First-order event plane correlated directed and triangular flow from fixed-target energies at RHIC-STAR

Sharang Rav Sharma (for the STAR collaboration)
Indian Institute of Science Education and Research (IISER) Tirupati

52nd edition of the International Symposium on Multiparticle Dynamics
Károly Róbert Campus of MATE in Győngyös, Hungary
August 21–25, 2023

Supported in part by the
U.S. DEPARTMENT OF ENERGY
Outline

❖ Motivation
❖ STAR Detector
❖ Analysis Technique
❖ Results and Discussion
 ❖ Directed Flow \(v_1\)
 ❖ Triangular Flow \(v_3\)
❖ Summary
Anisotropic Flow

- Flow is the measure of azimuthal anisotropy
- Azimuthal distribution of particles

\[\frac{E}{d^3N} \frac{d^2N}{d^3p} = \frac{d^2N}{2\pi p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_n)) \right) \]

- Sensitive to the equation of state
- Sensitive to early times in the evolution of the system

Directed flow

\[v_1 = \langle \cos(\phi - \Psi_1) \rangle \]

\(v_1 \rightarrow \) sideward motion of emitted hadrons with respect to collision reaction plane

Triangular flow

\[v_3 = \langle \cos 3(\phi - \Psi_1) \rangle \]

\(v_3 \rightarrow \) driven by the shape of the initial collision geometry
The primary aim of relativistic heavy-ion collisions → Understand the properties and the evolution of strongly interacting matter,
Quark–Gluon Plasma (QGP)

- Minimum in baryon’s $d\langle v_1\rangle/dy$ predicted to be sensitive to softening of EoS → **Signature of a 1st-order phase transition** between hadronic matter and QGP
- At high energies, v_3 → uncorrelated with the 1st order event plane, contrary to observation at lower energy

Phys. Rev Lett. 120, 062301 (2018)

STAR Experiment

- **Fixed-Target (FXT) program at Solenoidal Tracker At RHIC (STAR)** → low center-of-mass energies and high baryon density region
- **BES-II FXT mode**: Au+Au collisions at $\sqrt{s_{NN}} = 3, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, \text{ and } 7.7 \text{ GeV}$.

Nuclear Phy A 808-811 (2017)

August 21-25, 2023

ISMD 2023, Sharang Ray Sharma
Particle Identification

- Two main detectors are used for particle identification in **STAR**
 - Time Projection Chamber (TPC)
 \[
 z_x = \ln \left(\frac{\langle dE/dx \rangle}{\langle dE/dx \rangle_B} \right)
 \]
 - Time of Flight (ToF)
 \[
 m^2 = p^2 \left(\frac{c^2 T^2}{L^2} - 1 \right)
 \]

https://www.star.bnl.gov/
Event Plane Reconstruction

Event Plane Detector (EPD) → Measures charged particles emitted in the forward and backward directions

TPC and EPD are divided into 2 and 4 regions, respectively, based on their pseudorapidity (\(\eta \)) coverage

\[
\vec{Q} = \begin{pmatrix}
Q_y \\
Q_x
\end{pmatrix} = \begin{pmatrix}
\sum_i w_i \sin(\phi) \\
\sum_i w_i \cos(\phi)
\end{pmatrix}
\]

\[
\Psi_1 = \tan^{-1}\left(\frac{\sum_i w_i \sin(\phi)}{\sum_i w_i \cos(\phi)} \right)
\]

where \(\phi \) is azimuthal angle and \(w_i \) is the weight for the \(i^{th} \) hits, \(\Psi_1 \) is the first-order event plane angle
In FXT mode collision, 3-sub event method was used to determine the EPD first order event plane resolution.

\[
\langle \cos(\Psi_{T} - \Psi_{T}) \rangle = \sqrt{\frac{\langle \cos(\Psi_{T} - \Psi_{T}^{a}) \rangle \langle \cos(\Psi_{T} - \Psi_{T}^{c}) \rangle}{\langle \cos(\Psi_{T} - \Psi_{T}) \rangle}}
\]

- \(a \) → EPD-AB \((-5.3 < \eta < 3.3)\)
- \(b \) → EPD-C \((-3.3 < \eta < 2.9)\)
- \(c \) → TPC B \((-1.0 < \eta < 0)\)
Phase Space Distribution

August 21-25, 2023

Au+Au 3.2 GeV

- Rapidity: $y_{\text{cms}} = y + |y_{\text{mid}}|$, for FXT 3.2 GeV, $y_{\text{mid}} = -1.127$

