ f
2
PBH

3
2600
1 + z

42
. (22)

It is important to stress that small PBH clusters are
characterized by a finite lifespan. Indeed, internal evo-
lution of the cluster via two-body relaxation causes the
evaporation of PBHs from the system until the minihalo
dissolves completely or is engulfed in a larger halo. The
lifetime of minihalos is characterized by tev ƒ 140trlx

where the relaxation timescale is (e.g. [84])

trlx ƒ
1
10

N

ln N

3
R

‡v

4
. (23)

Therefore the evaporation time is given by

tev ƒ
1.4Gyr
ln N

3
N

100

41/2 3
m

30M§

4≠1/2 3
R

pc

43/2
(24)

as a function of the typical cluster virialization radius R.
We derived an accurate fit of the size of the cluster which

FIG. 2. Number density of PBH minihalos dncl/dN in units of
comoving volume (Mpc≠3) as a function of the number N of
PBH members in the cluster for a set of redshift values. The
hard cuto� in the left part of the halo mass function comes
from the fact that smaller halos that formed at even larger
redshift have evaporated by the observation redshift. This
plot neglects adiabatic perturbations responsible for large-scale
structure development at low redshift.

is expected to evaporate at redshift zev. This takes the
form

Nev(zev) = 2190
(1 + zev)0.9734 ≠

526.5
(1 + zev)1.909 (25)

and is valid for redshifts in the range zev œ [0, 103].
As structure formation proceed hierarchically from the

bottom up, there is also a nonvanishing probability of
larger halos engulfing smaller PBH clusters. The finite
lifespan of small halos is, therefore, dictated by both evap-
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The rate of dynamical interactions crucially depends
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relative velocity. Therefore, it is important to include
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for the rate.

Here we follow the analytical description of the PBH
cluster profiles derived in Ref. [20], which is consistent
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as a function of the typical cluster virialization radius R.
We derived an accurate fit of the size of the cluster which

FIG. 2. Number density of PBH minihalos dncl/dN in units of
comoving volume (Mpc≠3) as a function of the number N of
PBH members in the cluster for a set of redshift values. The
hard cuto� in the left part of the halo mass function comes
from the fact that smaller halos that formed at even larger
redshift have evaporated by the observation redshift. This
plot neglects adiabatic perturbations responsible for large-scale
structure development at low redshift.
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PBH binary formaUon
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• IniUal binary angular momentum induced by nearest PBH 

• Binary formaUon happening before maDer-radiaUon equality 

• The distribuUon of iniUal semi-major axis a and eccentricity e 
determines the merger Ume (Peters’ Ume) 
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Early-universe binary formaUon

• IniUal spaUal Poisson distribuUon 

• Random decoupling of binary systems from the 
Hubble flow  

Nakamura (1997), …
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separation is much smaller than the Hubble scale, we
may use a Newtonian approximation. If no perturber is
present, the motion is one-dimensional. We denote by
r 2 R the proper separation projected along the axis of
motion; it evolves according to

r̈ � (Ḣ + H
2)r +

2M

r2

r

|r|
= 0, (5)

where overdots denote di↵erentiation with respect to the
proper time. We define � ⌘ r/x and rewrite Eq. (5) in
terms of the scale factor s:

�
00 +

sh
0 + h

s2h
(s�0

� �) +
1

�

1

(sh)2
1

�2

�

|�|
= 0, (6)

where primes denote di↵erentiation with respect to s, and
the dimensionless parameter � is

� ⌘
4⇡⇢eqx

3

3M
=

X

f
. (7)

At s ! 0, the binary follows the Hubble flow �(s) = s,
so the initial conditions are

�(0) = 0, �
0(0) = 1. (8)

We see that the solution is entirely characterized by �.
In the limit � ⌧ 1, the PBH pair e↵ectively decouples

from the expansion deep in the radiation-domination era,
s ⌧ 1. In that limit, h(s) ⇡ s

�2, and the equation of
motion is

�
00

�
1

s2
(s�0

� �) +
1

�

s
2

�2

�

|�|
= 0. (9)

One can show that the solution to this equation is self-
similar:

�(s; �) = � �(s/�; 1). (10)

We compute this function numerically by solving Eq. (9)
and show it in Fig. 1: we find that the binary e↵ectively
decouples from the Hubble flow at s ⇡ �/3, and that the
proper separation then oscillates with amplitude |�| ⇡

0.2 � = 2a/x, where a is the semi-major axis of the newly
formed binary. We therefore find, for � ⌧ 1,

a ⇡ 0.1 � x =
0.1

f

x
4

x
3 = 0.1

✓
3M

4⇡⇢eq

◆1/3

(X/f)4/3 .(11)

This agrees with the result of Ref. [41] given that they de-
fine the mean separation without the factor of (4⇡/3)1/3.
Solving the full equation (6), we find that this result re-
mains reasonably accurate even for � ⇠ 1 (see Fig. 1).
In what follows we will see that for the PBH masses con-
sidered, the bulk of binaries merging at the present time
have � . 1, so we use Eq. (11) throughout.
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χ/
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�

FIG. 1. Dimensionless separation � = r/x of two point
masses, rescaled by the parameter � = 1

f (x/x)
3, as a function

of the rescaled scale factor s/�, in the limit � ⌧ 1 (solid) and
for � = 1 (dashed).

C. Initial angular momentum

We now account for the fact that the binary is im-
mersed in a local tidal field Tij = �@i@j�, which exerts
a perturbative force per unit mass F = T · r, in matrix
notation. This tidal field arises from the other PBHs,
as well as from matter density perturbations, as pointed
out in Ref. [44] (see also [45]). Provided the initial co-
moving separation of the binary is small relative to the
mean separation, this tidal field does not significantly
a↵ect the binary’s energy (hence semi-major axis). How-
ever, it produces a torque ˙̀ = r ⇥ [T · r], resulting in a
non-vanishing angular momentum

` =

Z
dt r ⇥ [T · r], (12)

and preventing a head-on collision. If the torque orig-
inates from other PBHs whose comoving separation is
approximately constant (which is accurate provided their
separation is much larger than x), then T / 1/s

3. If the
torque originates from linear matter density perturba-
tions, then Tij ⇠ ⇢m�m / s

�3
�m. If the binary decouples

deep in the radiation era, then �m ⇡ constant (neglecting
the slow logarithmic growth). Therefore in either case,
we have T ⇡ s

�3Teq. We hence get

` =

✓
3

8⇡⇢eq

◆1/2 Z
ds

sh(s)

�
2(s; �)

s3
x ⇥ [Teq · x]. (13)

The integral only depends on �. In the limit � ⌧ 1, using
the self-similarity relation (10), it simplifies to

Z
ds

sh(s)

�
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s3
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Z
ds̃

s̃2
�
2(s̃; 1) ⇡ 0.3 �, (14)
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Merger rate suppression from dynamics in the early universe

x0
y

Surrounding matter

Poissonian PBH population

PBH pair

Figure 1. Schematic description of the initial configuration for the simulation. The exterior region
(blue) contains surrounding matter that has a uniform density and evolves only due to the expansion of
the universe. A spherical region (white) contains a randomly distributed PBH population. The interior
region (red) contains only the binary that is inserted so that, by using Eq. (2.17), its coalescence time
matches the current age of the universe. A similar set-up applies for the analytic estimate for binary
formation in Sec. 2.1, but in that case the white region extends to infinity and all PBH in this region
within the timescale of formation of the binary are assumed to evolve only due to cosmic expansion.

conditions which will eventually determine the distribution of j and the merger rate of the
PBH binaries.

Consider a PBH pair with masses m1, m2 at a comoving separation x0 so that they are
the only PBHs in spherical volume of comoving radius y. This set-up is shown in the interior
region of Fig. 1. The reason for forbidding surrounding PBHs closer than y is to exclude initial
configurations where the binary gets disrupted by surrounding PBHs shortly after formation.
In such cases the perturbative estimate of the coalescence time will inevitably fail. For the
sake of generality, we will not fix the value of y in the general discussion. The aim of the
following is to estimate the density of viable initial conditions and, from it, the distribution
of coalescence times and the merger rate. The spatial PBH distribution is assumed to be
Poisson throughout the paper.2 In this case the comoving number density of configurations
producing a binary is

dnb =
1

2
e
�N̄(y)dn(m1)dn(m2)dV (x0) , (2.18)

where dn(m) is the comoving number density of PBH in the mass range (m,m+ dm), ⇢DM

denotes the present DM energy density, N̄(y) ⌘ nV (y) is the expected number of PBH in a

2Based on general arguments, the spatial distribution at small scales has been shown to be well approx-
imated by the Poisson distribution [41]. It has been argued, however, that accounting for the two-point
function of PBHs, ⇠PBH, may a↵ect the merger rate for wider mass functions [13, 52, 53]. In Ref. [53] this
e↵ect was estimated to be irrelevant for PBHs in the LIGO mass range. In addition, a rough estimate yields
that for ⇠PBH 6 1 the contribution of the PBH two-point function to the merger rate is generally subleading
to the direct contribution of the width of the mass function [13]. Only the latter will thus be considered in
this paper. Formation of initially clustered PBH distributions, enabled by some more exotic PBH formation
mechanisms, and the evolution of such clusters has been considered in Ref. [54].
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M. Raidal, C. Spethmann, V. Vaskonen and H. Veermäe, JCAP 02, 018 (2019) [arXiv:1812.01930]

ii) Surrounding PBHs and dark maDer overdensiUes modifies the 
distribuUon of angular momentum j

i) ExponenUal suppression requiring iniUally the binary is a 2-body 
system (otherwise likely disrupted)

Tested with N-body simulaUons for narrow/broad mass distribuUons
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Merger rate suppression in clusters

PBH-PBH interacUons in clusters

3

and their virial velocity

vcl ≈ 0.60
km

s

(

Mpbh

M⊙

)1/3

N1/12
cl (4)

as a function of the number of PBHs in the cluster Ncl

and PBH mass Mpbh. Their properties are shown in Ta-
ble 1.
It is well known [58, 59] that dense clusters with a

moderate number of cluster members Ncl are unstable
towards complete evaporation over the life-time of the
Universe. Small clusters are therefore only of tempo-
rary existence between the initial collapse redshift zcoll
and the evaporation redshift zevap The approximate time
scale for complete evaporation (up to a last remaining bi-
nary) of PBH clusters may be estimated [58] by

tevap ≈ 140trelax ≈ 14
Ncl

lnNcl
tcross (5)

where trelax is the cluster relaxation time and tcross ≈
Rcl/vcl is the cluster crossing time. Here Rcl can be
determined by the relation (4π/3)nclR3

cl = Ncl. Both the
formation- and evaporation- redshifts, zform and zevap,
are also shown in Table 1.
We have considered three-body interactions in these

cluster environments. Since vclth ≪ vintb , where vclth is
the virial cluster velocity and vintb is the internal binary
velocity, we may not use the impact approximation to
derive analytic results, but rather have to resort to full
numerical computations. A three-body scattering event
is characterized by a variety of parameters, binary mem-
ber masses Mb1, Mb2 perturber mass Mp, semi-major
axis a, eccentricity e, two inclination angles of the binary
plane θ and φ with respect to the perturber velocity di-
rection, the position of the binary members on the orbit
given by a parameter ψ, impact parameter at infinity
b, as well as the perturber velocity Vp in the binary CM
frame. The accuracy of individual scattering calculations
is confirmed by surveilling energy and angular momen-
tum conservation.
Fig.1 and Fig.2 show one example of such three-body

scattering. This not atypical scattering event on a hard
and very eccentric binary illustrates the complexity of
such scatterings. Several times the binary changes part-
ner, binary a and e are constantly modified, until ul-
timately one PBH escapes to infinity, leaving a binary
which is even harder, in agreement with the Heggie-Hills
conjecture [60, 61]. However, though the binary is harder,
its eccentricity has changed away from e ≈ 1, implying
that tgw has increased from an initial 4.48× 10−2Gyr to
tgw = 5.0× 1010Gyr.
We have performed Monte-Carlo (hereafter MC) sim-

ulations of the effects of three-body scatterings on pre-
existing binary properties due to their presence in PBH
clusters between redshifts zform and zevap. The initial
binary properties were taken from the distribution cal-
culated in [43, 49]. The MC simulation considers the
10 most important scattering events, where importance
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FIG. 3. Scatter plots of a Monte Carlo simulation of 2 × 104

evolutions of binary properties due to three-body interactions
in a cluster with Ncl = 100 and Mpbh = M⊙. Each point
shows the final semi-major axis af versus the initial ai (upper
panel), the final eccentricity parameter κf = (1− e2f ), where
e is eccentricity, versus the initial κi (middle panel), and the
final merging time tfgw versus the initial tigw (lower panel).
The three lines ai = af , κi = κf , and tigw = tfgw are shown to
guide the eye.
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LIGO/Virgo rates.
In this paper, we show that this conclusion is with high

likelihood incorrect, we believe that QCD formed PBHs
may very well constitute all of the dark matter. The
findings of this paper, should stimulate intense research
on a numerically difficult problem. Limits imposed from
the coalescing rate rely on the correctness of the PBH
binary semi-major and eccentricity distribution. The ini-
tial distribution has been first calculated in [49, 50] sub-
sequently re-calculated by several authors [43, 45, 46],
and its subsequent evolution has been deemed to be too
unimportant [40, 44–48] to circumvent LIGO/Virgo con-
straints. We will show that this distribution, in fact,
dramatically evolves between the first formation of bina-
ries and the present day, allowing for consistency with
current data.
PBH dark matter has the characteristics of perfect cold

dark matter on large scales, however, there are two im-
portant differences when compared to particle cold dark
matter. First, PBH dark matter is formed infinitely cold
as any peculiar motions of density fluctuations should
have inflated away during inflation. When binaries then
form from such initial conditions, the distribution func-
tion P (a, e) of binary semi-major axis a and eccentricity
e is highly peaked at e ≈ 1, reflecting very radial or-
bits. The binary coalescence time, due to the emission of
gravitational waves is given by

tgw =
3

170

1

(GMbh)3
a4
(

1− e2
)7/2

(1)

and becomes very short when e approaches unity. Any
perturbation of the binary would be expected to typi-
cally lower e, to get to a more equilibrated, unpeaked
steady state in P (a, e). This in turn drastically increases
tgw [46, 47, 51, 52]. We will show that simple three-body
interactions between the two binary members and a third
PBH indeed have this effect.
The second difference to particle dark matter pertains

to the granularity of PBH dark matter. As individ-
ual dark matter particles are fairly massive, PBH dark
matter has an additional isocurvature density fluctuation
component on small scales simply due to small-number
statistics and the associated Poisson noise, i.e the fluc-
tuations of the number of PBHs in a given volume con-
taining N PBHs on average, is δ(N) = ∆N/N = 1/

√
N .

Those isocurvature fluctuations lead to the early forma-
tion of PBH clusters at redshifts as high as ∼ 1000.
These clusters have been observed in numerical simula-
tions, with the smallest clusters observed in [46] and a
full range of clusters observed in [53]. Contrary to prior
claims [54, 55] the PBH isocurvature fluctuations have
been confirmed to be Poissonian [56, 57].
Following [53] the growth factor of isocurvature per-

turbations is given by

D(a) ≈
(

1 +
3

2

a

aeq

)

, (2)

where a is scale factor and eq denotes matter-radiation
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FIG. 1. An example of a scattering event. Shown are the
distances between the three PBHs participating in the scat-
tering event, R12 (pink), the initial binary, R13 (green), dis-
tance between one member of the binary and the perturber,
and R23 (yellow), distance between the other member and
the perturber. Initial binary properties: a = 8.1 × 10−5pc,
e = 0.999969, tgw = 4.48× 10−2Gyr. Final binary properties:
a = 7.59×10−5pc, e = 0.90, tgw = 5.0×1010Gyr. The impact
parameter is b = 7.1× 10−5pc.
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FIG. 2. The orbits of the three PBHs in the scattering event
shown in Fig.1, in a particular plane in the initial binary CM
frame. It is seen that the interaction is very complex.

equality. Assuming a spherical top hat collapse model,
we may require D(a)δ(N) ≈ 1.68 to determine the col-
lapse redshift acoll. In this model the final cluster density
is given by ρcl ≈ 178⟨ρDM ⟩(acoll) where ⟨ρDM ⟩ is the av-
erage dark matter density. These relations allow us to
determine the PBH number density in clusters

ncl ≈ 1.6× 105
1

pc3

(

Mpbh

M⊙

)−1

N−3/2
cl (3)

Hard binaries: binding E > average PBH E
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Figure 4.26: Suppression factor Scl coming from disruptions of binaries in clusters as a function of
the initial PBH abundance and for various values of redshift z.
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In Ref. [476] it was found that this approximation is accurate within 7% for a lognormal mass func-
tion with �  2. Finally, again following Ref. [476], we parametrise the suppression factor due to
interactions in clusters as

Scl(x) ⇡ min
⇥
1, 9.6 · 10�3

x
�0.65 exp

�
0.03 ln2

x
�⇤

with x ⌘ (t(z)/t0)
0.44

fPBH. (4.6.39)

We show a plot of Scl for various values of the PBH abundance in Fig. 4.26. Notice also that, for
fPBH . 0.003, one always finds S2 ' 1, i.e. the suppression of the merger rate due to disruption inside
PBH clusters is negligible. This is also supported by the results obtained through a cosmological
N-body simulation finding that PBHs are essentially isolated for a small enough abundance [235].

4.6.7 SGWB from unresolved mergers

PBH mergers that are not individually resolved by the detector contribute to a SGWB. The non-
observation of a SGWB during the first LVC observing runs can be used to constrain the PBHs
abundance, see Ref. [170, 493–496].

From the di↵erential merger rate dR(z) at redshift z as found in Eq. (4.6.36), one can compute
the spectrum of the SGWB of frequency ⌫ as

⌦GW(⌫) =
⌫

⇢0

Z ⌫3
⌫ �1

0

dzdM1dM2

1

(1 + z)H(z)

dR(M1, M2, z)

dM1dM2

dEGW(⌫s)

d⌫s
, (4.6.40)

where ⇢0 = 3H
2

0
/8⇡ and ⌫s = ⌫(1 + z) is the redshifted source frequency. When computing the

prediction for this SGWB in a given PBH model, one should additionally include a theta function
removing the mergers that would be individually resolved by the experiment (i.e. requiring the SNR
to be below the threshold). This is, however, in practice, found to be a negligible correction for current
GW experiments, see e.g. Ref. [12]. The additional redshift factor 1/(1 + z) is introduced to account
for the di↵erence in the clock rates between the merger and detection times.

For the GW energy spectrum dEGW with frequency in between (⌫, ⌫ + d⌫), we use a phenomeno-
logical expression which, in the non-spinning limit6, is given by [498, 499]
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(4.6.41)

6For a study of the impact of BH spins onto the emitted GWs energy see, for example, Refs. [438, 498].
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In Ref. [476] it was found that this approximation is accurate within 7% for a lognormal mass func-
tion with �  2. Finally, again following Ref. [476], we parametrise the suppression factor due to
interactions in clusters as

Scl(x) ⇡ min
⇥
1, 9.6 · 10�3

x
�0.65 exp
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0.03 ln2
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with x ⌘ (t(z)/t0)
0.44

fPBH. (4.6.39)

We show a plot of Scl for various values of the PBH abundance in Fig. 4.26. Notice also that, for
fPBH . 0.003, one always finds S2 ' 1, i.e. the suppression of the merger rate due to disruption inside
PBH clusters is negligible. This is also supported by the results obtained through a cosmological
N-body simulation finding that PBHs are essentially isolated for a small enough abundance [235].

