Ultra-High-Frequency GWs
Where to Next?
Challenges and Opportunities of High Frequency Gravitational Wave Detection
14 - 16 October 2019, Miramare - Trieste, Italy

Organisers: V. Domcke, F. Muia, F. Quevedo, J. Steinlechner, S. Steinlechner
theorist/cosmologist experimentalist
Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz frequencies

Abstract

The first direct measurement of gravitational waves by the LIGO/Virgo collaboration has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a particular focus on the MHz and GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the standard model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts which have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop Challenges and opportunities of high-frequency gravitational wave detection held at ICTP Trieste, Italy in October 2019.
A few numbers

Number of Papers Published Per Year

Histogram of arXiv Categories
A few numbers

O(10) of new experimental concepts
Structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8
Structure of the review

1. Introduction - Pg. 4

2. Setting up the Notation: Comparing Different GW Sources and Detectors - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. Sources - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28
 • 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30
 • 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34
 • 4.3 Summary of Detector Sensitivities - Pg. 35
 • 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring f(γ) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Why an update?

To have an up-to-date reference for the field that can benefit the community
Why an update?

- To have an up-to-date reference for the field that can benefit the community.

Rules to update

- All the authors from the previous version will be included in the new one.
- We can (moderately) add names to the author list.
- Both versions will be online in the journal, linked to each other.
Our guidelines

- Add references mindfully.
- On the theory side, focus on the most promising sources, especially those above the BBN bound (late Universe sources).
- Old authors will be consulted to update their sections.
- We will put one or two coordinators in charge of each section.
Our guidelines

- Add references mindfully.
- On the theory side, focus on the most promising sources, especially those above the BBN bound (late Universe sources).
- Old authors will be consulted to update their sections.
- We will put one or two coordinators in charge of each section.

At this stage new authorship requires a substantial contribute to the update of the review.
New structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. **Sources** - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27
New structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. **Sources** - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27
New structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. **Sources** - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27

Coordinator: Sebastian Ellis
New structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. **Sources** - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27
New structure of the review

1. **Introduction** - Pg. 4

2. **Setting up the Notation: Comparing Different GW Sources and Detectors** - Pg. 5
 - 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 - 2.2 Detectors - Pg. 6
 - 2.3 Signal-to-Noise Ratio - Pg. 7
 - 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. **Sources** - Pg. 9
 - 3.1 Overview - Pg. 10
 - 3.2 Late Universe - Pg. 12
 - 3.2.1 Neutron Star Mergers - Pg. 12
 - 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 - 3.2.3 Exotic Compact Objects - Pg. 16
 - 3.2.4 Black Hole Superradiance - Pg. 16
 - 3.3 Early Universe - Pg. 17
 - 3.3.1 Inflation - Pg. 18
 - 3.3.2 (P)reheating - Pg. 20
 - 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 - 3.3.4 Phase Transitions - Pg. 23
 - 3.3.5 Topological Defects - Pg. 24
 - 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 - 3.4 Miscellaneous - Pg. 27

Coordinator: Sebastian Ellis

Coordinator: Gabriele Franciolini
New structure of the review

1. Introduction - Pg. 4

2. Setting up the Notation: Comparing Different GW Sources and Detectors - Pg. 5
 • 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 • 2.2 Detectors - Pg. 6
 • 2.3 Signal-to-Noise Ratio - Pg. 7
 • 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

3. Sources - Pg. 9
 • 3.1 Overview - Pg. 10
 • 3.2 Late Universe - Pg. 12
 • 3.2.1 Neutron Star Mergers - Pg. 12
 • 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 • 3.2.3 Exotic Compact Objects - Pg. 16
 • 3.2.4 Black Hole Superradiance - Pg. 16
 • 3.3 Early Universe - Pg. 17
 • 3.3.1 Inflation - Pg. 18
 • 3.3.2 (P)reheating - Pg. 20
 • 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 • 3.3.4 Phase Transitions - Pg. 23
 • 3.3.5 Topological Defects - Pg. 24
 • 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 • 3.4 Miscellaneous - Pg. 27

coordinator
Sebastian Ellis

coordinator
Gabriele Franciolini
New structure of the review

1. Introduction - Pg. 4

2. Setting up the Notation: Comparing Different GW Sources and Detectors - Pg. 5
 • 2.1 Gravitational Wave Sources at High-Frequencies - Pg. 5
 • 2.2 Detectors - Pg. 6
 • 2.3 Signal-to-Noise Ratio - Pg. 7
 • 2.4 Comparison of Signal Strength and Noise for Narrowband Detectors - Pg. 8

 coordinator
 Sebastian Ellis

3. Sources - Pg. 9
 • 3.1 Overview - Pg. 10
 • 3.2 Late Universe - Pg. 12
 • 3.2.1 Neutron Star Mergers - Pg. 12
 • 3.2.2 Mergers of Light Primordial Black Holes - Pg. 13
 • 3.2.3 Exotic Compact Objects - Pg. 16
 • 3.2.4 Black Hole Superradiance - Pg. 16
 • 3.3 Early Universe - Pg. 17
 • 3.3.1 Inflation - Pg. 18
 • 3.3.2 (P)reheating - Pg. 20
 • 3.3.3 Cosmic Gravitational Microwave Background - Pg. 22
 • 3.3.4 Phase Transitions - Pg. 23
 • 3.3.5 Topological Defects - Pg. 23
 • 3.3.6 Evaporating Primordial Black Holes - Pg. 26
 • 3.4 Miscellaneous - Pg. 27

 coordinator
 Gabriele Franciolini

 coordinator
 Andreas Ringwald
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28
 • 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30
 • 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34
 • 4.3 Summary of Detector Sensitivities - Pg. 35
 • 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring f(\(\nu\)) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28
 • 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30
 • 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34
 • 4.3 Summary of Detector Sensitivities - Pg. 35
 • 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring $f(\bar{\nu})$ at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
4. Detection of Gravitational Waves at High-Frequencies - Pg. 28