- p_T region:
 - π: $0.2 < p_T < 1.6$, K: $0.4 < p_T < 1.6$, p: $0.4 < p_T < 2$ (GeV/c)
 - d: $0.8 < p_T < 3.5$, t: $1.2 < p_T < 4$ (GeV/c)
Directed Flow (v_1) Results
Rapidity dependence of v_1 (π^+, K^+, p)

- Magnitude of v_1 increases with increasing rapidity.
- Magnitude of v_1 increases with increasing mass of the particle ($p > K^+ > \pi^+$).
Centrality dependence of $v_1 (\pi^+)$

- v_1 changes sign moving from central to peripheral collision
- v_1 slope is maximum for peripheral collision
Centrality dependence of v_1 (K^+)

- v_1 has weak centrality dependence for kaon
- v_1 slope is maximum for mid-central collision
Centrality dependence of v_1 (p)

- v_1 has weak centrality dependence compared to pions
- v_1 slope is maximum for mid-central collision
Collision energy dependence of v_1 slope (π, K, p)

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$)

$$v_1(y) = by + cy^3$$

- Fitting range $\rightarrow [y: -1, 0]$
- Increasing collision energy \rightarrow decreasing v_1 slope
- Mass ordering in slope: $dv_1/dy|_p > dv_1/dy|_K > dv_1/dy|_\pi$

The slope for published collider data was extracted using 1st order polynomial.
Rapidity dependence of v_1 (net p and net K)

- Net particle v_1 is defined as

$$v_{1,\text{net}} = \frac{v_{1,p} - r v_{1,p}^\text{\bar{}}}{1 - r}$$

where $v_{1,p}, v_{1,p}^\text{\bar{}}$ → particle and antiparticle v_1 and r is the ratio of anti-particles to particles

- Magnitude of net particle v_1 increases with increasing rapidity
Collision energy dependence of v_1 slope (net p and net K)

$v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$)

$v_1(y) = by + cy^3$

- Fitting range $\rightarrow [y: -1, 0]$
- Increasing collision energy \rightarrow decreasing v_1 slope

The slope for published data was extracted using 1st order polynomial

Rapidity dependence of v_1 (p, d, t)

- Magnitude of v_1 increases with increasing rapidity
- Magnitude of v_1 increases with increasing mass of the particle
Collision energy dependence of v_1 slope (p, d, t)

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$)
 $$v_1(y) = by + cy^3$$
- Fitting range $\rightarrow [y: -1, 0]$
- Increasing collision energy \rightarrow decreasing v_1 slope

The slope for published data was extracted using 1st order polynomial

Triangular Flow (v_3) Results
Rapidity dependence of v_3

- Weak rapidity dependence of v_3 observed for pions
- Magnitude of proton v_3 increases with increasing rapidity
Collision energy dependence of v_3 slope

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_3/dy$)

\[v_3(y) = by + cy^3 \]

- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing magnitude of v_3 slope

Graph:

- Au+Au, Collisions at RHIC, 10-40 %
- STAR Preliminary

Data Points:

- This analysis
 - π^+
 - p
- p: HADES (20-30 %)
- p: STAR Preliminary

Legend:

- HADES \rightarrow p (20-30 %): 0.6 < p_T < 0.9 GeV/c

Rapidity dependence of v_3

- Weak rapidity dependence of v_3 observed for deuteron compared to proton
Collision energy dependence of v_3 slope

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_3/dy$)

 $$v_3(y) = by + cy^3$$

- Fitting range $\rightarrow [y: -1, 0]$

- Increasing collision energy \rightarrow decreasing magnitude of v_3 slope

HADES \rightarrow p (20-30 %): $0.6 < p_T < 0.9$ GeV/c

Summary

- The rapidity, centrality, and collision energy dependence of directed flow (v_1) and triangular flow (v_3) of identified hadrons, net particle, and light nuclei for Au+Au collisions at 3.2, 3.5, and 3.9 GeV are presented.
- Magnitude of v_1 and v_3 increases with increasing rapidity.
- Slope of v_1 (dv_1/dy) decreases with increasing collision energy for all particles and light nuclei.
- dv_1/dy for both net-kaon and net-proton shows a non monotonic behaviour at lower collision energies.
- Magnitude of v_3 slope (dv_3/dy) decreases with increasing collision energy for all particles and light nuclei.
Thank you for your attention!