4.6.7 SGWB from unresolved mergers

PBH mergers that are not individually resolved by the detector contribute to a SGWB. The non-
observation of a SGWB during the first LVC observing runs can be used to constrain the PBHs
abundance, see Ref. [170, 493–496].

From the di↵erential merger rate dR(z) at redshift z as found in Eq. (4.6.36), one can compute
the spectrum of the SGWB of frequency ⌫ as

⌦GW(⌫) =
⌫
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Z ⌫3
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, (4.6.40)

where ⇢0 = 3H
2

0
/8⇡ and ⌫s = ⌫(1 + z) is the redshifted source frequency. When computing the

prediction for this SGWB in a given PBH model, one should additionally include a theta function
removing the mergers that would be individually resolved by the experiment (i.e. requiring the SNR
to be below the threshold). This is, however, in practice, found to be a negligible correction for current
GW experiments, see e.g. Ref. [12]. The additional redshift factor 1/(1 + z) is introduced to account
for the di↵erence in the clock rates between the merger and detection times.

For the GW energy spectrum dEGW with frequency in between (⌫, ⌫ + d⌫), we use a phenomeno-
logical expression which, in the non-spinning limit6, is given by [498, 499]
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6For a study of the impact of BH spins onto the emitted GWs energy see, for example, Refs. [438, 498].
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Merger rate suppression in clusters - Lower bound
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Residual fracUon of mergers reside outside dense clusters and it is not disrupted
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Ncl . 5000 for fPBH = 1
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do not perturb their initial binaries due to their smaller
densities and higher velocity dispersions.

In this paper we also improve our previous esti-
mate [17] of the merger rate arising from the population
of perturbed binaries. Even if most of the early PBH bi-
naries were at least once perturbed, the present merger
rate from the resulting population of less eccentric bina-
ries can still reach the observed rate. In that case, bina-
ries contributing to the rate originate from dense 3-body
configurations with separations much below the average
PBH distance.

By combining the merger rate of perturbed binaries
with a maximally suppressed merger rate of initial bina-
ries we derive a lower bound for the merger rate, conclud-
ing that it is above the range indicated by the LIGO and
Virgo observations in the case that more than 4% of DM
is in O(10M�) PBHs. We finally use our results to ob-
tain robust constraints on PBH abundance. Throughout
this paper we use geometric units GN = c = 1.

II. PBH BINARIES FROM THE EARLY
UNIVERSE

The coalescence time of a binary due to GW emission
is approximately [21]2

⌧ =
3

85

r4a
⌘M3

j7 =
3

1360

M

⌘E4
j7 (1)

where ⌘ = m1m2/M2, M = m1 + m2 denote the mass
asymmetry and the total mass of the binary, ra is its
semimajor axis, E = M/(2ra) the binding energy per
reduced mass, j ⌘

p
1� e2 the dimensionless angular

momentum and e is the eccentricity.
Binaries expected to coalesce within a Hubble time are

hard. Thus, according to the Heggie-Hills law [22, 23],
close encounters with other PBHs will, on average, in-
crease their binding energy by an O(1) factor. In partic-
ular, these binaries are very unlikely to be ionized. On
the other hand, the initial binaries are highly eccentric.
The characteristic angular momentum for initial binaries
with coalescence time ⌧ is [17]

j⌧ = 0.02f
16
37
PBH

(4⌘)
3
37


M

M�

� 5
37


⌧

t0

� 3
37

, (2)

where t0 is the age of the Universe. Thus, j very likely
increases by more than an order of magnitude leading to
an over 7 orders of magnitude increase of the coalescence
time. So, when a binary that was initially expected to
merge within a Hubble time is perturbed, its coalescence
time exceeds the age of the Universe, and thus it will not
produce detectable GW signals. We stress that, due to

2
This holds when j ⌧ 1, and for larger j deviates by at most 23%.

their lower eccentricities, the last e↵ect is insignificant
for perturbed binaries.
If the initial population would not be perturbed by

the second process, then a fraction fPBH � 10�3 of
PBH DM predicts a merger rate higher than observed
by LIGO/Virgo. The di↵erential merger rate at time t
in that case is [17]

dRnp

dm1dm2
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Gpc3yr
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34
37 (m1) (m2) ,

(3)

 (m) is the PBH mass distribution, and S[ , fPBH,M ]
is a suppression factor accounting for the disruption by
the first mechanism due to the infall of the PBH close
to the binary. For narrow mass functions S ⇡ 0.24(1 +
2.3�2

M/f2

PBH
)�21/74, where �M ' 0.005 is the variance of

matter density perturbations at the time the binary was
formed. In the rest of the paper we will consider only
monochromatic mass functions,  (m0) = �(m0

�m), and
denote the PBH mass by m.
When fPBH

>
⇠ 0.1, the fraction of binaries perturbed

by the second mechanism, that is, by PBH clusters, has
been shown to be relatively high already at z = 1100,
indicating that nearly all initial binaries might be per-
turbed within the age of the Universe [17]. A small frac-
tion of the early binaries may, however, remain unper-
turbed. So, by (3), the present merger rate from the ini-
tial binary population can still exceed the current bounds
in the LIGO/Virgo mass range.
This may happen because of several reasons: (a) not

all PBH binaries will become bound to PBH clusters
early; (b) small dense clusters of PBH are unstable on
timescales much shorter than the Hubble time, and thus
it is possible that the cluster is dissolved before the bi-
nary is perturbed; (c) larger, less dense systems forming
the DM haloes of, e.g. dwarf galaxies, must be stable
within the Hubble time making disruption unlikely.

III. DISRUPTION OF INITIAL PBH BINARIES
IN SMALL HALOES

Let us estimate the probability that a binary will be
significantly perturbed via encounters with other PBH.
The characteristic timescale for this process is given by

1/tp = nloc h��j>j⌧ vi , (4)

where nloc is the local PBH number density, v the per-
turber velocity, and ��j>j⌧ the cross-section for increas-
ing the angular momentum of the initial binary by an
amount comparable to its initial value (2). Note that,
by Eq. (1), this corresponds to a 2 order of magnitude
increase in the coalescence time. The average change

of angular momentum is roughly �j ⇡ m1/2r3/2a /(rcbv)
, where b is the impact parameter and rc is the dis-
tance of closest approach [14]. By conservation of an-
gular momentum and energy, they are related as b2 =

3

r2c + 6mrc/v2. The second term dominates in the early
Universe where close encounters are more likely due to
the lower velocities and higher densities. In this case

��j>j⌧ = ⇡b2 ⇡
28m7/4⌧1/4

v2j29/12⌧

. (5)

Consider now the early haloes containing N PBHs.
They form approximately when the scale factor is ac ⌘

(1 + zc)�1
⇡ aeq

p
N/fPBH, where aeq corresponds to

matter-radiation equality. Assuming that they are viri-
alized, the velocity dispersion is given by �2

v ⇡ MH/R,
where R is the virial radius and MH = mN/fPBH the
mass of the halo3 Following Press-Schechter theory, the
average energy density of matter in these haloes is ⇢ =
3MH/4⇡R3

⇡ 18⇡2⇢ca�3, where ⇢c is the critical comov-
ing density.

Using v ⇡ �v and a density that is 18⇡2 times above
the average, we obtain from (4) and (5) that
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Therefore, when m = O(10M�) binaries in haloes with
N <

⇠ 2000 are perturbed before today if fPBH = 1. Since,
by definition, binaries can be perturbed only in systems
with Nc � 3 PBH, binaries are unlikely to be perturbed
when fPBH . 0.02.

These estimates are applicable assuming that the small
haloes formed at high redshifts survive, i.e. they main-
tain their initial density and velocity dispersion. This
assumption is, however, easily violated as the haloes can
be absorbed into larger structures or expand due to the
heating provided by binary-PBH collisions. Both e↵ects
reduce the frequency of binary-PBH encounters. In fact,
it was estimated that the disruption of initial binaries
in DM haloes can be neglected when the earlier smaller
haloes are continuously absorbed and disrupted by the
subsequent generation of larger haloes [14].

By drawing parallels with globular clusters [25, 26],
there are two e↵ects that can significantly enhance the
disruption probability in PBH haloes: First, since bina-
ries are heavier than a single PBH, they tend to sink
towards the center of the halo. Second, during core col-
lapse the central density can increase indefinitely until
the collapse is stopped by binary-PBH interactions heat-
ing the core. [20]. This will switch on 3-body encounters
also in larger haloes in which they were initially unlikely.
Thus, to estimate the maximal disruption probability by
the second mechanism we assume that all binaries within
a cluster that is unstable within a timescale less than a
Hubble time are perturbed.

3
We assume that the fraction of PBHs in haloes matches fPBH.

However, it was shown in [24] that this fraction could be larger,

especially in the early Universe. This may slightly enhance the

disruption of PBH binaries.

For the timescale of the gravothermal instability we
use the characteristic time of core collapse given by tcc �
18tr, where the relaxation time is [27]

tr = 0.065
�3

v

m⇢ ln⇤
⇡ 2kyr

N7/4

f5/2
PBH

ln⇤
. (7)

The Coulomb logarithm is approximately ln⇤ ⇡

ln(N/fPBH). Requiring 18tr < t0 gives

N  Nc ⌘ 1500f10/7
PBH

ln⇤4/7 , (8)

which is consistent with earlier results of [28]. We now
find that binaries are perturbed in haloes with N < 5300
if fPBH = 1 and all binaries survive if fPBH . 0.005. We
note that binary-PBH collisions can heat the halo and
stop the collapse; thus, disruption of initial binaries due
to core collapse is relevant for haloes containing 2000 <

⇠
N <

⇠ 5300 PBH when fPBH ⇡ 1.
Finding the probability for an initial PBH binary to be

disrupted thus boils down to finding the fraction of initial
binaries in unstable haloes. The distribution of haloes
containing N PBHs at redshift z from initially Poisson
distributed point masses is approximately [24, 29, 30]

pN (z) / N�1/2e�N/N⇤
(z) , (9)

where N⇤(z) is the characteristic number of PBH in
a halo at redshift z, which we estimate using analytic
results from [24]. These haloes can have substructure
which, following [31], we assume to be distributed by
the halo mass function (9). The probability of finding
a binary in a halo with N PBHs is approximately pro-
portional to pN 4 and the probability of finding a PBH
in a subhalo of N PBHs inside a halo of N 0 > N PBHs
to pNpN 0 . So, the fraction of nonperturbed binaries is
bounded below by
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(10)

where Nc(z) defined in Eq. (8) is the smallest number of
PBH in haloes or subhaloes that are expected to be stable
until redshift z, and the halo distribution is evaluated at
the redshift zc at which the haloes with Nc PBHs formed.
The probabilities p̄N and p̃N are normalized as

X

N�2

p̄N = 1 ,
N 0X

N=2

p̃N = 1 . (11)
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We remark, that binaries for which the surrounding PBH density

was initially larger have, on average, a higher initial angular mo-

mentum and must thus have a smaller initial separation if they

are to merge within a Hubble time. Therefore, there are fewer

initial binaries in dense haloes. Such haloes are likely small.
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where Nc(z) defined in Eq. (8) is the smallest number of
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until redshift z, and the halo distribution is evaluated at
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We remark, that binaries for which the surrounding PBH density

was initially larger have, on average, a higher initial angular mo-

mentum and must thus have a smaller initial separation if they

are to merge within a Hubble time. Therefore, there are fewer

initial binaries in dense haloes. Such haloes are likely small.
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The rate of accretion from the background baryon gas
was computed in Ref. [24] accounting for relative motions
of baryons and PBHs and Compton cooling and heating.
At redshifts less than a few hundred, which dominate the
integral, the characteristic dimensionless accretion rate
they find is ṁ ⇠ 10�5(M/M�). Therefore, we get

Z tmax

dt
Ṁ

M
⇠ 2 ⇥ 10�5 tmax

Gyr

M

M�
. (88)

At low enough redshift, once the binaries are part of large
halos, we expect the accretion to be cuto↵ due to the
large non-linear velocities and heating of the gas [23].
Cutting o↵ the integration at z ⇡ 10 corresponds to
tmax ⇠ 0.5 Gyr, so we get

Z
dt

Ṁ

M
⇠ 10�5 M

M�
, (89)

which matches what Ref. [45] estimated from the results
of Ref. [23]. Therefore we conclude that, even if the co-
e�cient in Eq. (86) is ⇠ 10 � 100, the semi-major axis
should not be significantly a↵ected by an accretion disk.
This contrasts with the results of Ref. [45] who found
an orbital decay timescale much shorter than the Hubble
time. The di↵erence can be traced back to their esti-
mate of the characteristic disk mass Mcbd ⌘ ⇡a

2⌃ by
Mcbd ⇠ H

�1
Ṁ , instead of the more appropriate order

of magnitude Mcbd ⇠ tviscṀ . Ref. [45] therefore seem to
have overestimated the e↵ect of the accretion disk by a
factor ⇠ H

�1
/tvisc � 1. Nevertheless, if the coe�cient

in Eq. (86) is large, and for large enough PBH masses,
the change in j, while small in absolute value, could still
exceed the characteristic initial value for PBH binaries
merging today (see Fig. 4).

If this is the case, and accretion e�ciently extracts
angular momentum, binaries that would have otherwise
merged today may merge much earlier on. In the extreme
case where most binaries merge quickly, a high-redshift
gravitational-wave background would result [45]. Con-
versely, if accretion tends to circularize eccentric bina-
ries, they may merge on a much longer timescale. More
generally, if accretion significantly a↵ects orbital param-
eters, the probability distribution of merger times, hence
the merger rate, could be drastically di↵erent from what
we have estimated in Section II. This warrants further
work, most likely numerical simulations, to investigate
this issue in more detail.

IV. PBH BINARY FORMATION IN
PRESENT-DAY HALOS

It was pointed out in Ref. [8] (hereafter, BCM) that
PBH binaries can also form in present-day halos through
gravitational bremsstrahlung: if two PBHs pass close
enough to each other, they may radiate a su�cient
amount of energy in gravitational waves to become
bound. The binaries formed through this pathway are

typically very tight and highly eccentric [10], and co-
alesce within a timescale much shorter than a Hubble
time, so that the merger rate is approximately equal to
the capture rate. BCM found that the merger rate is
dominated by the smallest halos, of a few hundred solar
masses, and is of order ⇠ 1 Gpc�3 yr�1 if PBHs make
all of the dark matter. This is significantly lower than
the merger rate of binaries formed in the early Universe.
However, the calculation of BCM did not account for the
contribution of Poisson fluctuations to density pertur-
bations when estimating the characteristic density and
velocity dispersion of the smallest halos. Given how sen-
sitively these depend on the variance of perturbations,
it is worth revisiting this calculation. Throughout this
section we assume f = 1.

A. General considerations

The cross section for two equal masses to become
bound due to gravitational radiation is [67]

�gw(v) = 4⇡

✓
85⇡

3

◆2/7
M

2

v18/7
⇡ 45

M
2

v18/7
, (90)

where v is the relative velocity of the two PBHs at large
separation. The rate of binary formation in a given halo
is therefore

� =
1

2

Z
d
3
r
⇢(r)2

M2
hv�gwi(r) ⇠ 20 Mh⇢hv

�11/7
h . (91)

Using Eq. (38) for virialized halos, we have vh ⇠

2M
1/3
h ⇢

1/6
h , so that

� ⇠ 10 M
10/21
h ⇢

31/42
h . (92)

A simple prescription for the characteristic halo density
is that it is ⇠ 200 times the mean density at the time
of collapse. Neglecting the e↵ect of dark energy at low
redshift, the characteristic redshift of collapse of pertur-
bations of mass Mh is

zcoll ⇠ �(Mh), (93)

where �(Mh) is the variance of linear perturbations on
the mass scale Mh extrapolated to the present time.
Therefore,

⇢h ⇠ 200 [�(Mh)]3 ⇢
0
m. (94)

Note that this is consistent with the asymptotic be-
havior of the fitting formula of Ref. [68] for the
mass-concentration relation: for NFW profiles, ⇢h ⇠

200 ⇢
0
m c

3, and the concentration c scales nearly linearly
with �(Mh) at large values. This implies

� ⇠ 450
�
⇢
0
m

�31/42
M

10/21
h [�(Mh)]31/14. (95)

G. D. Quinlan and S. L. Shapiro, ApJ 343, 725 (1989)
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TABLE I. Merger rate density of dynamically formed binaries
at redshift z ƒ 0 in units of (yr≠1Gpc≠3) for capture and
3b channels and assuming m = 30M§. We assume either a
thermal (“ = 1) or superthermal (“ = 0) eccentricity distri-
bution. We conservatively integrate the rate from Nmin = 10
and require at most the formation of one binary per cluster
(only a�ecting the 3b rate for fc = 0.1).

fc Rcap
BPBH R3b

BPBH(“ = 1) R3b
BPBH(“ = 0)

1 7.3 2.7 1.3 ◊ 102

0.3 9.6 5.5 2.7 ◊ 102

0.1 3.3 ◊ 101 5.1 ◊ 101 2.5 ◊ 103

compute

R
cap
BPBH(z) =

Nú(z)ÿ

N=Nev(z)
�cap(N)dn

ev
cl (N, z)
dN

. (29)

We iterate that this estimate assumes negligible time
delays compared to t(z). Notice that the summation over
the cluster size N only starts from the smallest clusters
which have not evaporated yet at redshift z, see Eq. (25).
In Table I we report the corresponding capture rates in
the local Universe (z = 0). The sum is dominated by
contributions coming from the smallest clusters close to
Nev(z), for which the rate is higher (see Fig. 3) and the
cluster number density peaks.

In the estimate of the merger rate from capture, we ne-
glect the impact of adiabatic perturbations, which would
reduce the fraction of mass residing in small-scale struc-
tures in the late-time Universe by boosting the collapse
and virialization of structures above galactic scales. In-
cluding this e�ect would move a larger fraction of DM
into virialized structures of much larger sizes (with corre-
sponding larger velocity dispersion) and smaller densities,
where the dynamical formation of binaries is quenched.
While this may suppress the rate of binaries formed in
the late-time Universe R

cap
BPBH, it does not a�ect the 3b

merger rate, which is dominated by binaries formed in
very small clusters which are evaporating at redshift larger
than O(10 ≠ 100).

We compute the merger rate density of binaries pro-
duced by 3b interactions by integrating the binary forma-
tion rate over the age of the Universe and by multiplying
by the fraction of binaries merging within the remaining
time window t(z) ≠ t

Õ using Eq. (14), summed over the
halo mass function. Therefore, we compute

R
3b
BPBH(z) =

Nú(z)ÿ

N=Nmin

C
�3b(N)

◊

⁄ t(z)

tmin

dt
Õ
Q(N, t(z) ≠ t

Õ)dn
ev
cl (N, t

Õ)
dN

D
, (30)

where t(z) is the age of the Universe at redshift z and
tmin © tf (Nmin). This integral already accounts for the

cluster evaporation timescale through the halo mass func-
tion dn

ev
cl /dN . In Table I we report the 3b rate obtained

for z ƒ 0 for di�erent values of fc and two assumptions on
the eccentricity distribution of binaries, following either
a thermal (“ = 1) or superthermal (“ = 0) distribution.
Notice that the current 3b merger rate density is compa-
rable to the capture rate if one assumes “ = 1, while it
becomes O(102) times larger in case of a superthermal
distribution.

