Understanding the effect of strangeness and electric charge on the NCQ scaling of directed flow

<u>Kishora Nayak¹, Zi-Wei Lin², Shusu Shi³</u>

¹Department of Physics, Panchayat College, Bargarh, 768028, Odisha, India ²Department of Physics, East Carolina University, Greenville, 27858, NC, USA ³Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China

> 52nd International Symposium on Multiparticle Dynamics (ISMD 2023) Károly Róbert Campus of MATE in Gyöngyös, Hungary August 21-25, 2023

Supported

☑ Introduction and Motivation

- Image: Market A Multi-Phase Trasport Model (AMPT)
- **Malysis** Details
 - ▶ Independent set of equations
 - Analytical solutions
- Testing the solution using Default-AMPT **Summary**

Outline

Introduction

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + 2\mathbf{v_{1}}\cos(\phi - \psi_{R}) + 2\mathbf{v_{2}}\cos(\phi - \psi_{R}) + \dots \right)$$

Isotropic Directed Elliptic
$$v_{1} = \left\langle \cos(\phi - \psi_{R}) \right\rangle \qquad \phi = \tan^{-1}\left(\frac{p_{y}}{p_{x}}\right)$$

V Directed flow (v_1): 1st harmonic in the Fourier expansion of the azimuthal distribution of emitted particles relative to the reaction plane • A collective sideward motion whose dominant component is an odd

- function of the particle rapidity (y)
- ✓ Probes early stage of **collision dynamics** Features a strong magnetic field ($\sim 10^{14} - 10^{15}$ T) dominated by the passing spectator protons

Motivation

- \checkmark Quarks have velocity perpendicular to B direction, because of strong longitudinal flow velocity
- \checkmark Lorentz force results in an electric current along x-axis \rightarrow Hall effect
- \checkmark B decreases \rightarrow Faraday current is induced in the direction opposite to Hall effect
- **Coulomb force** exerted by the outgoing positively charged spectator on the produced plasma
- \checkmark Net electric current is sum of Faraday, Lorentz and Coulomb force resulting in a charge dependent v_1

Does v_1 -splitting (Δv_1) influence by the EM field (charge)? Does it depend on the strangeness?

 \checkmark A new method of testing of NCQ scaling using v₁ of produced hadrons $(K^-, \bar{p}, \overline{\Lambda}, \phi, \overline{\Xi}^+, \Omega^-, \overline{\Omega}^+)$ in the same rapidity and p_T/N_{cq} phase space

 \checkmark Need to understand the dependence of change in electric charge, strangeness content, choice of equations and collision beam energies

 \checkmark

STAR Collaboration, arXiv: 2204.02831 (2023)

Default-AMPT Model

✓ AMPT model provides a comprehensive kinetic description of essential stages of high energy heavy ion collisions

Zi-Wei Lin et al., Phys. Rev. C 72, 064901 (2005);

✓ Number of AMPT-Default events analysed: 3M
✓ Au+Au, 10-50% centrality, √s_{NN} = 7.7, 14.5, 27, 54.4 & 200 GeV
✓ All the hadrons are identified via their corresponding Pythia-ID (PID)
✓ Reaction plane angle (Ψ) = 0

Analysis Details

 $\sqrt{v_1}$ of a hadron (H) and its constituent quarks satisfying NCQ scaling:

$$v_{1,H}(p_{T,H}) = \sum_{i} v_{1,i}(p_{T},i)$$

Same quark masses

$$v_{1,H}(N_{cq} \ p_{T,q}) = N_{cq}v_{1,q}(p_{T,q})$$

 $\sqrt{\Delta v_1}$ values are obtained for two combinations: Identical ($\Delta m = 0, \Delta q = 0$ and $\Delta S = 0$) Non-identical ($\Delta m = 0, \Delta q \neq 0$ and $\Delta S \neq 0$)

 \checkmark Produced and transported quarks have different v₁ Interpretation is challenging when hadrons having transported quarks are included

ISMD-2023, Hungary, K. Nayak

Independent Equations

✓ The same number of light, strange quarks and anti-quarks on Left & Right hand side (*R*) with proper weighting factors

Example 2	$v_1[\phi(s\bar{s})]$	$[)] = \frac{1}{3} [\Omega^{-}(sss)]$		$\bigvee \Delta S =$
	$\sum \Delta v_1 = v_1^L - v_1^R$			$\Delta q =$
				Δq_{ud}
	Set	Charge (Δq)	Δq_{ud}	Strang
	1	0	0	0
Identical	2	0	0	0
	3	0	0	0
	4	1/3	0	1
Non-identical	5A	2/3	1/3	1
	5B	2/3	1/3	1
	-			