• 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30

• 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34

• 4.3 Summary of Detector Sensitivities - Pg. 35

• 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring f(\gamma) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28

• 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30

• 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34

• 4.3 Summary of Detector Sensitivities - Pg. 35

• 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring \(f(\gamma) \) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28
 • 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30
 • 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34
 • 4.3 Summary of Detector Sensitivities - Pg. 35
 • 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring f(\(\nu\)) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28

• 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 • 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 • 4.1.2 Interferometers up to 100 MHz - Pg. 30
 • 4.1.3 Spherical Resonant Masses - Pg. 30

• 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 • 4.2.1 Optically Levitated Sensors - Pg. 31
 • 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 • 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 • 4.2.4 Resonant Polarisation Rotation - Pg. 33
 • 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 • 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 • 4.2.7 Superconducting Rings - Pg. 34
 • 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 • 4.2.9 Graviton-magnon Resonance - Pg. 34

• 4.3 Summary of Detector Sensitivities - Pg. 35

• 4.4 Cross Correlation Detectors - Pg. 35
 • 4.4.1 Relic Gravitational Radiation - Pg. 35
 • 4.4.2 Properties of Correlation Detectors - Pg. 38
 • 4.4.3 The Overlap Function - Pg. 38
 • 4.4.4 Exploring f(Y) at Very High-Frequencies - Pg. 39
 • 4.4.5 Signal Switching - Pg. 39
 • 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40
Structure of the review

4. Detection of Gravitational Waves at High-Frequencies - Pg. 28

- 4.1 Laser Interferometers and Resonant Mass Detectors and Their Limitations - Pg. 28
 - 4.1.1 Laser Interferometers: Neutron Star Extreme Matter Observatory (NEMO) - Pg. 29
 - 4.1.2 Interferometers up to 100 MHz - Pg. 30
 - 4.1.3 Spherical Resonant Masses - Pg. 30

- 4.2 Detection at Frequencies beyond Current Detectors - Pg. 31
 - 4.2.1 Optically Levitated Sensors - Pg. 31
 - 4.2.2 Inverse Gertsenshtein Effect - Pg. 32
 - 4.2.3 GW to Electromagnetic Wave Conversion in a Static Electric Field - Pg. 33
 - 4.2.4 Resonant Polarisation Rotation - Pg. 33
 - 4.2.5 Heterodyne Enhancement of Magnetic Conversion - Pg. 33
 - 4.2.6 Bulk Acoustic Wave Devices - Pg. 33
 - 4.2.7 Superconducting Rings - Pg. 34
 - 4.2.8 GW Deformation of Microwave Cavities - Pg. 34
 - 4.2.9 Graviton-magnon Resonance - Pg. 34

- 4.3 Summary of Detector Sensitivities - Pg. 35

- 4.4 Cross Correlation Detectors - Pg. 35
 - 4.4.1 Relic Gravitational Radiation - Pg. 35
 - 4.4.2 Properties of Correlation Detectors - Pg. 38
 - 4.4.3 The Overlap Function - Pg. 38
 - 4.4.4 Exploring f(\nu) at Very High-Frequencies - Pg. 39
 - 4.4.5 Signal Switching - Pg. 39
 - 4.4.6 Issues Related to Data Acquisition and Long Term Storage - Pg. 40

5. Discussion and Conclusions - Pg. 40

- New section: ‘existing detectors’
- New section: ‘EM-GW conversion detectors’, Axel Lindner & Sung Mook Lee
- New section: ‘new resonant bars’, Diego Blas
- New section: ‘miscellaneous’, Asuka Ito
- Revisit
- New section: ‘Astrophysical and Cosmological concepts’, Jamie McDonald
Ideas, comments or suggestions?

![A diagram illustrating various gravitational wave sources and their detection sensitivities.](image)

- **Characteristic Strain**
 - **Frequency/Hz**
 - 10^{-12}
 - 10^{-14}
 - 10^{-16}
 - 10^{-18}
 - 10^{-20}
 - 10^{-22}
 - 10^{-24}

- **Inspirals**
 - Extreme mass ratio inspirals
 - Resolvable galactic binaries
 - Unresolvable galactic binaries

- **Binary Inspirals**
 - Massive binaries
 - Supermassive binaries

- **Gravitational Wave Detectors**
 - LISA
 - IPTA
 - SKA
 - BBO
 - DECIGO
 - TianQin
 - aLIGO

- **Sources**
 - Compact binary inspirals
 - Core collapse supernovae
 - Pulsars
 - Type Ia SN

- **Stochastic background**
 - Stochastic background of supermassive binaries

Note: This diagram illustrates the sensitivity of various gravitational wave detectors to different frequency bands, highlighting the types of binary inspirals and sources they can detect.