We conservatively report results integrating from clus-
ters larger than Nmin = 10. Including even smaller clusters
in the count would boost the estimated 3b rate due to the
larger number density of small clusters and higher rates
obtained in those environments (see Fig. 3). However,
the dynamics of such small clusters may deviate from the
modeling discussed above and should be estimated with
dedicated few-body simulations.

V. DISCUSSION

In the previous section we presented the computation
of the merger rate from 3b interactions by assuming a
large value of the abundance fPBH, showing the potential
relevance of this channel, largely neglected in the PBH
literature. In this section, we discuss the implications for
various PBH scenarios. With this aim, we start by com-
paring our results to the merger rate of binaries produced
in the early Universe.

A. Comparison with the merger rate of binaries
formed in the early Universe

PBH binaries can form in the early Universe out of
decoupling from the Hubble flow before matter-radiation
equality [68, 69]. Assuming a narrow mass distribution,
the di�erential volumetric PBH merger rate density takes
the form [13, 14, 17, 20]

R
EU
BPBH(z) = 7.1 ◊ 102

Gpc3 yr f

53
37

PBH

3
t(z)
t0

4≠ 34
37

3
m

30M§

4≠ 32
37

◊

5
S(m, fPBH, t(z))

2.4 · 10≠3

6
, (31)

where the suppression factor S < 1 accounts for environ-
mental e�ects in both the early- and late-time Universe,
normalized to its value when fPBH = 1 and z = 0. The
e�ects suppressing the early Universe merger rate con-
tained in S can be divided in two categories. In the early
Universe, close to the binary formation epoch, this ac-
counts for interactions between PBH binaries and both
surrounding DM inhomogeneities and neighboring iso-
lated PBHs [9, 11, 13, 86]. In the late Universe, this
includes the successive disruption of binaries that popu-
late PBH clusters formed from the initial Poisson condi-
tions [14, 20, 22, 87–92] throughout the evolution of the
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B. Three-body interaction

In the Newtonian regime, when the pericenter of inter-
action of two black holes is su�ciently larger than their
horizons, GW emission is insu�cient to induce a bound
pair according to energy conservation. Nevertheless, the
energy required to be released, for a bound system to be
created, could be in the form of heat. That would be
kinetic energy, absorbed by a third intermediary body
which perturbs the two-body interaction in a short-lived
3b encounter. This energy extraction process becomes
e�cient in dense environments with relatively small veloc-
ity dispersion, so that gravitational focusing dominates
the interaction and enhances binary formation from this
channel.

Assuming that the 3b encounter occurs within a region
of a given radius, the rate density for 3b encounters can
be estimated as the product of the two-body interaction
rate density “1,2 (taking into account both geometrical
and gravitational focusing terms) times the probability
that a third body happens to be in the same vicinity and
participates in the interaction,

p3,1≠2 = �3,1≠2·1,2, (3)

where �3,1≠2 is the rate at which the third object encoun-
ters the interacting pair 1 ≠ 2 and ·1,2 is the timescale
of the two-body interaction [63, 64]. Moreover, we define
the hardness ratio ÷ to be the binding energy of a binary
with size a normalized to the average kinetic energy of
ambient single bodies, i.e.,
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Then, the rate for 3b encounters in a region of maximum
size amax corresponds to a minimum threshold value ÷min

for the hardness ratio. Using this definition, the resulting
rate density for three bodies to interact within that region
can be expressed in terms of the minimum hardness ratio
as [65]
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The expression in Eq. (5) corresponds to the rate den-
sity for three single PBHs to interact and does not yet
give us binary formation. It should be multiplied by the
probability of binary formation by 3b encounters. This
quantity was calculated numerically for equal masses in
Ref. [66], where it was found that if ÷ & 5 then this prob-
ability asymptotically approaches 100%. Therefore, for
values of hardness ratio above 5, the 3b encounter rate
essentially corresponds to the binary formation rate. To
account for the e�ciency of binary formation in the hard
region of the parameter space, we choose to set ÷min = 5
as used in the literature (see e.g. Refs. [65, 67]). Using

this value for the hardness ratio, the total BPBH creation
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For the 3b channel to matter at all, 3b encounters
should be frequent. PBHs that populate dense cluster en-
vironments have the chance to frequently interact among
themselves and form 3b-induced binaries. As for the cap-
ture channel, higher density environments with smaller
velocity dispersion are preferred candidates where 3b in-
teractions that induce hard binaries become important.
Comparing Eq. (6) with Eq. (2) in environments with
‡v ¥ 1 km/s and number density n ¥ 1 pc≠3, 3b binary
formation is found to dominate over two-body capture.
For example, PBH minihalos with similar characteristics
are expected to form naturally from the Poisson-induced
PBH clustering at small scales. As we will describe in
detail in Sec. IV, this process takes place at high redshift
during the onset of the matter-dominated era.

III. FRACTION OF COALESCING BINARIES

Binaries formed by gravitational capture merge
promptly with no substantial delay (Sec. II A). However,
the 3b mechanism produces wide binaries which may
merge with a significant delay that can exceed the age
of the Universe. In this sense, the scenario proposed in
this work resembles what happens to BPBH formation in
the early Universe, in which close enough pairs of PBHs
decouple from the Hubble flow and form an eccentric
BPBH due to the torque from a third PBH in the vicinity
[68, 69]. In this section, we first determine the distribution
of geometrical parameters describing BPBHs assembled
via the 3b channel, and then compute the fraction of
those binaries which merge within a predetermined time
interval.

Equation (5) provides the formation rate density of
permanent hard binaries via the 3b channel. These bi-
naries are hard in the sense that their binding energy
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/(2a) (where a indicates the binary’s semimajor

axis) is much greater than the average kinetic energy
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v/2 of a single object in the cluster. Since the 3b rate

accounts for the formation of binaries with ÷
Õ larger than

some threshold value ÷, Eq. (5) is proportional to the
complementary cumulative distribution function for the
hardness ratio. The probability density function (PDF)
can be obtained by di�erentiating the negative of Eq. (5)
with respect to ÷min and treating the result as a function
of ÷ [67]. In other words, we define
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If we limit ourselves to the range ÷ Ø 5 for the hardness
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TABLE I. Merger rate density of dynamically formed binaries
at redshift z ƒ 0 in units of (yr≠1Gpc≠3) for capture and
3b channels and assuming m = 30M§. We assume either a
thermal (“ = 1) or superthermal (“ = 0) eccentricity distri-
bution. We conservatively integrate the rate from Nmin = 10
and require at most the formation of one binary per cluster
(only a�ecting the 3b rate for fc = 0.1).

fc Rcap
BPBH R3b

BPBH(“ = 1) R3b
BPBH(“ = 0)

1 7.3 2.7 1.3 ◊ 102

0.3 9.6 5.5 2.7 ◊ 102

0.1 3.3 ◊ 101 5.1 ◊ 101 2.5 ◊ 103

compute

R
cap
BPBH(z) =

Nú(z)ÿ

N=Nev(z)
�cap(N)dn

ev
cl (N, z)
dN

. (29)

We iterate that this estimate assumes negligible time
delays compared to t(z). Notice that the summation over
the cluster size N only starts from the smallest clusters
which have not evaporated yet at redshift z, see Eq. (25).
In Table I we report the corresponding capture rates in
the local Universe (z = 0). The sum is dominated by
contributions coming from the smallest clusters close to
Nev(z), for which the rate is higher (see Fig. 3) and the
cluster number density peaks.

In the estimate of the merger rate from capture, we ne-
glect the impact of adiabatic perturbations, which would
reduce the fraction of mass residing in small-scale struc-
tures in the late-time Universe by boosting the collapse
and virialization of structures above galactic scales. In-
cluding this e�ect would move a larger fraction of DM
into virialized structures of much larger sizes (with corre-
sponding larger velocity dispersion) and smaller densities,
where the dynamical formation of binaries is quenched.
While this may suppress the rate of binaries formed in
the late-time Universe R

cap
BPBH, it does not a�ect the 3b

merger rate, which is dominated by binaries formed in
very small clusters which are evaporating at redshift larger
than O(10 ≠ 100).

We compute the merger rate density of binaries pro-
duced by 3b interactions by integrating the binary forma-
tion rate over the age of the Universe and by multiplying
by the fraction of binaries merging within the remaining
time window t(z) ≠ t

Õ using Eq. (14), summed over the
halo mass function. Therefore, we compute

R
3b
BPBH(z) =

Nú(z)ÿ

N=Nmin

C
�3b(N)

◊

⁄ t(z)

tmin

dt
Õ
Q(N, t(z) ≠ t

Õ)dn
ev
cl (N, t

Õ)
dN

D
, (30)

where t(z) is the age of the Universe at redshift z and
tmin © tf (Nmin). This integral already accounts for the

cluster evaporation timescale through the halo mass func-
tion dn

ev
cl /dN . In Table I we report the 3b rate obtained

for z ƒ 0 for di�erent values of fc and two assumptions on
the eccentricity distribution of binaries, following either
a thermal (“ = 1) or superthermal (“ = 0) distribution.
Notice that the current 3b merger rate density is compa-
rable to the capture rate if one assumes “ = 1, while it
becomes O(102) times larger in case of a superthermal
distribution.

We conservatively report results integrating from clus-
ters larger than Nmin = 10. Including even smaller clusters
in the count would boost the estimated 3b rate due to the
larger number density of small clusters and higher rates
obtained in those environments (see Fig. 3). However,
the dynamics of such small clusters may deviate from the
modeling discussed above and should be estimated with
dedicated few-body simulations.

V. DISCUSSION

In the previous section we presented the computation
of the merger rate from 3b interactions by assuming a
large value of the abundance fPBH, showing the potential
relevance of this channel, largely neglected in the PBH
literature. In this section, we discuss the implications for
various PBH scenarios. With this aim, we start by com-
paring our results to the merger rate of binaries produced
in the early Universe.

A. Comparison with the merger rate of binaries
formed in the early Universe

PBH binaries can form in the early Universe out of
decoupling from the Hubble flow before matter-radiation
equality [68, 69]. Assuming a narrow mass distribution,
the di�erential volumetric PBH merger rate density takes
the form [13, 14, 17, 20]

R
EU
BPBH(z) = 7.1 ◊ 102

Gpc3 yr f

53
37

PBH

3
t(z)
t0

4≠ 34
37

3
m

30M§

4≠ 32
37

◊

5
S(m, fPBH, t(z))

2.4 · 10≠3

6
, (31)

where the suppression factor S < 1 accounts for environ-
mental e�ects in both the early- and late-time Universe,
normalized to its value when fPBH = 1 and z = 0. The
e�ects suppressing the early Universe merger rate con-
tained in S can be divided in two categories. In the early
Universe, close to the binary formation epoch, this ac-
counts for interactions between PBH binaries and both
surrounding DM inhomogeneities and neighboring iso-
lated PBHs [9, 11, 13, 86]. In the late Universe, this
includes the successive disruption of binaries that popu-
late PBH clusters formed from the initial Poisson condi-
tions [14, 20, 22, 87–92] throughout the evolution of the
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tion dn

ev
cl /dN . In Table I we report the 3b rate obtained

for z ƒ 0 for di�erent values of fc and two assumptions on
the eccentricity distribution of binaries, following either
a thermal (“ = 1) or superthermal (“ = 0) distribution.
Notice that the current 3b merger rate density is compa-
rable to the capture rate if one assumes “ = 1, while it
becomes O(102) times larger in case of a superthermal
distribution.

We conservatively report results integrating from clus-
ters larger than Nmin = 10. Including even smaller clusters
in the count would boost the estimated 3b rate due to the
larger number density of small clusters and higher rates
obtained in those environments (see Fig. 3). However,
the dynamics of such small clusters may deviate from the
modeling discussed above and should be estimated with
dedicated few-body simulations.

V. DISCUSSION

In the previous section we presented the computation
of the merger rate from 3b interactions by assuming a
large value of the abundance fPBH, showing the potential
relevance of this channel, largely neglected in the PBH
literature. In this section, we discuss the implications for
various PBH scenarios. With this aim, we start by com-
paring our results to the merger rate of binaries produced
in the early Universe.

A. Comparison with the merger rate of binaries
formed in the early Universe

PBH binaries can form in the early Universe out of
decoupling from the Hubble flow before matter-radiation
equality [68, 69]. Assuming a narrow mass distribution,
the di�erential volumetric PBH merger rate density takes
the form [13, 14, 17, 20]
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6
, (31)

where the suppression factor S < 1 accounts for environ-
mental e�ects in both the early- and late-time Universe,
normalized to its value when fPBH = 1 and z = 0. The
e�ects suppressing the early Universe merger rate con-
tained in S can be divided in two categories. In the early
Universe, close to the binary formation epoch, this ac-
counts for interactions between PBH binaries and both
surrounding DM inhomogeneities and neighboring iso-
lated PBHs [9, 11, 13, 86]. In the late Universe, this
includes the successive disruption of binaries that popu-
late PBH clusters formed from the initial Poisson condi-
tions [14, 20, 22, 87–92] throughout the evolution of the
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where m1 and m2 are the masses of the two BHs. There-
fore, we immediately see that such light mergers would
produce GW signals outside the detectability band of
ground- and space-based interferometers, but could be the
target of ultrahigh frequency GW searches (see Ref. [100]
and references therein).

Here we estimate how the merger rate of 3b binaries
scales with the PBH mass. As the number density of
PBH clusters scales proportionally to the PBH number
density [see Eq. (20)], one finds that it scales as n̄ ≥ m

≠1.
Additionally, the collapsed PBH clusters are character-
ized by a density roughly 200 times the mean density
in the Universe at cluster formation (that does not de-
pend on PBH masses), the size of clusters scales like
R ≥ (Nm/flcl)1/3

≥ m
1/3, and the virial velocity (i.e.,

approximately the characteristic PBH relative velocity) is
‡v ≥ (Nm/R)1/2

≥ m
1/3. As a consequence, the cluster

evaporation time tev becomes independent of the PBH
masses. Finally, from Eq. (14), we find that the Q factor
scales as Q ≥ m

5(1+“)/21. Collecting all contributions,
one obtains

R
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≠1+5(1+“)/21

. (36)

Depending on which distribution of eccentricity is as-
sumed, this becomes either Ã m

≠11/21 for “ = 1 or
Ã m

≠16/21 for “ = 0. Using a similar procedure, the
scaling of the capture channel is found to be
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≠11/21
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which is, strikingly, the same scaling found for the 3b
channels with the thermal distribution.

However, both contributions are largely subdominant
for small PBH masses compared to the early Universe
merger rate, which scales as R

EU
BPBH Ã m

≠32/37. We con-
clude that both dynamical channels are subdominant as
far as the asteroid mass range is concerned.

D. Dark matter spikes

PBHs act like cold DM and generically form density
spikes around SMBHs [101–103]. The spike density profile
is sensitive to the dynamical history of the SMBH and
varies between 9/4 and 3/2. Most analyses converge on a
7/3 profile expected for an ambient Navarro-Frenk-White
halo profile, due to the likely sparsity of late merging
events. The high spike density may boost PBH merger
rates, and here we evaluate the contribution from the 3b
channel.

PBHs may sink into the central density spike by the ac-
tion of dynamical friction. For nearly circular PBH orbits
of radius r, the Chandrasekhar expression for dynamical
friction on PBHs of mass m in a predominantly cold DM
spike is tdf(r)/tcirc ¥ CdfM(< r)/m, where Cdf contains

a logarithmic term and is approximately of order 10. We
adopt a 7/3 spike and set the spike radius to

rsp = GMSMBH

‡2
sp

ƒ 200pc
3

MSMBH

6.5 ◊ 109M§

4 3
‡sp

400km/s

4≠2
, (38)

where ‡sp is the velocity dispersion at r = rsp. We checked
that, in the vicinity of the SMBH for r < rsp, the con-
tribution of the spike to the mass enclosed can be ne-
glected. Thus, we compute the velocity dispersion as
‡

2(r) = GMSMBH/r.
Taking as an example the DM halo of our Milky Way,

we integrate the merger rate density for the capture and
3b channels over radius from 8GMSMBH/c

2 up to rsp fol-
lowing the computation performed in Ref. [104]. We find
�cap

sp ¥ 10≠9yr≠1 for the capture merger rate contribution
from the DM spike of a Milky Way-like galaxy. However,
the contribution from the 3b channel lies 23 orders of
magnitude below the capture counterpart, which indi-
cates that 3b interactions would not contribute to the
dynamical formation of BPBHs in those environments.
The reason for this large suppression of the 3b channel lies
in the fact that the PBH velocity dispersion is dominated
by the gravitational potential of the central SMBH and
is very large. Since the 3b rate depends on the velocity
dispersion through the factor “3b Ã n

3
‡

≠9, the enhanced
high central density is not able to compensate this trend.
We conclude that 3b interactions do not represent an e�-
cient binary formation channel for DM spikes surrounding
SMBHs.

VI. CONCLUSIONS

We investigated the PBH binary merger rate resulting
from dynamical scenarios. By adopting well-known results
in the astrophysical context to describe 3b interaction
rates in star clusters, we analytically computed the rate
of 3b binary formation and merger time delays in the
PBH-induced small-scale structure.

The results are summarized in Fig. 4 [see also Table I
and Eq. (31)]. As discussed above, the contribution from
3b-induced binaries is comparable to the one from dy-
namical capture within conservative assumptions, while it
becomes significantly larger if one assumes a superthermal
distribution of initial eccentricities. This conclusion is
valid independent of the PBH abundance and masses, as
indicated by the scaling relation reported in Sec. V.

We compared this scenario with the merger rate of
binaries formed in the early Universe. Focusing on the
stellar mass range, where the LVKC is currently detecting
GW sources, we find that the merger rate of 3b binaries
cannot significantly contribute to the overall PBH merger
rate as PBHs being a dominant fraction of the dark matter
is ruled out by current constraints [96] which force the
PBH abundance to be fPBH . 10≠3 above the solar mass

10

where m1 and m2 are the masses of the two BHs. There-
fore, we immediately see that such light mergers would
produce GW signals outside the detectability band of
ground- and space-based interferometers, but could be the
target of ultrahigh frequency GW searches (see Ref. [100]
and references therein).

Here we estimate how the merger rate of 3b binaries
scales with the PBH mass. As the number density of
PBH clusters scales proportionally to the PBH number
density [see Eq. (20)], one finds that it scales as n̄ ≥ m

≠1.
Additionally, the collapsed PBH clusters are character-
ized by a density roughly 200 times the mean density
in the Universe at cluster formation (that does not de-
pend on PBH masses), the size of clusters scales like
R ≥ (Nm/flcl)1/3

≥ m
1/3, and the virial velocity (i.e.,

approximately the characteristic PBH relative velocity) is
‡v ≥ (Nm/R)1/2

≥ m
1/3. As a consequence, the cluster

evaporation time tev becomes independent of the PBH
masses. Finally, from Eq. (14), we find that the Q factor
scales as Q ≥ m

5(1+“)/21. Collecting all contributions,
one obtains

R
3b
BPBH Ã Q ◊ R

3
n̄ ◊ tev

m
5
n

3

‡9
v

Ã m
≠1+5(1+“)/21

. (36)

Depending on which distribution of eccentricity is as-
sumed, this becomes either Ã m

≠11/21 for “ = 1 or
Ã m

≠16/21 for “ = 0. Using a similar procedure, the
scaling of the capture channel is found to be
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which is, strikingly, the same scaling found for the 3b
channels with the thermal distribution.

