Understanding the effect of strangeness and electric charge on the NCQ scaling of directed flow

Kishora Nayak ${ }^{1}$, Zi-Wei Lin ${ }^{2}$, Shusu Shi ${ }^{3}$
${ }^{1}$ Department of Physics, Panchayat College, Bargarh, 768028, Odisha, India
${ }^{2}$ Department of Physics, East Carolina University, Greenville, 27858, NC, USA
${ }^{3}$ Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China

> | $52^{\text {nd }}$ International Symposium on Multiparticle Dynamics (ISMD 2023) |
| :--- |
| Károly Róbert Campus of MATE in Gyöngyös, Hungary |

Supported by IQAC
\square Introduction and Motivation
■A Multi-Phase Trasport Model (AMPT)
\square Analysis Details
Bndependent set of equations

- Analytical solutions
\square Testing the solution using Default-AMPT
『Summary

Introduction

$$
\begin{gathered}
E \frac{d^{3} N}{d p^{3}}=\frac{1}{2 \pi} \frac{d^{2} N}{p_{T} d p_{T} d y}\left(1+2 \mathbf{v}_{\mathbf{1}} \cos \left(\phi-\psi_{R}\right)+2 \mathbf{v}_{\mathbf{2}} \cos 2\left(\phi-\psi_{R}\right)+\ldots\right) \\
\left.v_{1}=\left\langle\cos \left(\phi-\psi_{R}\right)\right\rangle \quad \phi=\tan ^{-1}\left(\frac{p_{y}}{p_{x}}\right) \right\rvert\,
\end{gathered}
$$

$\sqrt{ }$ Directed flow ($\mathbf{v}_{\mathbf{1}}$): $1^{\text {st }}$ harmonic in the Fourier expansion of the
 azimuthal distribution of emitted particles relative to the reaction plane

- A collective sideward motion whose dominant component is an odd function of the particle rapidity (y)
$\sqrt{ }$ Probes early stage of collision dynamics
- Features a strong magnetic field $\left(\sim 10^{14}-10^{15} \mathrm{~T}\right)$ dominated by the passing spectator protons

Motivation

\checkmark Quarks have velocity perpendicular to B direction, because of strong longitudinal flow velocity
\checkmark Lorentz force results in an electric current along x -axis \rightarrow Hall effect
\checkmark B decreases \rightarrow Faraday current is induced in the direction opposite to Hall effect
\checkmark Coulomb force exerted by the outgoing positively charged spectator on the produced plasma
\checkmark Net electric current is sum of Faraday, Lorentz and Coulomb force resulting in a charge dependent \mathbf{v}_{1}

Does v_{1}-splitting $\left(\Delta \mathrm{v}_{1}\right)$ influence by the EM field (charge)?

Does it depend on the strangeness?

\checkmark A new method of testing of NCQ scaling using v_{1} of produced hadrons ($K^{-}, \bar{p}, \bar{\Lambda}, \phi, \bar{\Xi}^{+}, \Omega^{-}, \bar{\Omega}^{+}$) in the same rapidity and $p_{\mathrm{T}} / \mathrm{N}_{\mathrm{cq}}$ phase space
\checkmark Need to understand the dependence of change in electric charge, strangeness content, choice of equations and collision beam energies

Default-AMPT Model

\checkmark AMPT model provides a comprehensive kinetic description of essential stages of high energy heavy ion collisions

[^0]
Analysis Details

$\sqrt{ } v_{1}$ of a hadron (H) and its constituent quarks satisfying NCQ scaling:

$$
\begin{aligned}
& v_{1, \mathrm{H}}\left(p_{\mathrm{T}, \mathrm{H}}\right)=\sum_{i} v_{1, i}\left(p_{\mathrm{T}}, i\right) \\
& v_{1, \mathrm{H}}\left(N_{c q} p_{\mathrm{T}, \mathrm{q}}\right)=N_{c q} v_{1, q}\left(p_{\mathrm{T}, \mathrm{q}}\right)
\end{aligned}
$$

Same quark masses
$\checkmark \Delta v_{1}$ values are obtained for two combinations:
Identical $(\Delta m=0, \Delta q=0$ and $\Delta S=0)$

- Non-identical $(\Delta m=0, \Delta q \neq 0$ and $\Delta S \neq 0)$
$\sqrt{ }$ Produced and transported quarks have different v_{1}
\boldsymbol{m} Interpretation is challenging when hadrons having transported quarks are included

