(Towards) a new gravitational wave plotter

Carlos Tamarit, Johannes Gutenberg-Universität Mainz

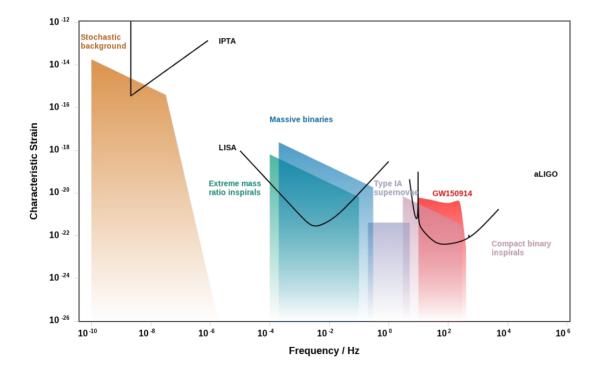
in collaboration with

Francesco Muia, Cambridge

Andreas Ringwald, DESY

The aim:

Develop a new gravitational wave plotter that can cover the ultra-high frequency range and which adapts to the needs of the community


The plan:

Why do we need a new plotter? Inspiration from the axion community Basic features and community feedback Current status

Why do we need a new plotter?

The classic GW plotter

[gwplotter.com, arXiv:1408.0740, Moore, Cole, Berry]

Can plot strain, power spectral density

Focused on interferometers and astrophysical signals

Missing cosmological signals, high frequencies

Minnesota GW plotter

[https://groups.spa.umn.edu/gwplotter/index.php, Mandic, Floden]

PLOT SPECIFICATIONS

	Min	Max
X Axis (Frequency):	1.0E-18	1000
Y Axis (Energy Spectrum)	1.0E-16	0.1

Highly customizable

Can plot up to high frequencies

Minnesota GW plotter

[https://groups.spa.umn.edu/gwplotter/index.php, Mandic, Floden]

Cosmological Models

Axion Inflation Model

Cosmic String Model

Inflation Model

Phase Transition

Highly customizable

Can plot up to high frequencies

Impressive array of astro/cosmo signals

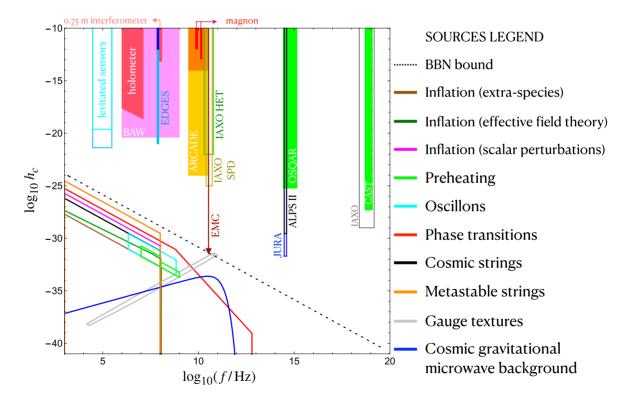
Phase Transition (2018)

Minnessota GW plotter

[https://groups.spa.umn.edu/gwplotter/index.php, Mandic, Floden]

GW Plotter About	Login
Projected sensitivities	
Cosmic Explorer	
Cosmic Explorer PLI	
Design A+	
Design HLV	
Einstein Telescope	
Voyager	
🗌 eLisa	
Old Besults	

Highly customizable


Can plot up to high frequencies

Impressive array of astro/cosmo signals

Misses high-f sensitivities and constraints

vs the living review

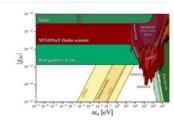
[2011.12414 [gr-qc], Aggarwal et al]

Our community would benefit from a **plotter with up-to-date experimental constraints, projected sensitivities and signals in the large frequency domain**

Inspiration from the axion community

Axion limits from Ciaran O'Hare

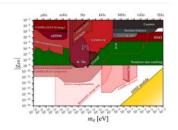
[https://cajohare.github.io/AxionLimits/, O'Hare]


Axion-photon coupling

Data files

Plot (pdf, png) Plot with projections (pdf, png) Plot of dimensionless coupling (pdf, png) Plot of dimensionless coupling with projections (pdf, png)

Axion-electron coupling


Data files Plot (pdf, png) Plot with projections (pdf, png)

ma [eV]

Axion-neutron coupling

Data files Plot (pdf, png) Plot with projections (pdf, png)

Exhaustive repository of plots with **current limits** and **projections**

Reactive to feedback from community

Has become a **reference** for axion enthusiasts

Basic features and community feedback

What we envision

A tool that brings together:

the ease-of-use of a web plotter

downloadable python code

the completeness and community awareness of [O'Hare]'s axion plotter

We can think of the following types of plots:

strain vs frequency

energy fraction vs frequency

power spectral density vs frequency

Feedback

What would you like to see and have? Keep sending us feedback in the survey:

https://forms.gle/Vw28pmgyLaMmgunb8

Thank you to all who contributed so far. Some feature requests:

PSDs

Neff bound in real time

Bare vs power-law-integrated sensitivities

dynamical parameters

Noise sources

python compatibility

SNR computations

Feedback

Some signal / constraints requests

PBH mergers

stochastic backgrounds from astrometry

cosmic strings

effects of modified cosmology

audible axions

axion haloscopes

•••

Current status

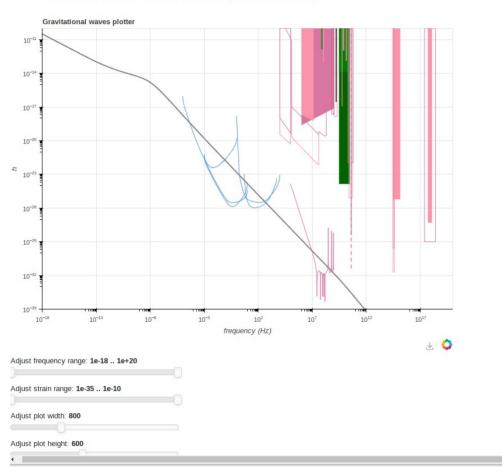
Current (very preliminary) status

https://github.com/fmuia/GWplots

Current test code uses **Bokeh**, a **python** library for interactive visualizations in browsers

We are starting with a plot of strain vs frequency analogous to Fig. 2 of living review for stochastic backgrounds

Plot has:


customizable ranges and aspect ratio

dynamic selection of signals/bounds

can be saved in vector format

Gravitational Waves Plotter

Edited and maintained by Francesco Muia, Andreas Ringwald, and Carlos Tamarit

Experimental Bounds			
Direct Bounds	Indirect Bounds	Projected Bounds	
BAW	ARCADEstrong	LSDweak	
OSQAR	ARCADEweak	LSDstrong	
CAST	EDGESstrong	IAXOSPD	
HOL	EDGESweak	IAXOHET	
Akutsu		OXAI 🔽	
MagnonLow		ALPSII	
MagnonHigh		JURA	
		ADMX	
		HAYSTAC	
		CAPP	
		SQMS	
		GaussianBeamWeak	
		GaussianBeamStrong	
		ORGAN	
		Resonant Antennas	
		DMR 8	
		DMR 100	
		BBO	
		CE	
		DECIGO	
		Z ET	
		Z LISA	
	Potential Sign	nals	
Global string Gm			
Global string Gm			
Global string Gm			
 Global string Gm Global string Gm 			
-	u=1E-15 u=1E-16		