However, both contributions are largely subdominant
for small PBH masses compared to the early Universe
merger rate, which scales as R

EU
BPBH Ã m

≠32/37. We con-
clude that both dynamical channels are subdominant as
far as the asteroid mass range is concerned.

D. Dark matter spikes

PBHs act like cold DM and generically form density
spikes around SMBHs [101–103]. The spike density profile
is sensitive to the dynamical history of the SMBH and
varies between 9/4 and 3/2. Most analyses converge on a
7/3 profile expected for an ambient Navarro-Frenk-White
halo profile, due to the likely sparsity of late merging
events. The high spike density may boost PBH merger
rates, and here we evaluate the contribution from the 3b
channel.

PBHs may sink into the central density spike by the ac-
tion of dynamical friction. For nearly circular PBH orbits
of radius r, the Chandrasekhar expression for dynamical
friction on PBHs of mass m in a predominantly cold DM
spike is tdf(r)/tcirc ¥ CdfM(< r)/m, where Cdf contains

a logarithmic term and is approximately of order 10. We
adopt a 7/3 spike and set the spike radius to
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where ‡sp is the velocity dispersion at r = rsp. We checked
that, in the vicinity of the SMBH for r < rsp, the con-
tribution of the spike to the mass enclosed can be ne-
glected. Thus, we compute the velocity dispersion as
‡

2(r) = GMSMBH/r.
Taking as an example the DM halo of our Milky Way,

we integrate the merger rate density for the capture and
3b channels over radius from 8GMSMBH/c

2 up to rsp fol-
lowing the computation performed in Ref. [104]. We find
�cap

sp ¥ 10≠9yr≠1 for the capture merger rate contribution
from the DM spike of a Milky Way-like galaxy. However,
the contribution from the 3b channel lies 23 orders of
magnitude below the capture counterpart, which indi-
cates that 3b interactions would not contribute to the
dynamical formation of BPBHs in those environments.
The reason for this large suppression of the 3b channel lies
in the fact that the PBH velocity dispersion is dominated
by the gravitational potential of the central SMBH and
is very large. Since the 3b rate depends on the velocity
dispersion through the factor “3b Ã n

3
‡

≠9, the enhanced
high central density is not able to compensate this trend.
We conclude that 3b interactions do not represent an e�-
cient binary formation channel for DM spikes surrounding
SMBHs.

VI. CONCLUSIONS

We investigated the PBH binary merger rate resulting
from dynamical scenarios. By adopting well-known results
in the astrophysical context to describe 3b interaction
rates in star clusters, we analytically computed the rate
of 3b binary formation and merger time delays in the
PBH-induced small-scale structure.

The results are summarized in Fig. 4 [see also Table I
and Eq. (31)]. As discussed above, the contribution from
3b-induced binaries is comparable to the one from dy-
namical capture within conservative assumptions, while it
becomes significantly larger if one assumes a superthermal
distribution of initial eccentricities. This conclusion is
valid independent of the PBH abundance and masses, as
indicated by the scaling relation reported in Sec. V.

We compared this scenario with the merger rate of
binaries formed in the early Universe. Focusing on the
stellar mass range, where the LVKC is currently detecting
GW sources, we find that the merger rate of 3b binaries
cannot significantly contribute to the overall PBH merger
rate as PBHs being a dominant fraction of the dark matter
is ruled out by current constraints [96] which force the
PBH abundance to be fPBH . 10≠3 above the solar mass
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where m1 and m2 are the masses of the two BHs. There-
fore, we immediately see that such light mergers would
produce GW signals outside the detectability band of
ground- and space-based interferometers, but could be the
target of ultrahigh frequency GW searches (see Ref. [100]
and references therein).

Here we estimate how the merger rate of 3b binaries
scales with the PBH mass. As the number density of
PBH clusters scales proportionally to the PBH number
density [see Eq. (20)], one finds that it scales as n̄ ≥ m

≠1.
Additionally, the collapsed PBH clusters are character-
ized by a density roughly 200 times the mean density
in the Universe at cluster formation (that does not de-
pend on PBH masses), the size of clusters scales like
R ≥ (Nm/flcl)1/3

≥ m
1/3, and the virial velocity (i.e.,

approximately the characteristic PBH relative velocity) is
‡v ≥ (Nm/R)1/2

≥ m
1/3. As a consequence, the cluster

evaporation time tev becomes independent of the PBH
masses. Finally, from Eq. (14), we find that the Q factor
scales as Q ≥ m

5(1+“)/21. Collecting all contributions,
one obtains

R
3b
BPBH Ã Q ◊ R

3
n̄ ◊ tev

m
5
n

3

‡9
v

Ã m
≠1+5(1+“)/21

. (36)

Depending on which distribution of eccentricity is as-
sumed, this becomes either Ã m

≠11/21 for “ = 1 or
Ã m

≠16/21 for “ = 0. Using a similar procedure, the
scaling of the capture channel is found to be
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which is, strikingly, the same scaling found for the 3b
channels with the thermal distribution.

However, both contributions are largely subdominant
for small PBH masses compared to the early Universe
merger rate, which scales as R

EU
BPBH Ã m

≠32/37. We con-
clude that both dynamical channels are subdominant as
far as the asteroid mass range is concerned.

D. Dark matter spikes

PBHs act like cold DM and generically form density
spikes around SMBHs [101–103]. The spike density profile
is sensitive to the dynamical history of the SMBH and
varies between 9/4 and 3/2. Most analyses converge on a
7/3 profile expected for an ambient Navarro-Frenk-White
halo profile, due to the likely sparsity of late merging
events. The high spike density may boost PBH merger
rates, and here we evaluate the contribution from the 3b
channel.

PBHs may sink into the central density spike by the ac-
tion of dynamical friction. For nearly circular PBH orbits
of radius r, the Chandrasekhar expression for dynamical
friction on PBHs of mass m in a predominantly cold DM
spike is tdf(r)/tcirc ¥ CdfM(< r)/m, where Cdf contains

a logarithmic term and is approximately of order 10. We
adopt a 7/3 spike and set the spike radius to
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where ‡sp is the velocity dispersion at r = rsp. We checked
that, in the vicinity of the SMBH for r < rsp, the con-
tribution of the spike to the mass enclosed can be ne-
glected. Thus, we compute the velocity dispersion as
‡

2(r) = GMSMBH/r.
Taking as an example the DM halo of our Milky Way,

we integrate the merger rate density for the capture and
3b channels over radius from 8GMSMBH/c

2 up to rsp fol-
lowing the computation performed in Ref. [104]. We find
�cap

sp ¥ 10≠9yr≠1 for the capture merger rate contribution
from the DM spike of a Milky Way-like galaxy. However,
the contribution from the 3b channel lies 23 orders of
magnitude below the capture counterpart, which indi-
cates that 3b interactions would not contribute to the
dynamical formation of BPBHs in those environments.
The reason for this large suppression of the 3b channel lies
in the fact that the PBH velocity dispersion is dominated
by the gravitational potential of the central SMBH and
is very large. Since the 3b rate depends on the velocity
dispersion through the factor “3b Ã n

3
‡

≠9, the enhanced
high central density is not able to compensate this trend.
We conclude that 3b interactions do not represent an e�-
cient binary formation channel for DM spikes surrounding
SMBHs.

VI. CONCLUSIONS

We investigated the PBH binary merger rate resulting
from dynamical scenarios. By adopting well-known results
in the astrophysical context to describe 3b interaction
rates in star clusters, we analytically computed the rate
of 3b binary formation and merger time delays in the
PBH-induced small-scale structure.

The results are summarized in Fig. 4 [see also Table I
and Eq. (31)]. As discussed above, the contribution from
3b-induced binaries is comparable to the one from dy-
namical capture within conservative assumptions, while it
becomes significantly larger if one assumes a superthermal
distribution of initial eccentricities. This conclusion is
valid independent of the PBH abundance and masses, as
indicated by the scaling relation reported in Sec. V.

We compared this scenario with the merger rate of
binaries formed in the early Universe. Focusing on the
stellar mass range, where the LVKC is currently detecting
GW sources, we find that the merger rate of 3b binaries
cannot significantly contribute to the overall PBH merger
rate as PBHs being a dominant fraction of the dark matter
is ruled out by current constraints [96] which force the
PBH abundance to be fPBH . 10≠3 above the solar mass
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where m1 and m2 are the masses of the two BHs. There-
fore, we immediately see that such light mergers would
produce GW signals outside the detectability band of
ground- and space-based interferometers, but could be the
target of ultrahigh frequency GW searches (see Ref. [100]
and references therein).

Here we estimate how the merger rate of 3b binaries
scales with the PBH mass. As the number density of
PBH clusters scales proportionally to the PBH number
density [see Eq. (20)], one finds that it scales as n̄ ≥ m

≠1.
Additionally, the collapsed PBH clusters are character-
ized by a density roughly 200 times the mean density
in the Universe at cluster formation (that does not de-
pend on PBH masses), the size of clusters scales like
R ≥ (Nm/flcl)1/3

≥ m
1/3, and the virial velocity (i.e.,

approximately the characteristic PBH relative velocity) is
‡v ≥ (Nm/R)1/2

≥ m
1/3. As a consequence, the cluster

evaporation time tev becomes independent of the PBH
masses. Finally, from Eq. (14), we find that the Q factor
scales as Q ≥ m
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which is, strikingly, the same scaling found for the 3b
channels with the thermal distribution.

However, both contributions are largely subdominant
for small PBH masses compared to the early Universe
merger rate, which scales as R
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≠32/37. We con-
clude that both dynamical channels are subdominant as
far as the asteroid mass range is concerned.

D. Dark matter spikes

PBHs act like cold DM and generically form density
spikes around SMBHs [101–103]. The spike density profile
is sensitive to the dynamical history of the SMBH and
varies between 9/4 and 3/2. Most analyses converge on a
7/3 profile expected for an ambient Navarro-Frenk-White
halo profile, due to the likely sparsity of late merging
events. The high spike density may boost PBH merger
rates, and here we evaluate the contribution from the 3b
channel.

PBHs may sink into the central density spike by the ac-
tion of dynamical friction. For nearly circular PBH orbits
of radius r, the Chandrasekhar expression for dynamical
friction on PBHs of mass m in a predominantly cold DM
spike is tdf(r)/tcirc ¥ CdfM(< r)/m, where Cdf contains

a logarithmic term and is approximately of order 10. We
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where ‡sp is the velocity dispersion at r = rsp. We checked
that, in the vicinity of the SMBH for r < rsp, the con-
tribution of the spike to the mass enclosed can be ne-
glected. Thus, we compute the velocity dispersion as
‡

2(r) = GMSMBH/r.
Taking as an example the DM halo of our Milky Way,

we integrate the merger rate density for the capture and
3b channels over radius from 8GMSMBH/c

2 up to rsp fol-
lowing the computation performed in Ref. [104]. We find
�cap

sp ¥ 10≠9yr≠1 for the capture merger rate contribution
from the DM spike of a Milky Way-like galaxy. However,
the contribution from the 3b channel lies 23 orders of
magnitude below the capture counterpart, which indi-
cates that 3b interactions would not contribute to the
dynamical formation of BPBHs in those environments.
The reason for this large suppression of the 3b channel lies
in the fact that the PBH velocity dispersion is dominated
by the gravitational potential of the central SMBH and
is very large. Since the 3b rate depends on the velocity
dispersion through the factor “3b Ã n
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≠9, the enhanced
high central density is not able to compensate this trend.
We conclude that 3b interactions do not represent an e�-
cient binary formation channel for DM spikes surrounding
SMBHs.

VI. CONCLUSIONS

We investigated the PBH binary merger rate resulting
from dynamical scenarios. By adopting well-known results
in the astrophysical context to describe 3b interaction
rates in star clusters, we analytically computed the rate
of 3b binary formation and merger time delays in the
PBH-induced small-scale structure.

The results are summarized in Fig. 4 [see also Table I
and Eq. (31)]. As discussed above, the contribution from
3b-induced binaries is comparable to the one from dy-
namical capture within conservative assumptions, while it
becomes significantly larger if one assumes a superthermal
distribution of initial eccentricities. This conclusion is
valid independent of the PBH abundance and masses, as
indicated by the scaling relation reported in Sec. V.

We compared this scenario with the merger rate of
binaries formed in the early Universe. Focusing on the
stellar mass range, where the LVKC is currently detecting
GW sources, we find that the merger rate of 3b binaries
cannot significantly contribute to the overall PBH merger
rate as PBHs being a dominant fraction of the dark matter
is ruled out by current constraints [96] which force the
PBH abundance to be fPBH . 10≠3 above the solar mass
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where m1 and m2 are the masses of the two BHs. There-
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produce GW signals outside the detectability band of
ground- and space-based interferometers, but could be the
target of ultrahigh frequency GW searches (see Ref. [100]
and references therein).
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R
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m
5
n

3
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v

Ã m
≠1+5(1+“)/21

. (36)

Depending on which distribution of eccentricity is as-
sumed, this becomes either Ã m

≠11/21 for “ = 1 or
Ã m

≠16/21 for “ = 0. Using a similar procedure, the
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cap
BPBH(z) Ã R

3
n̄ ◊

m
2
n

2

‡
11/7
v

Ã m
≠11/21
PBH , (37)

which is, strikingly, the same scaling found for the 3b
channels with the thermal distribution.

However, both contributions are largely subdominant
for small PBH masses compared to the early Universe
merger rate, which scales as R

EU
BPBH Ã m

≠32/37. We con-
clude that both dynamical channels are subdominant as
far as the asteroid mass range is concerned.

D. Dark matter spikes

PBHs act like cold DM and generically form density
spikes around SMBHs [101–103]. The spike density profile
is sensitive to the dynamical history of the SMBH and
varies between 9/4 and 3/2. Most analyses converge on a
7/3 profile expected for an ambient Navarro-Frenk-White
halo profile, due to the likely sparsity of late merging
events. The high spike density may boost PBH merger
rates, and here we evaluate the contribution from the 3b
channel.
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‡2
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3

MSMBH

6.5 ◊ 109M§

4 3
‡sp

400km/s

4≠2
, (38)

where ‡sp is the velocity dispersion at r = rsp. We checked
that, in the vicinity of the SMBH for r < rsp, the con-
tribution of the spike to the mass enclosed can be ne-
glected. Thus, we compute the velocity dispersion as
‡

2(r) = GMSMBH/r.
Taking as an example the DM halo of our Milky Way,

we integrate the merger rate density for the capture and
3b channels over radius from 8GMSMBH/c

2 up to rsp fol-
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�cap
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in the fact that the PBH velocity dispersion is dominated
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3
‡

≠9, the enhanced
high central density is not able to compensate this trend.
We conclude that 3b interactions do not represent an e�-
cient binary formation channel for DM spikes surrounding
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VI. CONCLUSIONS
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rates in star clusters, we analytically computed the rate
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The results are summarized in Fig. 4 [see also Table I
and Eq. (31)]. As discussed above, the contribution from
3b-induced binaries is comparable to the one from dy-
namical capture within conservative assumptions, while it
becomes significantly larger if one assumes a superthermal
distribution of initial eccentricities. This conclusion is
valid independent of the PBH abundance and masses, as
indicated by the scaling relation reported in Sec. V.

We compared this scenario with the merger rate of
binaries formed in the early Universe. Focusing on the
stellar mass range, where the LVKC is currently detecting
GW sources, we find that the merger rate of 3b binaries
cannot significantly contribute to the overall PBH merger
rate as PBHs being a dominant fraction of the dark matter
is ruled out by current constraints [96] which force the
PBH abundance to be fPBH . 10≠3 above the solar mass
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such interactions may enhance merger time-delays, reducing the fraction of binaries that
are able to merge within the age of the Universe. The disruptive interaction cross-section
is �p ⇡ 28m

7/4
⌧
1/4

/v
2
relj

29/12, and therefore one obtains

tp ⇠ m
�10/111
PBH , (2.13)

which is only weakly dependent on PBH masses. Additionally, the time-scale for dynamical
relaxation potentially bringing PBH binaries in the cluster centers and enhancing PBH
interactions is independent of the PBH mass [92, 165, 176]. Based upon these considerations,
we conclude that one can safely extrapolate the suppression factor computed for solar-mass
PBH binaries to lower masses.

In order to bracket uncertainties on potentially modified PBH initial conditions, in the
next section we are going to present an estimate for the maximum merger rate potentially
attained in initially clustered PBH scenarios, where the binary formation rate is boosted.
This will serve as an upper bound for the PBH merger rate used in the following sections.

2.2.3 The effect of accretion on the PBH merger rate

PBH binaries may experience efficient phases of accretion impacting individual masses,
spins and the binary’s orbital geometry [93, 99, 100]. In this subsection, we provide an
estimate showing why this potential effect is not expected to modify the merger rate of
light PBHs.

Due to the long characteristic time-scale for the accretion process compared to the
characteristic binary period, one can assume that PBH masses vary adiabatically. There-
fore, one can compute the modification of semi-major axis a and eccentricity e assuming the
adiabatic invariants for the Keplerian two-body problem I� and Ir are kept fixed, i.e. [177]

I� =
1

2⇡

Z
2⇡

0

p�d� = Lz ' const. (2.14)

Ir =
1

2⇡

Z rmax

rmin

prdr = �Lz +
p

Mtotµ
2a ' const., (2.15)

where we introduced the notation for the reduced mass µ = ⌘Mtot. One obtains that the
eccentricity e is an adiabatic invariant while the semi-major axis evolves following

ȧ

a
+ 3

ṁPBH

mPBH
= 0 , (2.16)

assuming equal mass binaries with m1 ' m2 ' mPBH. This shows that mass accretion
shrinks binary orbits. Including this effect in the computation of the merger rate, Eq. (2.6),
leads to an enhancement factor scaling as [100]

RPBH /

✓
1 +

Z
dt

ṁPBH

mPBH

◆
9/37

exp


36

37

Z
dt

ṁPBH

mPBH

�
. (2.17)

At this point, the crucial ingredient is the efficiency of accretion for light PBHs. We are
going to assume that the impact of secondary DM halos accumulating around PBHs (e.g.
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At this point, the crucial ingredient is the efficiency of accretion for light PBHs. We are
going to assume that the impact of secondary DM halos accumulating around PBHs (e.g.
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[100, 178–180]) is small, which is inevitably the case when PBHs are a dominant component
of the DM.3 One can compute the accretion rate in a cosmological setting starting from
high redshift (soon after binary formation epoch) using the Bondi-Hoyle formula. As shown
in Ref. [100], the relevant effective velocity is modulated by the orbital evolution while the
baryonic gas density ⇢ is enhanced by the binary attracting matter on its center of mass.
One finds that

ṁPBH,1 = Ṁbin
1p

2(1 + q)
, ṁPBH,2 = Ṁbin

p
q

p
2(1 + q)

, (2.18)

which simplifies to ṁPBH,1,2 ⇠ Ṁbin/2 for equal mass binaries, where the binary gas accretion
rate is

Ṁbin = 4⇡�⇢gasv
�3

eff M
2

tot , (2.19)

in terms of the effective velocity veff and the accretion eigenvalue � (see Ref. [178] for more
details). Without the effect of a DM halo, this rate was estimated in Ref. [83] to be

Ṁbin

ṀEdd

⇠ 10
�5

✓
Mtot

M�

◆
, (2.20)

when normalised to the Eddington rate ṀEdd ⌘ LEdd ⇡ 2mPBH/Gyr and for redshift below
z ' 10

2, where the mass accretion integrals in Eq. (2.17) are dominated. Therefore, even
conservatively assuming a prolonged accretion phase lasting until well within the reioniza-
tion and structure formation epochs, one finds that

Z
dt
ṁPBH

mPBH
⇠ 3⇥ 10

�4

✓
mPBH

M�

◆
, (2.21)

showing accretion on light PBH binaries is irrelevant and cannot affect the merger rate
through the corrections shown in Eq. (2.17).

