

First-order event plane correlated directed and triangular flow from fixed-target energies at RHIC-STAR

Sharang Rav Sharma (for the STAR collaboration) Indian Institute of Science Education and Research (IISER) Tirupati

52nd edition of the International Symposium on Multiparticle Dynamics

Károly Róbert Campus of MATE in Gyöngyös, Hungary August 21–25, 2023

Supported in part by the

Outline

- Motivation
- STAR Detector
- Analysis Technique
- Results and Discussion
 - Directed Flow (v_1)
 - Triangular Flow (v_3)
- Summary

Anisotropic Flow

- **G** Flow is the measure of azimuthal anisotropy
- Azimuthal distribution of particles

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy}(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{n})))$$

- □ Sensitive to the equation of state
- □ Sensitive to early times in the evolution of the system

Directed flow

$$v_1 = \langle \cos(\phi - \Psi_1) \rangle$$

 $v_1 \rightarrow$ sideward motion of emitted hadrons with respect to collision reaction plane <u>Triangular flow</u>

$$v_3 = \langle \cos 3(\phi - \Psi_1) \rangle$$

 $v_3 \rightarrow$ driven by the shape of the initial collision geometry

CMS, PRC 87 014902 (2013)

R. Snellings New J. Phys. 13 055008 (2011)

August 21-25, 2023

Motivation

- □ The primary aim of relativistic heavy-ion collisions \rightarrow Understand the properties and the evolution of strongly interacting matter, Quark–Gluon Plasma (QGP)
- $\square \quad \text{Minimum in baryon's } dv_1/dy \text{ predicted to be sensitive to softening of EoS} \rightarrow \text{Signature of a 1st-order phase transition between hadronic matter and QGP}$
- \Box At high energies, $v_3 \rightarrow$ uncorrelated with the 1st order event plane, contrary to observation at lower energy

August 21-25, 2023

STAR Experiment

- □ Fixed-Target (FXT) program at Solenoidal Tracker At RHIC (STAR) \rightarrow low center-of-mass energies and high baryon density region
- **BES-II FXT mode**: Au+Au collisions at $\sqrt{s_{NN}} = 3, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, and 7.7 GeV.$

August 21-25, 2023

Particle Identification

https://www.star.bnl.gov/

- Two main detectors are used for particle identification in **STAR**
 - Time Projection Chamber (TPC)

- Time of Flight (ToF)

$$z_X = \ln\left(\frac{\langle dE/dx \rangle}{\langle dE/dx \rangle_X^B}\right)$$

$$m^2 = p^2 \left(\frac{c^2 T^2}{L^2} - 1\right)$$

Time Projection Chamber (TPC) 10⁶ sdE/dx> (KeV/cm) ¹⁶ Au+Au 3.2 GeV (FXT) 14 10⁵ 12 10⁴ 10³ 10² 10 -2 -1 0 2 Time of Flight (ToF) Rigidity (GeV/c) Au+Au 3.2 GeV (FXT) 2.4 10⁴ 2.2 10 1.8 ₽ 1.6 10 1.4 10⁴ 1.2 10 0.8 0.5 2.5 1 1.5 2 Momentum (GeV/c) 3

August 21-25, 2023

Event Plane Reconstruction

- → Event Plane Detector (EPD) → Measures charged particles emitted in the forward and backward directions
- TPC and EPD are divided into 2 and 4 regions ,respectively, based on their pseudorapidity (η) coverage

$$\vec{Q} = \begin{pmatrix} Q_y \\ Q_x \end{pmatrix} = \begin{pmatrix} \sum_i w_i sin(\phi) \\ \sum_i w_i cos(\phi) \end{pmatrix}$$
$$\Psi_1 = tan^{-1} \left(\frac{\sum_i w_i sin(\phi)}{\sum_i w_i cos(\phi)} \right)$$

where ϕ is azimuthal angle and w_i is the weight for the ith hits, Ψ_1 is the first-order event plane angle

Event Plane Resolution

• In FXT mode collision, 3-sub event method was used to determine the EPD first order event plane resolution.