Solution for Independent Equations

 $\breve{\boldsymbol{\nabla}} \Delta N_i = N_i^L \Delta N_{\bar{u}} + \Delta N_{d} =$ $\Delta N_s + \Delta N_{\bar{s}} =$ • $\Delta q_{ud} = \Delta N_{\bar{d}}/3 - 2\Delta N_{\bar{u}}/3 = \Delta N_{\bar{d}}$ $\Delta v_1 = \Delta q_{\mu \alpha}$ • $\Delta S = 2\Delta N_{\bar{s}}$ Instead of Δq_{ud} , we could use the charge $\Delta v_1 =$ difference, where $\Delta q = \Delta q_{ud} + 2\Delta N\bar{s}/3$

$$N_{i}^{R} \qquad \overleftrightarrow{\Delta S} = S^{L} - S^{R}$$

$$0 \qquad \Delta q = q^{L} - q^{R}$$

$$\Delta q_{ud} = q^{L} - q^{R}$$

$${}_{d}(v_{1,\bar{d}} - v_{1,\bar{u}}) + \Delta S\left(\frac{v_{1,\bar{s}} - v_{1,s}}{2}\right) \left[\Delta v_{1} = c_{q} \Delta q_{ud} + c_{s} \Delta S\right]$$

• c_s reflects v_1 difference between s and \bar{s} quarks • Similarly, c_q is the coefficient of $\Delta q \& c_0$ is the intercept

$$\Delta q(v_{1,\bar{d}} - v_{1,\bar{u}}) + \Delta S \left(\frac{v_{1,\bar{s}} - v_{1,\bar{s}}}{2} - \frac{v_{1,\bar{d}} - v_{1,\bar{u}}}{3} \right)$$

$$c_q^* \Delta q + c_s^* \Delta S + c_0^* \text{Eq. 2}$$

ISMD-2023, Hungary, K. Nayak

Analytical solution

✓ Let's us take the average of Set 1-3 and denote it as Set A, Similarly

- Average of Set 1-3: Set A
- Set 4: Set B
- Set 5B: Set C

 \checkmark By considering these three sets (A, B, C) one can obtain three coefficients from Eq. 1 or Eq. 2 \checkmark The Δv_1 -slope also satisfy the same relation as $(\Delta v_1)_A$, $(\Delta v_1)_B$ and $(\Delta v_1)_C$

• $(\Delta v_1)_{\mathrm{A}} = c_0,$

•
$$(\Delta v_1)_{\mathrm{B}} = c_0 + c_s$$

•
$$(\Delta v_1)_{\rm C} = c_0 + c_q/3 + c_s$$

✓ Similarly using Eq. 2:

•
$$c_0^* = (\Delta v)_A = c_0$$

•
$$c_q^* = 3[(\Delta v_1)_C - (\Delta v_1)_B] = c_q$$

• $c_s^* = 2(\Delta v_1)_B - (\Delta v_1)_A - (\Delta v_1)_C = c_s - c_q/3$

•
$$c_q^* = 3[(\Delta v_1)_C - (\Delta v_1)_B] = c_q$$

• $c_s^* = 2(\Delta v_1)_B - (\Delta v_1)_A - (\Delta v_1)_C = c_s - c_q/3$

•
$$c_0 = (\Delta v_1)_A$$

•
$$c_q = 3[(\Delta v_1)_C - (\Delta v_1)_B]$$

•
$$c_s = (\Delta v_1)_B - (\Delta v_1)_A$$

Rapidity dependence of v_1 and \Delta v_1

 $\checkmark \Delta q = 0$ and $\Delta S = 0$ (Set 2) in Au+Au collisions at $\lor s_{NN} = 7.7, 14.5, 27, 54.4$ and 200 GeV \checkmark Calculated in the same p_T region: Baryon 0-2 GeV and Meson 0-3 GeV

 $\sqrt{\Delta v_1}$ -slope is sensitive to the Δq , ΔS , choice of equations and collision beam energies centrality in Default-AMPT

 \checkmark A non-zero Δv_1 -slope is found in Au+Au collisions at $\sqrt{s_{NN}} = 7.7, 14.5, 27, 54.4$ and 200 GeV, 10-50%

3D plane fitting of Δv_1 -slope

✓ Equation of the plane (surface):

 $d(\Delta v_1)/dy =$

$$= c_q \Delta q_{ud} + c_s \Delta S + c_0$$

Linear Coefficients

 \checkmark The c_s and c_s^* coefficients are different i.e more sensitive unlike $c_0(c_0^*)$ and $c_q(c_q^*)$

Linear Coefficients

 C_{S}

 \checkmark The analytical solution is in good agreement with the solution obtained using 5 independent equations

Linear Coefficients

choice of independent set of equations

ISMD-2023, Hungary, K. Nayak

 Cq^*

 $C_{\rm S}^*$

 \star A new method of testing NCQ scaling of v₁ using produced hadrons is proposed \star Considering 7 produced hadrons only 5 independent set of equations are possible \star The testing should at least be performed by two combinations of independent set of equation $\star \Delta v_1$ -slope is very sensitive to the change in electric charge, strangeness content, choice of equations and collision beam energies. \star The linear coefficient of ΔS i.e. c_S is found to be the most sensitive parameter for v₁-splitting or testing the NCQ scaling as compared to the corresponding Δq_{ud} (Δq) coefficient c_s (c_s^*) The non-zero Δv_1 for non-identical set of equations suggests that v_1 -splitting not may only be driven by electromagnetic effect \rightarrow Strangeness of hadron might play important role

Summary

Backup