2.2.4 Maximum theoretical merger rate

The description of the merger rate in the previous section is based on the standard scenario
of PBH formation where binaries are assembled from an initially Poisson distributed popu-
lation of PBHs. In this section we explore whether changing this initial condition may give
rise to larger PBH merger rates.

It is known that local non-Gaussianities of primordial curvature perturbations can mod-
ify the initial distribution of PBHs and make them clustered directly at the formation time
[181–185].4 In this scenario, since the PBHs are closer to each other on average, the binary

3We note that much larger accretion rates may be obtained when the secondary DM halo becomes
relevant. This has important consequences for PBH binary properties, and in particular the spin distribution
when mPBH & M� [93, 107, 108] and comparison with constraints on the PBH abundance [95, 99]. We do
not expect, however, this effect to be able to qualitatively change the results of this section as far as light
(i.e. sub-solar) PBHs are concerned.

4The clustering of PBHs with masses & M� could be significantly constrained in the future through
CMB distortion observations, probing the scales corresponding to the average PBH distance at formation
[185]. However, the clustering scales corresponding to lighter PBHs considered in this work are much smaller
and not observable with this technique.
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4 Axion-Photon Conversion

Quite generally the Lagrangian density for the interaction of gravitational waves with matter

is

L = −
1

2
hµνT

µν , (4.1)

where in our problem T µν is given by (2.3) and (2.4).

Currently, there is a large interest in axion-photon conversion [21–23], as axions are presently

the leading candidates for dark matter. In a process much like the Gertsenshtein mechanism,

axions emerging from the sun can be transformed into X-ray photons by a strong laboratory

magnetic field and subsequently detected by an X-ray telescope. Indeed, the axion-photon

interaction Lagrangian can be written as

L = −
gaγ
4
aFµνF̃

µν , (4.2)

where F̃ µν ≡ 1
2ε

µναβFαβ is the dual electromagnetic field tensor, a is the axion amplitude and

gaγ is the axion-photon coupling constant.

In terms of the electric and magnetic fields, the above expression amounts to L = gaγ aE ·B,

which is essentially the same Lagrangian as the one we have been using except that the external

magnetic field couples to the E-field of the photon rather than the B-field.

Not surprisingly, then, we can employ Dyson’s approach for axion-photon mixing. In the

high-energy limit in which one can ignore the mass of the axion, and in the presence of a

background magnetic field B0, the coupled equations for the axion a and the E-field of the

photon e are analogous to (2.13) and (2.14):

ä− a′′ = −4gaγB0e

ë− e′′ = gaγa
′′B0,

(4.3)

and they admit oscillatory solutions with mixing length

L =
2

gaγB0
, (4.4)

which agrees with the high-energy limit of [21]. As one can see, this is for all intents and

purposes the result of §2.
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The rest of this paper is organized as follows. In Sec. II, we provide a conceptual overview of the class of experimental

signals discussed here and derive the GW-EM coupling in the form of an e↵ective current. We also demonstrate

gauge invariance between the TT and PD frames with a simple toy example consisting of a GW impinging on a

background magnetic field in empty space. This lays the foundations for applying this formalism to a more realistic

setup consisting of a resonant cavity immersed in a magnetic field, for which we motivate the optimally-coupled cavity

modes in Sec. III. Following a brief survey of possible GW sources in Sec. IV, in Sec. V we discuss the overall sensitivity

of setups identical or similar to existing dark matter haloscopes and catalog the GW-cavity coupling coe�cient for

various resonant modes, GW propagation directions, and GW polarizations. Finally, in Sec. VI we conclude and give

an outlook on future detection possibilities. Appendix A contains additional details about cavity mode functions and

energy densities.

II. GW ELECTRODYNAMICS IN THE PROPER DETECTOR FRAME

In this section, we provide a detailed discussion of GW electrodynamics, paying particular attention to the role of

gauge invariance. Before presenting the technical details, we give a conceptual overview of the signal strength and the

process of graviton-photon conversion in the language of classical fields. As we show in the following sections, we find

this formalism particularly convenient at the level of identifying optimal cavity modes and quantifying the dependence

of the signal on the GW’s direction of propagation. Our notation and conventions follow those of Ref. [53].

The GW-EM coupling is encapsulated in the Einstein-Maxwell action

S =

Z
d4x

p
�g

✓
�

1

4
gµ↵ g⌫� Fµ⌫ F↵�

◆
, (1)

where Fµ⌫ is the EM field strength. To isolate the e↵ect of a GW, we first linearize the metric as gµ⌫ = ⌘µ⌫ + hµ⌫ +

O(h2), where ⌘µ⌫ = diag(�1, 1, 1, 1) is the flat-space metric, hµ⌫ is the dimensionless GW strain, and O(hn) denotes

a quantity order-n in strain hµ⌫ . In the presence of a static external B-field B0, the action contains O(h) terms

schematically of the form ⇠ hB · B0. This implies that a GW of frequency !g can generate an EM field of typical

magnitude hB0 at the same frequency. Inside an EM cavity, this signal will ring up coherently if !g matches the

cavity’s resonant frequency. At the level of single quanta, this e↵ect can be interpreted as graviton-photon mixing in

a background magnetic field, known as the inverse-Gertsenshtein e↵ect [54–56]. We can also describe this e↵ect in

terms of a classical e↵ective current, which as we show below is parametrically of size je↵ ⇠ !g h B0 when the cavity

size is of order Ldet ⇠ 1/!g. Because the graviton is described by a spin-2 tensor field, the direction of this e↵ective

current is non-trivially determined by the polarization of the GW.

As mentioned above, we make use of the PD frame throughout this work. This frame utilizes so-called Fermi-

normal coordinates [51, 57, 58], which describe GWs according to a freely-falling inertial observer (see footnote 3)

and are written as an expansion in the proper distance from the detector’s center of mass. The lowest order terms

in this expansion were derived in Refs. [51, 59–61] and to all orders in Refs. [62, 63]. As we illustrate below, the

EM signals generated by GWs in resonant cavities are most simply described using such coordinates. Regardless,

this computation is non-trivial when the GW wavelength �g is comparable to the cavity size Ldet, in which case the

expansion parameter is Ldet/�g ⇠ O(1) and the series expansion cannot be approximated by the first few terms [64–

68]. As far as we are aware, a closed-form expression for the metric, including terms to all orders in Ldet/�g, has not

been presented previously. In particular, we show below that resumming the metric in the PD frame is possible for a

monochromatic GW of any wavelength traveling along a fixed direction.

A. Analogies with Axion Dark Matter Detection

Though it is not strictly necessary for the logic of the paper, it is useful at this point to make an analogy with axion-

photon conversion, since this will allow us to derive a quick back-of-the-envelope estimate for the sensitivity of existing

axion experiments to GWs. Indeed, the similarity of the phenomenology of axions and gravitons interacting with EM
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Unresolved PBH mergers also contribute to a SGWB, whose spectrum at frequency ⌫ can
be computed as

⌦GW(⌫) =
⌫

⇢0

ZZ
dm1dm2

Z ⌫cut/⌫�1

0

dz

(1 + z)H(z)

dRPBH

dm1dm2

dEGW(⌫s)

d⌫s
, (2.38)

in terms of the redshifted source frequency ⌫s = ⌫(1 + z), the present energy density
⇢0 = 3H

2

0
/8⇡ in terms of the Hubble constant H0, and the energy spectrum of GWs. In

this expression, the redshift upper integration limit corresponds to the maximum z up to
which the energy spectrum can contribute to the given frequency of ⌦GW(⌫) while ⌫cut is
the maximum frequency of the GW emitted by the binary. To compute the integral over
the distribution of masses, we assume a log-normal PBH mass distribution

 (m|Mc,�) =
1

p
2⇡�m

exp


�
log

2
(m/Mc)

2�2

�
, (2.39)

characterised by a central mass scale Mc (not to be confused with the chirp mass mc above)
and a given width �. This model-independent parametrization of the mass function can
describe a population arising from a symmetric peak in the power spectrum of curvature
perturbations in a wide variety of formation models (see e.g. Refs. [210, 211]) and is often
used in the literature to set constraints on the PBH abundance from GW measurements
[91, 94–98, 106, 212, 213].

We describe the GW energy spectrum emitted by coalescing binary BHs using the
phenomenological model presented in Ref. [214]. The GW emission can be divided into
three distinct parts, corresponding to the inspiral, merger and ringdown, respectively. Each
stage is related to a different frequency range ⌫, which depends on the binary BH component
masses m1 and m2, and non-precessing spin magnitudes �1 and �2. Assuming circular
orbits, one can write [215]

dE

d⌫
=

(G⇡)
2/3

M
5/3

3

8
>><

>>:

⌫
�1/3

f
2

1
⌫ < ⌫merger,

!1⌫
2/3

f
2

2
⌫merger  ⌫ < ⌫ringdown,

!2f
2

3
⌫ringdown  ⌫ < ⌫cut.

(2.40)

We report in Appendix A the exact expressions for the factors entering in Eq. (2.40).
Translating the SGWB abundance computed in Eq. (2.38) in terms of a characteristic

strain, we find7

hc(f) ⇡


3

4⇡2

✓
H

2

0

f2

◆
⌦GW(f)

�1/2
, (2.41)

where the current Hubble rate is H0 = 2.18⇥ 10
�18 Hz. Therefore, the characteristic strain

can be written as

hc ⇡ 2⇥ 10
�31

✓
f

GHz

◆�1
✓
⌦GW

10�7

◆
1/2

. (2.42)

7Our definition of characteristic strain hc follows Eq. (4b) of Ref. [110]. Notice a difference of a factorp
2 in the definition of hc compared to [216] (see their Eq. (2.28)).
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2.5 Stochastic gravitational wave background

Unresolved PBH mergers also contribute to a SGWB, whose spectrum at frequency ⌫ can
be computed as

⌦GW(⌫) =
⌫

⇢0
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dm1dm2
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0
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(1 + z)H(z)
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dm1dm2

dEGW(⌫s)

d⌫s
, (2.38)

in terms of the redshifted source frequency ⌫s = ⌫(1 + z), the present energy density
⇢0 = 3H

2

0
/8⇡ in terms of the Hubble constant H0, and the energy spectrum of GWs. In

this expression, the redshift upper integration limit corresponds to the maximum z up to
which the energy spectrum can contribute to the given frequency of ⌦GW(⌫) while ⌫cut is
the maximum frequency of the GW emitted by the binary. To compute the integral over
the distribution of masses, we assume a log-normal PBH mass distribution

 (m|Mc,�) =
1

p
2⇡�m

exp


�
log

2
(m/Mc)

2�2

�
, (2.39)

characterised by a central mass scale Mc (not to be confused with the chirp mass mc above)
and a given width �. This model-independent parametrization of the mass function can
describe a population arising from a symmetric peak in the power spectrum of curvature
perturbations in a wide variety of formation models (see e.g. Refs. [210, 211]) and is often
used in the literature to set constraints on the PBH abundance from GW measurements
[91, 94–98, 106, 212, 213].

We describe the GW energy spectrum emitted by coalescing binary BHs using the
phenomenological model presented in Ref. [214]. The GW emission can be divided into
three distinct parts, corresponding to the inspiral, merger and ringdown, respectively. Each
stage is related to a different frequency range ⌫, which depends on the binary BH component
masses m1 and m2, and non-precessing spin magnitudes �1 and �2. Assuming circular
orbits, one can write [215]
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3
⌫ringdown  ⌫ < ⌫cut.

(2.40)

We report in Appendix A the exact expressions for the factors entering in Eq. (2.40).
Translating the SGWB abundance computed in Eq. (2.38) in terms of a characteristic

strain, we find7

hc(f) ⇡


3

4⇡2

✓
H

2

0

f2

◆
⌦GW(f)

�1/2
, (2.41)

where the current Hubble rate is H0 = 2.18⇥ 10
�18 Hz. Therefore, the characteristic strain

can be written as

hc ⇡ 2⇥ 10
�31

✓
f

GHz

◆�1
✓
⌦GW

10�7

◆
1/2

. (2.42)

7Our definition of characteristic strain hc follows Eq. (4b) of Ref. [110]. Notice a difference of a factorp
2 in the definition of hc compared to [216] (see their Eq. (2.28)).
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Figure 5.25: Left: Merger rate evolution of the PBH model compared to various representative
astrophysical channels (dynamical, isolated and Pop III, see Ref. [579] and Refs. therein). The
vertical dashed line indicates redshift z ⇡ 30, above which one does not expect any ABH mergers and
where the PBH merger rate can still be sizeable. Right: Comoving volume factor dV/dz (in units
of Gpc

3), redshift factor 1/(1 + z) and their contribution combined with the PBH merger rate.

to redshift as large as z & 50 in their optimal mass window. This property, as we will see, can be
exploited to unequivocally discover a PBH population of binaries. We will discuss this possibility by
following Ref. [5].

One of the most prominent di↵erences between the PBH scenario and any astrophysical formation
scenario is the predicted redshift evolution of the merger rate. Even though the GWTC-2 catalog
is still limited to “local” (i.e. low redshift) GW signals coming from sources with z . 1, future
observations with extended horizons will be able to test the merger rate evolution to distinguish
between di↵erent binary BH populations at current [610–612] and future detectors [579, 613–615].

The redshift evolution of the merger rate density for the PBH model is found to be monotonically
increasing as [12, 169, 170]

RPBH(z) t (t/t0)
�34/37

, (5.4.1)

extending up to redshifts z = O(103). Notice that the evolution of the merger rate with time shown
in Eq. (5.4.1) is entirely determined by the binary formation mechanism (i.e. how pairs of PBHs
decouple from the Hubble flow) before the matter-radiation equality era, see Sec. 4.5 and Eq. (4.6.36).
Eq. (5.4.1) is, therefore, a robust prediction of the PBH model assuming the standard formation
scenario where PBHs are generated with an initial spatial Poisson distribution. On the other hand,
the merger rate of astrophysical binaries is expected to peak at redshift of a few with a possible second
peak coming from a Pop III population at redshift z ⇠ 10 [579, 616–618]. In Fig. 5.25, we show a
comparison between the merger rate evolution of di↵erent astrophysical channels and the PBH model.

The total number of events per unit time produced in the PBH model is also dependent on the
volume (dV /dz) and redshift ((1+z)�1) factors as (see App. C and the discussion around Eq. (C.10))

Ndet/Tobs ⌘
Z

dm1dm2dz pdet(m1, m2, z)
1

1 + z

dV

dz

dRPBH

dm1dm2

, (5.4.2)

where pdet accounts for the detection bias. We show the distribution with redshift of the vol-
ume/redshift factors, alongside the PBH intrinsic merger rate, in Fig. 5.25. As the volume accessible
in each redshift bin has its maximum value close to z ⇡ O(1), the monotonically growing PBH merger
rate give rise to a distribution of events in redshift which is peaking at z ⇡ O(few), while still admit-
ting a sizeable contribution at very high redshift (z & 30). In other words, the limiting factor in the
search for high-redshift mergers will be the experiment reach.

Astrophysical models predict that the first BHs are born from Pop III stars [619–622]. Their
formation should, however, only take place at z . 25 [623]. We will conservatively assume that they
form below redshift z = 30. Furthermore, their merger time depends on the formation mechanisms of
the binaries and could range from O(Gyr) (in which case they merge at z . 6) to O(10 Myr) if they

Merger rate evoluUon

Redshiv

This SGWB not subject to CMB bound
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2.5 Stochastic gravitational wave background

Unresolved PBH mergers also contribute to a SGWB, whose spectrum at frequency ⌫ can
be computed as

⌦GW(⌫) =
⌫

⇢0
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dm1dm2

Z ⌫cut/⌫�1

0

dz

(1 + z)H(z)

dRPBH

dm1dm2

dEGW(⌫s)
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, (2.38)

in terms of the redshifted source frequency ⌫s = ⌫(1 + z), the present energy density
⇢0 = 3H

2

0
/8⇡ in terms of the Hubble constant H0, and the energy spectrum of GWs. In

this expression, the redshift upper integration limit corresponds to the maximum z up to
which the energy spectrum can contribute to the given frequency of ⌦GW(⌫) while ⌫cut is
the maximum frequency of the GW emitted by the binary. To compute the integral over
the distribution of masses, we assume a log-normal PBH mass distribution

 (m|Mc,�) =
1

p
2⇡�m

exp


�
log

2
(m/Mc)

2�2

�
, (2.39)

characterised by a central mass scale Mc (not to be confused with the chirp mass mc above)
and a given width �. This model-independent parametrization of the mass function can
describe a population arising from a symmetric peak in the power spectrum of curvature
perturbations in a wide variety of formation models (see e.g. Refs. [210, 211]) and is often
used in the literature to set constraints on the PBH abundance from GW measurements
[91, 94–98, 106, 212, 213].

We describe the GW energy spectrum emitted by coalescing binary BHs using the
phenomenological model presented in Ref. [214]. The GW emission can be divided into
three distinct parts, corresponding to the inspiral, merger and ringdown, respectively. Each
stage is related to a different frequency range ⌫, which depends on the binary BH component
masses m1 and m2, and non-precessing spin magnitudes �1 and �2. Assuming circular
orbits, one can write [215]
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(2.40)

We report in Appendix A the exact expressions for the factors entering in Eq. (2.40).
Translating the SGWB abundance computed in Eq. (2.38) in terms of a characteristic

strain, we find7
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, (2.41)

where the current Hubble rate is H0 = 2.18⇥ 10
�18 Hz. Therefore, the characteristic strain

can be written as

hc ⇡ 2⇥ 10
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10�7

◆
1/2

. (2.42)

7Our definition of characteristic strain hc follows Eq. (4b) of Ref. [110]. Notice a difference of a factorp
2 in the definition of hc compared to [216] (see their Eq. (2.28)).
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• CharacterisUc strain:
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Figure 3. Left: Charactetistic size of a region containing at least a merger event per year. The
change in slope happening around 10

�5
M� corresponds to where the local DM enhancement start

decreasing, i.e. for r & r�. Right: Time it takes for a BH binary of masses m1 = m2 = m to span
a range of frequencies at least as large as half a decade above fst.

the distribution of binaries to follow the large/galactic scales, the local DM overdensity
enhances the merger rate in Eq. (2.6) by an overall factor of

R
local
PBH(r) = �(r)RPBH , (2.26)

where we defined the overdensity factor �(r) ⌘ ⇢DM(r)/⇢̄DM. Therefore, one finds that this
correction falls within the range �(r) ⇢ (1÷ 2⇥ 10

5
) .