For NCQ scaling testing, assumptions are:

- $v_{1}(\bar{u}) \approx v_{1}(\bar{d})$;
- $v_{1}(s) \approx v_{1}(\bar{s})$

$\sqrt{ }$ The same number of light, strange quarks and anti-quarks on Left \& Right hand side (R) with proper weighting factors

$$
\frac{1}{2} v_{1}[\phi(s \bar{s})]=\frac{1}{3}\left[\Omega^{-}(s s s)\right]
$$

$$
\begin{aligned}
& \Delta S=S^{L}-S^{R}=1 \\
& \Delta q=q^{L}-q^{R}=1 / 3 \\
& \Delta q_{u d}=q^{L}-q^{R}=0
\end{aligned}
$$

Produced hadrons

	Set	Charge (Δq)	$\Delta q_{u d}$	Strangness (ΔS)	Expression
	1	0	0	0	$v_{1}\left[K^{-}(\bar{u} s)\right]+v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]=v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]+v_{1}[\phi(s \bar{s})]$
Identical	2	0	0	0	$v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]=\frac{v_{1}}{2}\left[\bar{\Xi}^{+}(\bar{d} \bar{s} \bar{s})\right]+\frac{v_{1}}{2}[\bar{p}(\bar{u} \bar{u} \bar{d})]$
	3	0	0	0	$\frac{v_{1}}{3}\left[\Omega^{-}(s s s)\right]+\frac{v_{1}}{3}\left[\bar{\Omega}^{+}(\bar{s} \bar{s} \bar{s})\right]=v_{1}[\phi(s \bar{s})]$
	4	1/3	0	1	$\frac{1}{2} v_{1}[\phi(s \bar{s})]=\frac{1}{3}\left[\Omega^{-}(s s s)\right]$
Non-identical	5A	2/3	1/3	1	$\left.\frac{v_{1}}{2} \phi(s \bar{s})\right]+\frac{v_{1}}{3}[\bar{p}(\bar{u} \bar{u} \bar{d})]=v_{1}\left[K^{-}(\bar{u} s)\right]$
	5B	2/3	1/3	1	$v_{1}[\bar{\Lambda}(\bar{u} \bar{d} \bar{s})]=\frac{v_{1}}{2}[\phi(s \bar{s})]+\frac{2}{3} v_{1}[\bar{p}(\bar{u} \bar{u} \bar{d})]$

Solution for Independent Equations

$$
\begin{array}{cc}
\Delta N_{i}=N_{i}^{L}-N_{i}^{R} & \Delta S=S^{L}-S^{R} \\
\Delta N_{\bar{u}}+\Delta N_{d}=0 & \Delta q=q^{L}-q^{R} \\
\Delta N_{s}+\Delta N_{\bar{s}}=0 & \Delta q_{u d}=q^{L}-q^{R}
\end{array}
$$

- $\Delta q_{u d}=\Delta N_{\bar{d}} / 3-2 \Delta N_{\bar{u}} / 3=\Delta N_{\bar{d}}$
- $\Delta S=2 \Delta N_{\bar{s}}$
$\Delta v_{1}=\Delta q_{u d}\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}\right) \Delta v_{1}=c_{q} \Delta q_{u d}+c_{s} \Delta S+c_{0}$
- c_{s} reflects v_{1} difference between s and \bar{s} quarks
- Similarly, c_{q} is the coefficient of $\Delta q \& c_{0}$ is the intercept

$$
\Delta v_{1}=\Delta q\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}-\frac{v_{1, \bar{d}}-v_{1, \bar{u}}}{3}\right)
$$

$$
\Delta v_{1}=c_{q}^{*} \Delta q+c_{s}^{*} \Delta S+c_{0}^{*}
$$

Analytical solution

$\sqrt{ }$ Let's us take the average of Set 1-3 and denote it as Set A, Similarly

- Average of Set 1-3: Set A
- Set 4: Set B
- Set 5B: Set C
$\sqrt{ }$ By considering these three sets (A, B, C) one can obtain three coefficients from Eq. 1 or Eq. 2 \checkmark The Δv_{1}-slope also satisfy the same relation as $\left(\Delta v_{I}\right)_{A},\left(\Delta v_{1}\right)_{B}$ and $\left(\Delta v_{1}\right)_{C}$