$$\left\langle cos(\Psi_{1}^{a}-\Psi_{r})\right\rangle =\sqrt{\frac{\left\langle cos(\Psi_{1}^{a}-\Psi_{1}^{b})\right\rangle \left\langle cos(\Psi_{1}^{a}-\Psi_{1}^{c})\right\rangle}{\left\langle cos(\Psi_{1}^{b}-\Psi_{1}^{c})\right\rangle}}$$

$$\begin{array}{l} \mathbf{a} \rightarrow \text{EPD-AB} \left(\begin{array}{c} -5.3 < \eta < 3.3 \right) \\ \mathbf{b} \rightarrow \text{EPD-C} \quad \left(-3.3 < \eta < 2.9 \right) \\ \mathbf{c} \rightarrow \text{TPC B} \quad \left(-1.0 < \eta < 0 \right) \end{array}$$

August 21-25, 2023

Phase Space Distribution

Directed Flow (v,) Results

August 21-25, 2023

Rapidity dependence of v_1 (\pi^+, K⁺, p)

- Magnitude of v_1 increases with increasing rapidity
- Magnitude of v_1 increases with increasing mass of the particle $(p > K^+ > \pi^+)$

Centrality dependence of $v_1(\pi^+)$

- v_1 changes sign moving from central to peripheral collision
 - v_1 slope is maximum for peripheral collision

Centrality dependence of v₁ (K⁺)

ISMD 2023, Sharang Rav Sharma

MD 20

Centrality dependence of v_1 (p)

Collision energy dependence of v_1 slope (\pi, K, p)

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$) $v_1(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]

 $\left. \frac{dv_1}{dy} \right|_{\pi}$

- Increasing collision energy \rightarrow decreasing v_1 slope
- Mass ordering in slope: $dv_1/dy_p > dv_1/dy_K >$

The slope for published collider data was extracted using 1st order polynomial

Phys. Rev. Lett. 120, 062301 (2018), Phys.Lett.B 827, 137003 (2022)

August 21-25, 2023

Rapidity dependence of v₁ (net p and net K)

where $v_{1,p}, v_{1,p} \rightarrow$ particle and antiparticle v_1 and r is the ratio of anti-particles to particles

• Magnitude of net particle v_1 increases with increasing rapidity

August 21-25, 2023

• $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$)

 $v_1(y) = by + cy^3$

- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing v_1 slope

The slope for published data was extracted using 1st order polynomial

August 21-25, 2023

Rapidity dependence of v_1 (p, d, t)

- Magnitude of v₁ increases with increasing rapidity
- Magnitude of v_1 increases with increasing mass of the particle

Collision energy dependence of v₁ slope (p, d, t)

- $v_1(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_1/dy$) $v_1(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing v_1 slope

Phys. Rev. Lett. 120, 062301 (2018)

Triangular Flow (v₃) **Results**

August 21-25, 2023

Rapidity dependence of v₃

August 21-25, 2023

HADES \rightarrow p (20-30 %): 0.6 < p_T < 0.9 GeV/c

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_3/dy$) $v_3(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing magnitude of v₃ slope

(HADES) Phys. Rev. Lett. 125, 262301 (2020)

Rapidity dependence of v₃

• Weak rapidity dependence of v_3 observed for deuteron compared to proton

Collision energy dependence of v₂ slope

- $v_3(y)$ fitted with a 3rd order polynomial to extract the slope parameter ($b = dv_3/dy$) $v_3(y) = by + cy^3$
- Fitting range \rightarrow [y: -1, 0]
- Increasing collision energy \rightarrow decreasing magnitude of v₃ slope

HADES \rightarrow p (20-30 %): 0.6 < p_T < 0.9 GeV/c

(HADES) Phys. Rev. Lett. 125, 262301 (2020)

- The rapidity, centrality, and collision energy dependence of directed flow (v_1) and triangular flow (v_3) of identified hadrons, net particle, and light nuclei for Au+Au collisions at 3.2, 3.5, and 3.9 GeV are presented.
- \Box Magnitude of v₁ and v₃ increases with increasing rapidity
- Slope of $v_1 (dv_1/dy)$ decreases with increasing collision energy for all particles and light nuclei
- \Box dv₁/dy for both net-kaon and net-proton shows a non monotonic behaviour at lower collision energies
- \Box Magnitude of v₃ slope (dv₃/dy) decreases with increasing collision energy for all particles and light nuclei

Thank you for your attention!