Accounting for this local enhancement factor, we compute the volume Vyr, or equiva-
lently the distance dyr ⌘ (3Vyr/4⇡)

1/3, enclosing the region where one expects at least one
merger per year, on average. We will neglect the effect of cosmological redshift as it is
irrelevant for the small distances with which we are concerned. We define the number of
events per year Nyr within the volume Vyr as

Nyr ⌘ �t

Z dyr

0

dr4⇡r
2
R

local
PBH(r) , (2.27)

where we set �t = 1yr. In Fig. 3, we show the distance dyr as a function of PBH masses
and abundance for Nyr = 1 and assuming a narrow PBH mass distribution. It is interesting
to notice that when the characteristic merger distance becomes larger than O(10) kpc,
the galactic overdensity decreases significantly and dyr changes slope, leading to steeper
dependence on PBH mass. Once �(r) ⇠ O(1), the slope goes back to the one expected from
the volume factor and a constant merger rate per unit volume.

2.4 Gravitational wave strain and signal duration

As we will see in the following, two crucial properties of PBH mergers affect the binary
detectability. These are the characteristic GW strain and the GW signal duration. The
leading-order GW signal from a BH inspiral for the two polarizations h+,⇥ in the stationary
phase approximation (assuming that the frequency varies slowly) can be written as [201]

h+,⇥(t) = h0 F+,⇥(✓)G+,⇥(t) , (2.28)
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S(fPBH) , (1)

where t0 denotes the age of the Universe, m is the PBH
mass3, fPBH is the fraction of DM in PBHs, and S < 1
is a suppression factor. The latter can be divided into
two parts, S = S1S2: The first one excludes initial con-
figurations where a third PBH likely falls into the bi-
nary and includes the e↵ect of perturbations in the am-
bient smooth matter component. S1 is independent of t,
but depends non-trivially on the mass function, the vari-
ance of matter density fluctuations and the PBH abun-
dance [9]. We will use the approximate S1 derived in
Ref. [20]. For 10�4

 fPBH  1, this factor is in the
range 0.16 < S1 < 0.47 and for smaller abundances it

decreases as f21/37
PBH

so that then R / f2

PBH
. The second

factor, S2, excludes binaries that become part of a DM
halo in which close encounters with other PBH are very
likely. This suppression factor accounts for the enhanced
small-scale structure formation in PBH cosmologies [57–
59] and depends on the time when the binary merges. At
t = t0 it can be approximated by [10]

S2(t= t0) = min
h
1, 9.6⇥ 10�3f�0.65

PBH
e0.03 ln

2fPBH

i
. (2)

For binaries merging at time t, the factor S2 is obtained
by replacing fPBH ! fPBH(t/t0)0.44 in (2). For fPBH = 1
the present (t = t0) total suppression factor is S = 2.3⇥
10�3.

We assume that PBHs are not initially clustered. Ini-
tial clustering generally enhances formation of the ini-
tial PBH binaries [7, 12, 60, 61], but it can also increase
the probability for these binaries to be disrupted later in
DM haloes [9, 10, 14, 62]. The latter thus suppresses the
merger rate of PBH binaries from this formation channel.
At the same time, initial clustering can boost the merger
rate of other PBH binary formation channels, which are
subdominant in the initially Poissonian case, e.g., of dis-
rupted initial PBH binaries [10] or of binaries formed
later in DM haloes [6, 7, 14, 62]. With strong initial clus-
tering, the future GW interferometers may probe PBH
abundances as low as fPBH = 10�10 [61].

For subsolar mass PBH binaries, the overdensity of the
Milky Way DM halo has to be taken into account. As-
suming that the present density of PBH binaires follows
the density of the rest of the DM, this simply gives an ex-
tra factor of �(r) ⌘ ⇢DM(r)/⇢̄DM for the merger rate. We
model the Milky Way DM halo by the Navarro-Frenk-
White density profile [63, 64],

⇢DM(r) =
⇢0

r
r0

⇣
1 + r

r0

⌘2 , (3)

3 For simplicity, we assume a monochromatic PBH mass function.
A more general expression for the merger rate is reviewed e.g. in
Ref. [20].
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FIG. 1. Left panel: The density contrast of the Milky Way
DM halo as a function of radius. Right panel: The average
DM density contrast as a function of the distance from the
Solar System.

with r0 = 15.6kpc. The reference energy density ⇢0 is
chosen such that the local (r� = 8.0 kpc) DM density is
⇢DM(r=r�) = 7.9⇥10�3M�/pc3 [65]. This density pro-
file is shown in the left panel of Fig. 1. At large distances
where ⇢DM(r) < ⇢̄DM we take �(r) = 1. The average DM
density contrast at distance d from the Solar System is

�̄(d) = max


1,

1

2

Z
1

�1

dcos ✓ �(r)

�
, (4)

where r2 = d2 + r2� � 2 cos ✓ d r�. We show �̄(d) in the
right panel of Fig. 1. For example, assuming fPBH =
1 the total number of PBHs within the virial radius
(� = 200) in the Milky Way halo is 1.4⇥ 1025 [1020 g/m]
and their total present (t = t0) present merger rate is
3/yr [10�5M�/m]32/37. Note that, since light nearby bi-
naries can be observable for a much longer period than
a year (see Fig. 3), then the number of binaries that are
observable at each instant can be much larger.

III. GW INTERFEROMETERS

Three qualitatively di↵erent types of GW signals can
originate from BH binaries: individual mergers appear-
ing in relatively brief transient signals, inspiralling bina-
ries causing a nearly monochromatic signal that can last
much longer than the observational period, and individ-
ually unresolvable binaries contributing to the SGWB.
We will consider each case separately and study how the
PBH hypothesis can be tested by searching for such GW
signals with future GW interferometers.

A. Short-duration transient signals

Let us first consider relatively short GW signals from
individual PBH binary mergers. The expected number
of PBH binary mergers that a GW detector, whose sensi-
tivity is characterized by a noise power spectrum Sn(f),

Figure 3. Left: Charactetistic size of a region containing at least a merger event per year. The
change in slope happening around 10

�5
M� corresponds to where the local DM enhancement start

decreasing, i.e. for r & r�. Right: Time it takes for a BH binary of masses m1 = m2 = m to span
a range of frequencies at least as large as half a decade above fst.

the distribution of binaries to follow the large/galactic scales, the local DM overdensity
enhances the merger rate in Eq. (2.6) by an overall factor of

R
local
PBH(r) = �(r)RPBH , (2.26)

where we defined the overdensity factor �(r) ⌘ ⇢DM(r)/⇢̄DM. Therefore, one finds that this
correction falls within the range �(r) ⇢ (1÷ 2⇥ 10

5
) .

Accounting for this local enhancement factor, we compute the volume Vyr, or equiva-
lently the distance dyr ⌘ (3Vyr/4⇡)

1/3, enclosing the region where one expects at least one
merger per year, on average. We will neglect the effect of cosmological redshift as it is
irrelevant for the small distances with which we are concerned. We define the number of
events per year Nyr within the volume Vyr as
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where we set �t = 1yr. In Fig. 3, we show the distance dyr as a function of PBH masses
and abundance for Nyr = 1 and assuming a narrow PBH mass distribution. It is interesting
to notice that when the characteristic merger distance becomes larger than O(10) kpc,
the galactic overdensity decreases significantly and dyr changes slope, leading to steeper
dependence on PBH mass. Once �(r) ⇠ O(1), the slope goes back to the one expected from
the volume factor and a constant merger rate per unit volume.

2.4 Gravitational wave strain and signal duration

As we will see in the following, two crucial properties of PBH mergers affect the binary
detectability. These are the characteristic GW strain and the GW signal duration. The
leading-order GW signal from a BH inspiral for the two polarizations h+,⇥ in the stationary
phase approximation (assuming that the frequency varies slowly) can be written as [201]

h+,⇥(t) = h0 F+,⇥(✓)G+,⇥(t) , (2.28)
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tial clustering generally enhances formation of the ini-
tial PBH binaries [7, 12, 60, 61], but it can also increase
the probability for these binaries to be disrupted later in
DM haloes [9, 10, 14, 62]. The latter thus suppresses the
merger rate of PBH binaries from this formation channel.
At the same time, initial clustering can boost the merger
rate of other PBH binary formation channels, which are
subdominant in the initially Poissonian case, e.g., of dis-
rupted initial PBH binaries [10] or of binaries formed
later in DM haloes [6, 7, 14, 62]. With strong initial clus-
tering, the future GW interferometers may probe PBH
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suming that the present density of PBH binaires follows
the density of the rest of the DM, this simply gives an ex-
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(� = 200) in the Milky Way halo is 1.4⇥ 1025 [1020 g/m]
and their total present (t = t0) present merger rate is
3/yr [10�5M�/m]32/37. Note that, since light nearby bi-
naries can be observable for a much longer period than
a year (see Fig. 3), then the number of binaries that are
observable at each instant can be much larger.
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ries causing a nearly monochromatic signal that can last
much longer than the observational period, and individ-
ually unresolvable binaries contributing to the SGWB.
We will consider each case separately and study how the
PBH hypothesis can be tested by searching for such GW
signals with future GW interferometers.
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Let us first consider relatively short GW signals from
individual PBH binary mergers. The expected number
of PBH binary mergers that a GW detector, whose sensi-
tivity is characterized by a noise power spectrum Sn(f),
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the distribution of binaries to follow the large/galactic scales, the local DM overdensity
enhances the merger rate in Eq. (2.6) by an overall factor of
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PBH(r) = �(r)RPBH , (2.26)

where we defined the overdensity factor �(r) ⌘ ⇢DM(r)/⇢̄DM. Therefore, one finds that this
correction falls within the range �(r) ⇢ (1÷ 2⇥ 10
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Accounting for this local enhancement factor, we compute the volume Vyr, or equiva-
lently the distance dyr ⌘ (3Vyr/4⇡)

1/3, enclosing the region where one expects at least one
merger per year, on average. We will neglect the effect of cosmological redshift as it is
irrelevant for the small distances with which we are concerned. We define the number of
events per year Nyr within the volume Vyr as
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dr4⇡r
2
R

local
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where we set �t = 1yr. In Fig. 3, we show the distance dyr as a function of PBH masses
and abundance for Nyr = 1 and assuming a narrow PBH mass distribution. It is interesting
to notice that when the characteristic merger distance becomes larger than O(10) kpc,
the galactic overdensity decreases significantly and dyr changes slope, leading to steeper
dependence on PBH mass. Once �(r) ⇠ O(1), the slope goes back to the one expected from
the volume factor and a constant merger rate per unit volume.

2.4 Gravitational wave strain and signal duration

As we will see in the following, two crucial properties of PBH mergers affect the binary
detectability. These are the characteristic GW strain and the GW signal duration. The
leading-order GW signal from a BH inspiral for the two polarizations h+,⇥ in the stationary
phase approximation (assuming that the frequency varies slowly) can be written as [201]

h+,⇥(t) = h0 F+,⇥(✓)G+,⇥(t) , (2.28)
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where we set �t = 1yr. In Fig. 3, we show the distance dyr as a function of PBH masses
and abundance for Nyr = 1 and assuming a narrow PBH mass distribution. It is interesting
to notice that when the characteristic merger distance becomes larger than O(10) kpc,
the galactic overdensity decreases significantly and dyr changes slope, leading to steeper
dependence on PBH mass. Once �(r) ⇠ O(1), the slope goes back to the one expected from
the volume factor and a constant merger rate per unit volume.
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As we will see in the following, two crucial properties of PBH mergers affect the binary
detectability. These are the characteristic GW strain and the GW signal duration. The
leading-order GW signal from a BH inspiral for the two polarizations h+,⇥ in the stationary
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where we set �t = 1yr. In Fig. 3, we show the distance dyr as a function of PBH masses
and abundance for Nyr = 1 and assuming a narrow PBH mass distribution. It is interesting
to notice that when the characteristic merger distance becomes larger than O(10) kpc,
the galactic overdensity decreases significantly and dyr changes slope, leading to steeper
dependence on PBH mass. Once �(r) ⇠ O(1), the slope goes back to the one expected from
the volume factor and a constant merger rate per unit volume.

2.4 Gravitational wave strain and signal duration

As we will see in the following, two crucial properties of PBH mergers affect the binary
detectability. These are the characteristic GW strain and the GW signal duration. The
leading-order GW signal from a BH inspiral for the two polarizations h+,⇥ in the stationary
phase approximation (assuming that the frequency varies slowly) can be written as [201]
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• Amplitude as a funcUon of the system masses, source distance and frequency:
where F+,⇥(✓) is a function that depends on the binary orientation angle ✓, G+,⇥(t) corre-
sponds to the binary oscillation phase, and
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where mc = (m1m2)
3/5

/(m1 +m2)
1/5 is the chirp mass for two BHs with masses m1 and

m2 (in the last step we have used m1 = m2 = mPBH), and dL is the distance from the
observer. Adopting the stationary phase approximation, the GW signal in Fourier space
is [202]

h̃+,⇥(f) = A+,⇥e
i +,⇥(f)

, (2.30)

where the explicit expressions for  +,⇥(f) and A+,⇥ are given e.g. in [201]. Assuming equal
mass binaries, the characteristic strain hc(f) ⌘ 2f |h̃(f)| is

|hc(f)| ' 4.54⇥ 10
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where we have used that ignoring the angular dependence one has |h̃(f)| ⇡ |h̃+(f)| ⇡

|h̃⇥(f)|. This modeling of the GW signal only includes the inspiral phase of the binary
up to the ISCO frequency in Eq. (1.1), before the objects plunge, merge and the ringdown
signal is emitted by the remnant BH reaching its stationary configuration. This is, however,
sufficient for our purposes as only the GW signal produced during the inspiral phase can last
for a sufficiently long time to allow for potential detection (see more details in Sec. 3). We
also observe from Fig. 3 that for binaries at the edge of the galactic DM enhancement (e.g.
mPBH & 10

�6
M� and high fPBH), the characteristic distance grows roughly as dyr / mPBH.

On the other hand, the characteristic strain scales as hc / m
5/6
PBH. This means that one

expects a similar strain from characteristic inspiraling sources within such a mass range,
unless mPBH & 10

�3
M�.

An important property of inspiraling sources is the GW signal duration. If we consider
an equal mass PBH binary with m1 = m2 = mPBH, the coalescence time can be written
as [201]

⌧(f) ⇡ 83 sec

✓
mPBH

10�12M�

◆�5/3✓
f

GHz

◆�8/3

. (2.32)

Using Eq. (2.32), one can find the time spent by the inspiral phase to span a given frequency
interval. This quantity will be crucial when computing the detector sensitivities in Sec. 3.
In Fig. 3, we show the time it takes for an equal-mass binary to span at least half a decade
of frequencies. We warn the reader, however, that the time spent spanning a very narrow
resonant frequency band could be much smaller than what is estimated in Eq. (2.32). We
will discuss this in detail in the next section.

2.4.1 GW amplitude vs characteristic strain

The variation of the GW frequency plays a crucial role in the definition of the characteristic
strain for coherent GW signals. Let us consider for instance two BHs in the inspiral phase:
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up to the ISCO frequency in Eq. (1.1), before the objects plunge, merge and the ringdown
signal is emitted by the remnant BH reaching its stationary configuration. This is, however,
sufficient for our purposes as only the GW signal produced during the inspiral phase can last
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Using Eq. (2.32), one can find the time spent by the inspiral phase to span a given frequency
interval. This quantity will be crucial when computing the detector sensitivities in Sec. 3.
In Fig. 3, we show the time it takes for an equal-mass binary to span at least half a decade
of frequencies. We warn the reader, however, that the time spent spanning a very narrow
resonant frequency band could be much smaller than what is estimated in Eq. (2.32). We
will discuss this in detail in the next section.

2.4.1 GW amplitude vs characteristic strain

The variation of the GW frequency plays a crucial role in the definition of the characteristic
strain for coherent GW signals. Let us consider for instance two BHs in the inspiral phase:
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• GW emission dictates the Ume evoluUon of the binary. Time to coalescence:
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sufficient for our purposes as only the GW signal produced during the inspiral phase can last
for a sufficiently long time to allow for potential detection (see more details in Sec. 3). We
also observe from Fig. 3 that for binaries at the edge of the galactic DM enhancement (e.g.
mPBH & 10

�6
M� and high fPBH), the characteristic distance grows roughly as dyr / mPBH.

On the other hand, the characteristic strain scales as hc / m
5/6
PBH. This means that one

expects a similar strain from characteristic inspiraling sources within such a mass range,
unless mPBH & 10

�3
M�.

An important property of inspiraling sources is the GW signal duration. If we consider
an equal mass PBH binary with m1 = m2 = mPBH, the coalescence time can be written
as [201]

⌧(f) ⇡ 83 sec

✓
mPBH

10�12M�

◆�5/3✓
f

GHz

◆�8/3

. (2.32)

Using Eq. (2.32), one can find the time spent by the inspiral phase to span a given frequency
interval. This quantity will be crucial when computing the detector sensitivities in Sec. 3.
In Fig. 3, we show the time it takes for an equal-mass binary to span at least half a decade
of frequencies. We warn the reader, however, that the time spent spanning a very narrow
resonant frequency band could be much smaller than what is estimated in Eq. (2.32). We
will discuss this in detail in the next section.

2.4.1 GW amplitude vs characteristic strain

The variation of the GW frequency plays a crucial role in the definition of the characteristic
strain for coherent GW signals. Let us consider for instance two BHs in the inspiral phase:
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MADMAX (B = 4.83T, L = 6m, A ' 1.23m2) using Eq. (3.6) we can compute the
minimum frequency that can be probed by these experiments:

f
ALPS
min � 4.6⇥ 10

12
Hz , f

IAXO
min � 2.2⇥ 10

9
Hz , f

MADMAX
min � 2.1⇥ 10

8
Hz . (3.8)

Given that the amplitude of the signal drops at higher frequencies, IAXO and MADMAX
appear to be the most suitable experiment to probe the signals that we are interested in.

From Eq. (3.7), it is clear that the sensitivity depends crucially on the combination
BLA

1/2 and on the measurement time �t. In particular, the dependence (�t/yr)
�1/4

proves that the sensitivity gets better when the signal remains for a sufficiently long time
in the observable frequency band of the detector. This excludes immediately the possibility
of detecting the chirp phase of light PBH mergers with these types of detectors. Indeed,
combining Eqs. (1.1) and (2.32), one finds that the final phase of a PBH merger would only
last for

�t ⇠ O(1)⇥
1

fISCO
. O(10

�8
) sec, (3.9)

where the frequencies must be f & 10
8
Hz to satisfy Eq. (3.6). An ideal candidate signal

would be the one coming from superradiant bosonic fields, that gives monochromatic GWs
with a long coherence time.

However, it is also possible to detect the early inspiral phase of single light PBH merg-
ers: as the PBH binary gets closer to merging, the frequency of the produced GW grows,
spanning the detector sensitivity range from low to high frequencies. If the change in fre-
quency is slow enough, the signal remains in the detector sensitivity band for a sufficient
time interval, potentially allowing for detection. Of course, this type of detector is well
suited for the probe of SGWB signals, given that the integration time is not an issue in
that case.