\checkmark Similarly using Eq. 2: $\cdot c_{0}{ }^{*}=(\Delta v)_{\mathrm{A}}=c_{0}$
- $c_{q}^{*}=3\left[\left(\Delta v_{1}\right)_{C}-\left(\Delta v_{1}\right)_{B}\right]=c_{q}$
- $c_{s}^{*}=2\left(\Delta v_{1}\right)_{B}-\left(\Delta v_{1}\right)_{A}-\left(\Delta v_{1}\right)_{C}=c_{s}-c_{q} / 3$

Rapidity dependence of v_{1} and $\Delta \mathrm{v}_{1}$

$\checkmark \Delta q=0$ and $\Delta S=0($ Set 2$)$ in Au+Au collisions at $\sqrt{S N}=7.7,14.5,27,54.4$ and 200 GeV
\checkmark Calculated in the same $p_{\text {T }}$ region: Baryon $0-2 \mathrm{GeV}$ and Meson $0-3 \mathrm{GeV}$

$\checkmark \Delta \mathrm{v}_{1}$-slope is sensitive to the $\Delta \mathrm{q}, \Delta \mathrm{S}$, choice of equations and collision beam energies
\checkmark A non-zero Δv_{1}-slope is found in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{S} \mathrm{SN}=7.7,14.5,27,54.4$ and $200 \mathrm{GeV}, 10-50 \%$ centrality in Default-AMPT

3D plane fitting of Δv_{1}-slope

Testing independent equations
Testing analytical solution

$\sqrt{ }$ Equation of the plane (surface):

$$
d\left(\Delta v_{1}\right) / \mathrm{dy}=c_{q} \Delta q_{u d}+c_{s} \Delta S+c_{0}
$$

$$
\begin{gathered}
\Delta v_{1}=\Delta q_{u d}\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}\right)+c_{0} \\
c_{\mathrm{q}}
\end{gathered} c_{S}
$$

$$
\begin{gathered}
\Delta v_{1}=\Delta q\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}-\frac{v_{1, \bar{d}}-v_{1, \bar{u}}}{3}\right)+c_{0}^{*} \\
c_{\mathrm{q}}^{*}
\end{gathered} c_{\mathrm{s}}^{*}
$$

\checkmark The c_{s} and $c_{\mathrm{s}}{ }^{*}$ coefficients are different i.e more sensitive unlike $c_{0}\left(c_{0}{ }^{*}\right)$ and $c_{\mathrm{q}}\left(c_{\mathrm{q}}{ }^{*}\right)$

$$
\begin{gathered}
\Delta v_{1}=\Delta q_{u d}\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}\right)+c_{0} \\
c_{\mathrm{q}}
\end{gathered}
$$

\checkmark The analytical solution is in good agreement with the solution obtained using 5 independent equations

Linear Coefficients

The coefficients (*) are also sensitive to the choice of independent set of equations

$$
\begin{gathered}
\Delta v_{1}=\Delta q\left(v_{1, \bar{d}}-v_{1, \bar{u}}\right)+\Delta S\left(\frac{v_{1, \bar{s}}-v_{1, s}}{2}-\frac{v_{1, \bar{d}}-v_{1, \bar{u}}}{3}\right)+c_{0}^{*} \\
c_{q}^{*} \\
c_{\mathrm{s}}^{*}
\end{gathered}
$$

Summary

- A new method of testing NCQ scaling of v_{1} using produced hadrons is proposed
\star Considering 7 produced hadrons only 5 independent set of equations are possible
The testing should at least be performed by two combinations of independent set of equation
Δv_{1}-slope is very sensitive to the change in electric charge, strangeness content, choice of equations and collision beam energies.
\star The linear coefficient of $\Delta \mathrm{S}$ i.e. c_{S} is found to be the most sensitive parameter for v_{1}-splitting or testing the NCQ scaling as compared to the corresponding $\Delta q_{u d}(\Delta q)$ coefficient $c_{s}\left(c_{s}{ }^{*}\right)$

The non-zero $\Delta \mathrm{v}_{1}$ for non-identical set of equations suggests that v_{1}-splitting not may only be driven by electromagnetic effect \rightarrow Strangeness of hadron might play important role

Backup

[^0]: Zi-Wei Lin et al., Phys. Rev. C 72, 064901 (2005);