Given that the graviton-to-photon conversion is sensitive to the GW amplitude prop-
agating along the direction of the magnetic field B, one should account for the effective
contribution of the GW amplitude along the detector principal axis. As the photon emis-
sion depends quadratically on the GW strain, in the case of SGWBs we may consider the
average over all the orientations, which amounts to a factor hcos2(✓)i ' 1/2. In the case of
single event mergers we should keep in mind that the sensitivities reported here are maxi-
mum values: the signal would be suppressed by a factor O(1) depending on the orientation
and specific details of the experimental apparatus.

In the analyses of Sec. 3.6 we will always assume that the detectors have S/N = 2,
�D = 10

�3 and ✏ = 1. In particular, we will consider three possibilities: i) a hypothetical
SPD detector (HSPD) that spans a frequency range of �f = 5 ⇥ 10

8 Hz with minimum
frequency fmin = 5 ⇥ 10

8 Hz and parameters equal to the benchmark values of Eq. (3.7)
(B = 1T, L = 1m, A = 0.785m2 (corresponding to a radius of 0.5m); ii) MADMAX, with
the specifics above and spanning the frequency range f ⇢ (2÷ 4)⇥ 10

9 Hz; iii) IAXO, with
the specifics above and spanning the frequency range f ⇢ (2.8÷ 5.1)⇥ 10

10 Hz. 13

13Note that, in this section, we are assuming that the scaling of sensitivity as a function of observation
time given in Eq. (3.7) remains valid. If the number of photons expected in the photon detector is smaller
than one, the sensitivity might degrade further and would need a dedicated analysis.
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CompuUng the detector sensiUviUes to isolated mergers

Events with 1/yr rate and PBH abundance = totality of dark maDer (opUmisUc)

as they emit GWs, they get closer and closer to each other and eventually merge. As
they are approaching, the GW frequency, which is twice the orbital frequency, grows. The
number of cycles that the binary spends at a given frequency f is determined by [203],

Ncycles =
f
2

ḟ
' 2.16⇥ 10

6

✓
f

109 Hz

◆�5/3✓
mPBH

10�9M�

◆�5/3

. (2.33)

Ncycles is an important quantity because it determines whether the signal can be considered
to be approximately monochromatic, if Ncycles � 1. In the stationary phase approximation,
a GW signal with an approximately constant amplitude h0 as defined in Eq. (2.29) produces
a characteristic strain

hc(f) =

s
2f2

ḟ
h0 , (2.34)

where ḟ can be explicitly written as [201]

ḟ =
96

5
⇡
8/3

m
5/3
c f

11/3
' 4.62⇥ 10

11 Hz2
✓

mPBH

10�9M�

◆
5/3✓

f

GHz

◆
11/3

, (2.35)

and we considered two equal mass PBHs m1 = m2 = mPBH. Note that only close to the
ISCO frequency, namely at the final phase of the merger, the prefactor f

2
/ḟ ⇠ O(1), and

then hc(f) is of the same order of magnitude as the GW amplitude h0.

When comparing a GW signal with a detector sensitivity curve, one has to compare the
observation time tobs with the characteristic time of variation of the frequency tf = f/ḟ . If
tobs ⌧ tf, the observation time sets an upper bound on N

obs
cycles < Ncycles and the characteristic

strain is mainly determined by h0

hc(f) '

q
N

obs
cycles h0 , for tobs ⌧ tf . (2.36)

In the opposite limit, when tobs � tf, then one can observe the signal for its entire duration
and the characteristic strain is enhanced by a factor

p
Ncycles with respect to the GW

amplitude
hc(f) '

p
Ncycles h0 , for tobs � tf . (2.37)

Note that Eq. (2.36) is also valid for strictly monochromatic sources, for which the prefactor
f
2
/ḟ in Eq. (2.34) is not well-defined and the condition tobs ⌧ tf is always satisfied.

In other words, for a coherent GW signal, hc(f) represents the maximum signal that can
be observed at a given frequency, as it takes into account the maximum enhancement due
to the intrinsic number of cycles spent by the binary at that frequency. If the observation
time is smaller than the characteristic time of variation of the GW frequency, then the GW
signal is suppressed by a factor (N

obs
cycles/Ncycles)

1/2 with respect to hc.
In Fig. 4 we plot the detector sensitivity curves against the characteristic strain hc,

which is an upper bound on the observable signal, for a binary located at a distance dyr
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• Typical Umescale for the frequency evoluUon:

• EffecUve number of cycles per frequencies: 
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Ncycles is an important quantity because it determines whether the signal can be considered
to be approximately monochromatic, if Ncycles � 1. In the stationary phase approximation,
a GW signal with an approximately constant amplitude h0 as defined in Eq. (2.29) produces
a characteristic strain

hc(f) =
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h0 , (2.34)

where ḟ can be explicitly written as [201]
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and we considered two equal mass PBHs m1 = m2 = mPBH. Note that only close to the
ISCO frequency, namely at the final phase of the merger, the prefactor f

2
/ḟ ⇠ O(1), and

then hc(f) is of the same order of magnitude as the GW amplitude h0.

When comparing a GW signal with a detector sensitivity curve, one has to compare the
observation time tobs with the characteristic time of variation of the frequency tf = f/ḟ . If
tobs ⌧ tf, the observation time sets an upper bound on N

obs
cycles < Ncycles and the characteristic

strain is mainly determined by h0

hc(f) '

q
N

obs
cycles h0 , for tobs ⌧ tf . (2.36)

In the opposite limit, when tobs � tf, then one can observe the signal for its entire duration
and the characteristic strain is enhanced by a factor

p
Ncycles with respect to the GW

amplitude
hc(f) '

p
Ncycles h0 , for tobs � tf . (2.37)

Note that Eq. (2.36) is also valid for strictly monochromatic sources, for which the prefactor
f
2
/ḟ in Eq. (2.34) is not well-defined and the condition tobs ⌧ tf is always satisfied.

In other words, for a coherent GW signal, hc(f) represents the maximum signal that can
be observed at a given frequency, as it takes into account the maximum enhancement due
to the intrinsic number of cycles spent by the binary at that frequency. If the observation
time is smaller than the characteristic time of variation of the GW frequency, then the GW
signal is suppressed by a factor (N

obs
cycles/Ncycles)

1/2 with respect to hc.
In Fig. 4 we plot the detector sensitivity curves against the characteristic strain hc,

which is an upper bound on the observable signal, for a binary located at a distance dyr
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• ObservaUon Ume: either dictated by the detector or by the Ume it takes to the binary to span the bandwidth
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“Naive” comparison to sensiUviUes SensiUviUes accounUng for binary evoluUon

as they emit GWs, they get closer and closer to each other and eventually merge. As
they are approaching, the GW frequency, which is twice the orbital frequency, grows. The
number of cycles that the binary spends at a given frequency f is determined by [203],

Ncycles =
f
2

ḟ
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Ncycles is an important quantity because it determines whether the signal can be considered
to be approximately monochromatic, if Ncycles � 1. In the stationary phase approximation,
a GW signal with an approximately constant amplitude h0 as defined in Eq. (2.29) produces
a characteristic strain

hc(f) =

s
2f2

ḟ
h0 , (2.34)

where ḟ can be explicitly written as [201]
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and we considered two equal mass PBHs m1 = m2 = mPBH. Note that only close to the
ISCO frequency, namely at the final phase of the merger, the prefactor f

2
/ḟ ⇠ O(1), and

then hc(f) is of the same order of magnitude as the GW amplitude h0.

When comparing a GW signal with a detector sensitivity curve, one has to compare the
observation time tobs with the characteristic time of variation of the frequency tf = f/ḟ . If
tobs ⌧ tf, the observation time sets an upper bound on N

obs
cycles < Ncycles and the characteristic

strain is mainly determined by h0

hc(f) '

q
N

obs
cycles h0 , for tobs ⌧ tf . (2.36)

In the opposite limit, when tobs � tf, then one can observe the signal for its entire duration
and the characteristic strain is enhanced by a factor

p
Ncycles with respect to the GW

amplitude
hc(f) '

p
Ncycles h0 , for tobs � tf . (2.37)

Note that Eq. (2.36) is also valid for strictly monochromatic sources, for which the prefactor
f
2
/ḟ in Eq. (2.34) is not well-defined and the condition tobs ⌧ tf is always satisfied.

In other words, for a coherent GW signal, hc(f) represents the maximum signal that can
be observed at a given frequency, as it takes into account the maximum enhancement due
to the intrinsic number of cycles spent by the binary at that frequency. If the observation
time is smaller than the characteristic time of variation of the GW frequency, then the GW
signal is suppressed by a factor (N

obs
cycles/Ncycles)

1/2 with respect to hc.
In Fig. 4 we plot the detector sensitivity curves against the characteristic strain hc,

which is an upper bound on the observable signal, for a binary located at a distance dyr
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as they emit GWs, they get closer and closer to each other and eventually merge. As
they are approaching, the GW frequency, which is twice the orbital frequency, grows. The
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Ncycles is an important quantity because it determines whether the signal can be considered
to be approximately monochromatic, if Ncycles � 1. In the stationary phase approximation,
a GW signal with an approximately constant amplitude h0 as defined in Eq. (2.29) produces
a characteristic strain
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and we considered two equal mass PBHs m1 = m2 = mPBH. Note that only close to the
ISCO frequency, namely at the final phase of the merger, the prefactor f
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/ḟ ⇠ O(1), and

then hc(f) is of the same order of magnitude as the GW amplitude h0.

When comparing a GW signal with a detector sensitivity curve, one has to compare the
observation time tobs with the characteristic time of variation of the frequency tf = f/ḟ . If
tobs ⌧ tf, the observation time sets an upper bound on N
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cycles < Ncycles and the characteristic

strain is mainly determined by h0
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In the opposite limit, when tobs � tf, then one can observe the signal for its entire duration
and the characteristic strain is enhanced by a factor

p
Ncycles with respect to the GW

amplitude
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Note that Eq. (2.36) is also valid for strictly monochromatic sources, for which the prefactor
f
2
/ḟ in Eq. (2.34) is not well-defined and the condition tobs ⌧ tf is always satisfied.

In other words, for a coherent GW signal, hc(f) represents the maximum signal that can
be observed at a given frequency, as it takes into account the maximum enhancement due
to the intrinsic number of cycles spent by the binary at that frequency. If the observation
time is smaller than the characteristic time of variation of the GW frequency, then the GW
signal is suppressed by a factor (N

obs
cycles/Ncycles)

1/2 with respect to hc.
In Fig. 4 we plot the detector sensitivity curves against the characteristic strain hc,

which is an upper bound on the observable signal, for a binary located at a distance dyr
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CharacterisUc strain: GW amplitude:
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Maximum theoreUcal merger rate (?)
M. Raidal, V. Vaskonen and H. Veermäe, JCAP 09 (2017), 037 [arXiv:1707.01480] 
T. Bringmann, P. F. Depta, V. Domcke and K. Schmidt-Hoberg, Phys. Rev. D 99 (2019) no.6, 063532 [arXiv:1808.05910] 
V. De Luca, G. Franciolini, P. Pani and A. RioDo, JCAP 11 (2021), 039 [arXiv:2106.13769]

Modify PBH iniUal condiUons, including iniUal PBH clustering (e.g. local NGs)
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PBHs or not) by searching for the lensing signatures of
the ultradense compact halos formed by the enhanced
perturbations?1 Borrowing the analytic description of
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PBHs, and we will discuss implications for alternative
(and agnostic) scenarios in Sec. IV.

Figure 2 shows the primordial curvature power spec-
trum P’(k) (dashed curve) in this model, which grows
as P’ Ã k

4 at scales smaller than those constrained by
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keq ƒ 0.01 Mpc≠1 are the scale factor and horizon wave
number at matter-radiation equality, respectively. We
assume for simplicity that dark matter is infinitely cold. In
practice, for many dark matter models, the matter power
should be truncated at some small scale due to kinetic
coupling with the radiation and the resulting thermal free
streaming (e.g. [82]). Our approach is thus limited to
dark matter models that are capable of clustering at the
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.

A. Ultradense halo formation

As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
threshold for collapse is

”c = 3(1 + ‡/
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where ‡ is the rms density contrast, if we approximate
that the ellipticity e of the initial tidal field within each
region is equal to its most probable value,
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(e.g. [84]). As derived in Ref. [66], the collapse threshold in
Eq. (2) leads to the excursion set mass function (e.g. [85])
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.
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P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
scenario, Ref. [66] showed that the linear density contrast
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.
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As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
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FIG. 1: Illustration of the ultradense halo scenario. We
show a cartoon picture of the primordial density field. A
region of extreme excess density is necessary to exceed
the collapse threshold and produce a PBH (e.g. [83]), but
more modest density excesses are much more common and
form ultradense halos. Note that ultradense halos are not
significantly correlated with PBHs spatially; they simply
arise from the same cosmological scenario. Also, scenarios
with too little primordial power to produce a significant
number of PBHs can still yield abundant ultradense halos,
as we will see in Sec. IV.
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As Fig. 2 shows, the linear matter power spectrum
P(k, a) ≥ 102 at k ƒ 106 Mpc≠1 by a = 10≠5, implying
that matter perturbations are already deeply nonlinear.
During the radiation epoch, initially overdense regions
exert gravitational attraction as they enter the horizon,
which subsequently ceases as the radiation becomes ho-
mogeneous. However, dark matter particles set in motion
by the initial pull continue drifting toward the initially
overdense region, boosting its density further. In this
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Figure 2. Ratio between the maximum attainable merger rate in clustered scenarios and the
merger rate in the standard PBH formation scenario. The ratio scales non-linearly with fPBH and
grows again as / 1/fPBH for small enough values of the abundance.

formation rate is enhanced due to a larger probability of decoupling from the Hubble flow.
However, it is fair to say that little is known about the cosmological evolution of binaries in
PBH halos produced in such a clustered scenario. On the one hand, the presence of dense
PBH halos would likely enhance the rate of binary-PBH gravitational interaction, leading
to binary disruptions and an effective suppression of the merger rate at late time. On the
other hand, dense PBH clusters tend to evaporate due to the gravitational relaxation pro-
cess [165, 176], limiting the potential extent of this suppression. These dynamical processes
are still poorly modeled for clustered scenarios and, therefore, we will purposely neglect
potential suppression factors and adopt this as the maximum theoretical PBH merger rate.
We will also neglect the contribution to the merger rate from disrupted binaries which are
still merging within the age of the Universe and may potentially become relevant for large
fPBH [92].

Clustered PBH scenarios may also boost the merger rate of binaries dynamically formed
in the late-time Universe (e.g. through capture [169, 170] or three-body interactions [186–
189]).5 This holds, however, provided PBH clusters are able to survive dynamical relaxation
until late times [176]. Since a proper assessment of the merger rate in such scenarios is still
lacking in the literature, we neglect such effect and only discuss the maximum theoretical
merger rate attainable from early Universe binary formation from clustered PBHs [171].

Following the notation introduced in Ref. [171], we define the local PBH overdensity in
the early Universe �dc in terms of the PBH correlation function ⇠PBH at formation, assuming
it is constant up to the binary scale x̃ at the decoupling epoch [171, 181, 185, 193, 194],
that is �dc ⇡ 1 + ⇠PBH(x) when x < x̃. In the limit in which the local fraction of PBHs is

5We note that hyperbolic encounters [190–192] give rise to very fast burst of GW radiation, which may
be hard to detect with UHF GW experiments. Additionally, they give a small contribution to the SGWB
compared to binary PBHs [191]. We will therefore neglect this GW source in our considerations.
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Figure 2. Ratio between the maximum attainable merger rate in clustered scenarios and the
merger rate in the standard PBH formation scenario. The ratio scales non-linearly with fPBH and
grows again as / 1/fPBH for small enough values of the abundance.
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still merging within the age of the Universe and may potentially become relevant for large
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the early Universe �dc in terms of the PBH correlation function ⇠PBH at formation, assuming
it is constant up to the binary scale x̃ at the decoupling epoch [171, 181, 185, 193, 194],
that is �dc ⇡ 1 + ⇠PBH(x) when x < x̃. In the limit in which the local fraction of PBHs is

5We note that hyperbolic encounters [190–192] give rise to very fast burst of GW radiation, which may
be hard to detect with UHF GW experiments. Additionally, they give a small contribution to the SGWB
compared to binary PBHs [191]. We will therefore neglect this GW source in our considerations.

– 10 –
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• Primordial Black holes represent a special dark maDer candidate, 

constrained only in a porUon of masses 

• Much of the interesUng parameter space corresponds to mergers 

showing up in the UHF window  

• Reaching compeUUve sensiUvity is hard, interesUng synergies 

with experimental searches for axions

Conclusions
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Figure 7. We plot characteristic GW amplitude h0 emitted by a PBH binary merger at a distance
dL = dyr. Each color reports a different value of mPBH ⇢ (10

�4
÷ 10

�11
)M� as indicated in the

insets. The highest part of the filled band corresponds to the strain obtained assuming the maximum
theoretical merger rate Rmax

PBH (see Sec. 2.2.4), while the lowest curve corresponds to the strain values
obtained for fPBH = 1 in the standard scenario using Eq. (2.26). For each experimental apparatus,
we report four different lines, corresponding to the four integration times allowed by the signal
with masses spanning four decades below the heaviest observable merger. For example, considering
for example the DMR detectors, each line from top to bottom corresponds to different integration
times set by the maximum time spent by mergers of masses mPBH = (10

�5
, 10

�6
, 10

�7
, 10

�8
)M�

around the frequency of f ' 400 MHz. See the main text for a complete description of the detector
specifications.

inspirals with mass mPBH ⇢ (10
�4

÷ 10
�12

)M�. For each band, the upper curve saturates
the maximum theoretical merger rate, see Sec. 2.2.4, while the lower curve corresponds to
fPBH = 1 in the standard scenario, see Eq. (2.26).

For LSD detectors, we used the benchmark values reported in Sec. 3.1. The sensitivity
curves from top to bottom refer to PBH inspirals with masses

mPBH ⇢ (10
�4

, 10
�5

, 10
�6

, 10
�7

)M� LSD. (3.12)

For the case of the SPD detectors described in Sec. 3.2, the sensitivity curves from top
to bottom refer to PBH inspirals with masses

mPBH ⇢

8
>><

>>:

(10
�6

, 10
�7

, 10
�8

, 10
�9

)M� HSPD,

(10
�7

, 10
�8

, 10
�9

, 10
�10

)M� MADMAX,

(10
�8

, 10
�9

, 10
�10

, 10
�11

)M� IAXO,

(3.13)

respectively. Note that the short duration of the various signals in these frequency bands
makes the sensitivity degrade significantly. We do not show smaller masses as the signal
amplitude becomes increasingly distant from the detectors’ reach.
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Abstract

The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has
opened up new avenues to explore our Universe. This white paper outlines the challenges and
gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a
particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz
to GHz range. The absence of known astrophysical sources in this frequency range provides a
unique opportunity to discover physics beyond the Standard Model operating both in the early
and late Universe, and we highlight some of the most promising gravitational sources. We review
several detector concepts which have been proposed to take up this challenge, and compare their
expected sensitivity with the signal strength predicted in various models. This report is the
summary of the workshop Challenges and opportunities of high-frequency gravitational wave
detection held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently
launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.
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- Emission of GW from the formaUon mechanism (e.g. enhanced scalar perturbaUons)

mergers, while also computing the memory effect and light boson superradiance. In Sec. 3,
we review the current status of the experimental efforts to detect GWs at high-frequencies,
including already operating detectors and various recent proposals, discussing which effort
may be more promising for probing light PBHs. In Sec. 4, we provide some future outlook
and conclude. The data needed to reproduce the figures in this work are available upon
request to the authors.

2 Gravitational wave signatures of Primordial Black Holes

A population of PBHs formed in the early Universe is expected to produce a variety of
GW signals, see Refs. [111–113] for recent reviews. In this section we summarise the main
predictions of the PBH model, providing a derivation for the benchmark quantities used in
the upcoming section where an assessment of the detectability of GW signals produced by
light PBHs is presented.

2.1 Gravitational waves from PBH formation and evaporation

PBHs may form at very high redshift [5, 8, 9, 114–118] if the density perturbations overcome
the threshold for collapse [54, 119]. Their mass mPBH is comparable to the mass contained
in the cosmological horizon at the time of formation. In particular, the scaling law relating
mPBH to the horizon mass mH for overdensities close to the critical threshold for collapse is
[120–122]

mPBH = mH(� � �c)
�c , (2.1)

where  = 3.3 and �c = 0.36 in a radiation-dominated Universe [48, 50, 51, 123, 124].
Effectively, accounting for the statistical properties of curvature perturbations in the early
Universe, the typical PBH mass is found to be around mPBH ' 0.7mH [125, 126]. Thus,
introducing the horizon scaling with redshift in the standard cosmological scenario, one
finds a characteristic formation redshift of zf ⇡ 2⇥10

17
�
mPBH/10

�12
M�

��1/2 [10]. Finally,
as the scale of inflation is bounded to be H < 6⇥10

13 GeV by CMB observations [127], the
minimum PBH mass that can be formed in the early Universe is around m

min
PBH ' 10

�33
M� ⇡

2g.
It is interesting to notice that the same scalar perturbations generating PBHs are

also responsible for the emission of GW at second order in perturbation theory [128–145]
(see Refs. [146, 147] for reviews). As the horizon mass mH is related to the characteristic
comoving frequency of perturbations by the relation [148]

f ' 5 kHz

✓
mH

10�24M�

◆�1/2

, (2.2)

one can immediately find that the formation of ultra-light PBHs may be associated with
the emission of GW above the kHz frequency. Two comments, however, are in order at this
point. Firstly, PBHs with masses below around . 10

�18
M� evaporate within a timescale

comparable to the age of the Universe due to the Hawking emission [149, 150], and cannot
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- UHF GW could probe the formaUon of evaporated PBHs 

- Early universe emission of GW, subject to Delta-Neff bound

- SGWB from emission of gravitons through hawking evaporaUon

- Typical frequency related to the mass:

A. D. Dolgov and D. Ejlli, Phys. Rev. D 84 (2011) 024028

account for a significant fraction of the dark matter. This is because the evaporation
timescale of a PBH with mass mPBH is

⌧PBH =
10240⇡

N
evap
eff

m
3
PBH

m
4
Pl

' 10Gyr

✓
N

evap
eff

100

◆�1
✓

mPBH

3⇥ 10�19M�

◆
3

, (2.3)

where mPl ' 1.22⇥10
19 GeV is the Planck mass and N

evap
eff is the number of particle species

lighter than the BH temperature

TPBH =
m

2
Pl

8⇡mPBH
' 2⇥ 10

13
GHz

✓
mPBH

3⇥ 10�19M�

◆�1

. (2.4)

Therefore, it is clear that UHF experiments could only probe GWs emitted by the formation
mechanism of PBHs with masses so small that would have already evaporated in the early
Universe. Such light PBHs are also expected to emit gravitons through Hawking evapora-
tion, producing a SGWB from the early Universe [151]. However, PBHs that can survive
until the late-time Universe are expected to emit a negligible fraction of their mass in the
form of GWs and, therefore, are not able to generate a detectable GW signature through
this mechanism. We will not discuss further details of such a potential GW signature in
this draft and we will focus on GW emission from relatively heavier (and stable) PBHs in
the mass range mPBH & 10

�18
M�. It suffices to say that the emission of GWs from either

PBH formation or evaporation would necessarily take place at a very high redshift and the
maximum amplitude of such a SGWB is required to fall below the Big Bang Nucleosynthesis
bound ⌦GW . 10

�5 (see e.g. Ref. [152]).

2.2 Binary formation and merger rate

In the standard formation scenario, i.e. collapse in the radiation-dominated early Universe
of Gaussian perturbations imprinted by the inflationary era, PBHs are expected to follow
a Poisson spatial distribution at formation [153–157]. We adopt this initial condition to
derive the PBH merger rate, and present a discussion on the effect of initial clustering in
Sec. 2.2.4.

PBH binaries decouple from the Hubble flow before matter-radiation equality if the
distance x separating two PBHs is smaller than the comoving distance [158, 159]

x =

✓
3

4⇡

m1 +m2

a3eq⇢eq

◆
1/3

, (2.5)

written in terms of the scale factor aeq and energy density ⇢eq at matter-radiation equality.
The initial PBH spatial distribution dictates both the probability of decoupling as well as
the properties of the PBH binaries. In particular, accounting for the distribution of binaries’
semi-major axis and eccentricity [90, 107, 160, 161], which determines the time it takes for
a binary to harden and merge under the emission of GWs, one can derive a formula for the
merger rate at time t as (e.g. [90, 91])

d
2
RPBH

dm1dm2

=
3.8⇥ 10

�2

kpc3 yr
f

53
37
PBH

✓
t

t0

◆� 34
37
✓

Mtot

10�12M�

◆� 32
37

⌘
� 34

37S (Mtot, fPBH, ) (m1) (m2).

(2.6)
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Stringent bounds from LVKC
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- MulU-populaUon analysis of GWTC-3 including both 
astro+primordial mergers 

- PBH mass distribuUon from primordial curvature spectrum and 
QCD effects 

- Stellar mass PBHs forced to be  

- Current data allow for a PBH contribuUon to the catalog 
(currently very difficult to confirm…) 
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PBH merger smoking gun signatures:

- Subsolar BBH masses: no confident detecUons 

- High redshiv mergers: only accessible by next generaUon of detectors

PopulaUon studies, subject to large uncertainUes: 

- Search for mass-spin correlaUons induced by PBH accreUon 

- Full mulU-pop inference with astro populaUon synthesis models
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Refs. [18, 27]). At smaller scales, the two-point corre-
lator can be even larger, but with the spatial exclusion
condition that ›PBH(r) ƒ ≠1 below approximately the
comoving Hubble radius at formation time, as distinct
PBHs cannot form arbitrarily close to each other. As we
will see, clustered PBHs would induce Poisson perturba-
tions at much larger scales, corresponding to the average
cluster distance, well within the Lyman-– range. The rel-
evance of the precise shape of ›PBH is reduced by the fact
that the cluster properties after its gravitational collapse
are mostly determined by the average overdensity.

Quite generally, the evolution of PBH clustering follows
di�erent stages:

1) initially, the cosmological horizon is comparable to
the size of PBHs, thus each PBH forms independently
(however, this can depend on the formation mechanism).
Nevertheless, their formation probability can be heavily
modulated, causing them to preferably form in superhori-
zon patches of comoving size rcl. This sets the initial
spatial distribution for PBHs.

2) While the initial PBHs density fluctuates due to
the initial clustering as well as the discreteness of PBHs,
the resulting fluctuations in the total energy density are
tiny right after their formation deep in the radiation
dominated era. Thus, the PBHs remain coupled to the
Hubble expansion. At this stage fl

PBH
π ”flPBH π flrad

and ”flPBH/flrad Ã a (the scale factor) due to the faster
dilution of radiation.

3) When ”flPBH ¥ flrad, PBHs begin to decouple from
the expansion, causing the gravitational collapse and a
subsequent violent relaxation of these clusters. Due to the
high density contrast, this stage takes place deep in the
radiation dominated era [28]. The resulting gravitation-
ally bound clusters have an average mass Mcl ƒ MPBHNcl

where Ncl is the PBH number in the cluster (see the SM
for more details)

Ncl ƒ nPBH

⁄
d3x ›PBH ¥

4fi

3 nPBH›0r3
cl
. (4)

In clustered scenarios, Ncl ∫ 1 should be assumed. For
definiteness, we impose

Ncl & 3 : ›0 & 2.3·10≠2f≠1
PBH

3
MPBH

M§

4 3
rcl

kpc

4≠3
. (5)

4) PBH clusters act as point-like objects at comoving
distances Rcl ∫ rcl, where

Rcl ƒ
1

n1/3
cl

ƒ

3
nPBH

Ncl

4≠1/3
ƒ rcl›

1/3
0 , (6)

in terms of the cluster number density ncl. See Fig. 1
for a pictorial representation. Also, clusters themselves
begin to group into bound systems after matter-radiation
equality. As they are discrete objects, such PBH clusters
follow a Poisson distribution and their subsequent evo-
lution will be similar to the early small scale structure
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FIG. 1. Pictorial representation of the initially clustered PBHs,
along with the relevant scales.

formation of PBHs of mass Mcl [20, 29]. Note that Eq. (6)
requires ›0 ∫ 1 for the initial clusters not to overlap with
each other, guaranteeing that their gravitational collapse
during radiation domination is clearly separated from the
following Poisson clustering evolution.

The physical radius of the cluster is (see the SM)

rb ƒ 4 · 10≠2pc f1/3
PBH›≠1

0

3
C

200

4≠1/3 3
rcl

kpc

4
, (7)

in terms of their overdensity C right after decoupling. We
require that the cluster does not collapse into a heavy
PBH of mass ¥ Mcl, as the latter would correspond to a
di�erent (but more typical) scenario in which the DM is
composed of Poisson distributed heavy PBHs. Therefore,
we demand that the final halo is less compact than a BH,
i.e., it must violate the hoop condition rb . 2GMcl [30].
This is equivalent to demanding that the cluster is much
smaller than the cosmological horizon during gravitational
collapse or that collapse takes place after the cluster enters
the horizon, and translates into

Heavy-PBH : ›0 . 6 ·104 f≠1/3
PBH

3
C

200

4≠1/6 3
rcl

kpc

4≠1
.

(8)
As these clusters are still very compact, it is easy to

check that they are not destroyed by tidal e�ects coming
from interactions with the surrounding environment (see
the SM for details). On the other hand, their smaller
physical size makes it easier for PBH clusters to dynam-
ically evaporate [31]. The minimal number of PBHs in
the cluster to avoid evaporation within the age of the
universe can be translated into a constraint on the PBH

V. De Luca, G. Franciolini, A. RioDo and H. Veermäe, Phys. Rev. LeD. 129 (2022) no.19, 191302 [arXiv:2208.01683]

IniUal clustering (beyond Poisson) cannot be invoked to evade lensing/GW bounds

Clustered iniUal condiUons for PBH DM would generate 
too large isocurvature perturbaUons which are ruled out 
by Lyman-alpha data

3

initial correlation function (see SM for details)

Eva : ›0 . 1.7·10≠3fPBH

3
200
C

41/2 3
M§

MPBH

4 3
rcl

kpc

43
.

(9)
This condition, shown as a red solid line in Fig. 2, covers a
large parameter space for the initial PBH clustering. Con-
sequently, initial strong clustering ›0 ∫ 1 enhances cluster
evaporation when compared to Poisson initial conditions.
More general considerations about PBH clustering mod-
elling can be found in the SM.

Microlensing constraints. Microlensing surveys provide
a powerful probe to constrain PBHs in a wide range of
masses. They search for the temporary amplification of
distant sources like stars due to the passage of a compact
object near the line-of-sight [32]. Several constraints
were set on the abundance of PBHs in the Milky Way
halo. Examples are given by observations of M31 using
Subaru HSC [33, 34], which set a limit on planetary
and sub-planetary PBH masses, while EROS, MACHO
and OGLE surveys of the Magellanic Clouds constrain
stellar and planetary PBH masses [35–38]. Overall, stellar
microlensing constrains impose fPBH . 0.1 in the mass
range 10≠10M§ . MPBH . 103M§, thus excluding PBHs
for making up all of the DM in this mass range [3].

These limits were derived assuming evenly distributed
PBHs. It was suggested that the inevitable clustering of
PBHs induced by Poisson initial conditions could signifi-
cantly relax these bounds [21–23], as they would act as a
single lens with a mass much larger than the one relevant
for the microlensing surveys. This result was disputed by
Refs. [39, 40], which found that this criterion can only be
satisfied either for very compact PBH clusters, that act as
a point-like object, or for non-compact clusters containing
a su�ciently large amount of objects, where individual
PBHs can be resolved, neither of which are reached in
initially Poisson scenarios. On the other hand, initially
clustered scenarios may avoid these bounds, provided that
PBH clusters remain stable, i.e., satisfy Eq. (9).

The first condition is realised if the Einstein radius
of the cluster is larger than its size, RE(Mcl) & rb. For
surveys of Magellanic clouds, the Einstein radius is [39, 40]

RE(Mcl) ƒ 4.8 · 10≠5pc

Û
Mcl

M§
, (10)

from which one extracts the condition for compact-enough
PBH clusters to act as a single lens

SL : ›0 & 18 f≠1/9
PBH

3
C

200

4≠2/9 3
rcl

kpc

4≠1/3
. (11)

This condition is shown as a magenta line in Fig. 2, and it
is meaningful only in the parameter space where cluster
evaporation is not e�cient enough (see the transition from
the dashed to the solid line in Fig. 2).

On the other hand, clusters which are not compact
enough, but have a large amount of PBHs and act as a
compilation of spatially correlated individual lenses, can
still evade the microlensing limits. This occurs if the
number of PBHs in clusters is larger than [40]

Ncl & 106
3

MPBH

M§

4≠1
, (12)

which requires

LC : ›0 & 7.7 · 103f≠1
PBH

3
rcl

kpc

4≠3
. (13)

This bound is depicted in green in Fig. 2. Again, this
holds only when PBH clusters do not evaporate e�ciently.

Constraints from Lyman-– observations. We now briefly
review bounds obtained from the Lyman-– forest and
describe how they change if PBHs are initially clustered.

The Lyman-– forest is a series of absorption lines in
the spectra of distant galaxies and quasars arising from
the transitions of electrons from the ground state to the
first excited state of the neutral hydrogen atom. As the
light travels through multiple gas clouds with di�erent
redshifts, multiple absorption lines may be formed [41–43].

Assuming that PBHs are initially Poisson distributed,
Refs. [44, 45] have studied their impact on the Lyman-
– observations. The PBH contribution to the matter
linear power spectrum would be PPBH(k) = f2

PBH
/nPBH,

which enhances the standard �CDM spectrum produc-
ing a small-scale plateau. As the adiabatic contribution
evolves as k≠3 at large k, the isocurvature term would be
important only at scales relevant for Lyman-– observa-
tions. Ref. [45] found a (2‡) upper limit of the form

fPBHMPBH . 60 M§, (14)

when a Gaussian prior on the reionization redshift is
assumed. For large PBH abundances fPBH = 1, these
constraints can be interpreted as limits on the PBH mass,
while they become weaker for small abundances, up to
values fPBH ¥ 0.05 where seed e�ects could modify the
predictions. Following Ref. [45], we do not consider values
smaller than fPBH . 0.05.

Crucially, Lyman-– observations concern (at moderate
redshifts ≥ 5), comoving scales between O(10≠1

÷ 1)
Mpc, which are much larger than the typical cluster scale
rcl. At such large scales, clustered PBHs can be treated
as compact objects with mass Mcl following a Poisson
distribution in space with mean distance Rcl. This implies
that, for strongly clustered PBHs, the Lyman-– bound
translates into the condition

fPBHMcl = fPBHNclMPBH . 60 M§ . (15)

It can be rewritten as

L– : ›0 . 0.5f≠2
PBH

3
rcl

kpc

4≠3
. (16)
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where the δ
PBH

,δp and δr are the relative overdensities
of PBHs, Poisson fluctuations and radiation, respectively.
Since δp in Eq.(1)is observable and constant, one would
conclude that the quantity

S ≡ δ
PBH

−
3

4
δr = δp (4)

is gauge-invariant and conserved. Indeed this is the en-
tropy per PBH, which should remain constant as long as
the universe expands adiabatically (e.g. see Mukhanov
et al. 1992). The associated perturbations, generated in
this way are isocurvature(or entropy) perturbations, as the
curvature at large scales is not (immediately) affected by
the formation of compact objects at small scale.
As we are assuming that PBHs are the present day Cold

Dark Matter (CDM), the overdensity of CDM is given by

δ
CDM

(k) = Tad(k)δi,ad(k) + Tiso(k)S(k), (5)

where Tad(k) and Tiso(k) are the transfer functions for
adiabatic and isocurvature perturbations respectively. For
the following analysis we will use the analytical fits quoted
in Bardeen et al. 1986 to the transfer functions. Eq. (5)
leads to the following power spectrum

P
CDM

(k) = T 2
ad(k)Pi,ad(k) + T 2

iso(k)Pp. (6)

In this expression,Pi,ad(k) = Akn with n ≃ 1 is the adia-
batic power spectrum which is produced through inflation
(or an alternative method of generating scale-invariant adi-
abatic perturbations), while Pp is given in Eq.(2).
One can easily see that the isocurvature term on the

RHS of Eq.(2) contributes a constant to the power spec-
trum as both Pp and

Tiso(k) =
3

2
(1 + zeq) for k ≫ aeqHeq (7)

are independent of k (e.g. Peacock 1998). Note that this
is the simple linear growth due to gravitational cluster-
ing which is the same for adiabatic fluctuation. Since the
power spectrum of adiabatic fluctuations decays as k−3 at
small scales, one expects to see the signature of this Pois-
son noise at large k’s. Combining Eqs. (2),(6) and (7)
gives the power offset

∆P
CDM

≃
9M

PBH
(1 + zeq)2

4ρ
CDM

= 4.63

(

M
PBH

103M⊙

)

(Ω
CDM

h5)(h−1Mpc)3 (8)

which is also a lower bound on the matter linear power
spectrum.
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Fig. 1.— Linear power spectrum for different masses of the PBHs.
σ∗

8
is σ8 for the model without the PBHs and the amplitude of the

(initially) adiabatic modes is the same for all models.

Fig.(1) shows the linear power spectrum for different

masses of the PBHs. We see the Poisson plateau (Eq.
8) at large k’s which drops with decreasing mass. The
impact of this plateau on the Ly-α forest power spectrum
is discussed in the next section.

Fig. 2.— Influence of PBHs on the Ly-α forest flux power spec-
trum, PF (k). The black, solid curve shows our prediction for PF (k)
in a standard ΛCDM model (i.e., no PBHs) in which the amplitude
of the linear power spectrum, σ∗

8
, was adjusted to match the data

points from Croft et al. (2002). The other curves show the predicted
PF (k) when white noise power due to PBHs with various masses is
added. The Ly-α forest model parameters and σ∗

8
were not adjusted

to find a best fit for each mass so the disagreement between the PBH
models and the data points does not indicate that the models are
ruled out.

3. simulations of Ly-α forest
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Inducing iniUal clustering beyond Poisson could suppress the rate
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