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Abstract

From a recently found family of analytic, finite and accelerating, 1+1 dimensional

solutions of perfect fluid relativistic hydrodynamics, we derive simple and powerful

formulae to describe the rapidity and pseudorapidity density distributions. By intro-

ducing a new scaling function, we noticed that the rapidity distribution data of the

different experiments are collapse into a single curve. This data collapsing behaviour

of rapidity distributions suggests that high energy p + p collisions may be described

as collective systems.

1 Introduction

The Hwa-Bjorken solution of relativistic hydrodynamics is suitable for describing 1+1

dimensional explosive perfect fluids [1, 2]. The solution utilizes a time-independent Hubble-

type velocity field, so one of its main shortcomings is that it assumes acceleration-free

expansion. Consequently, it predicts a rapidity plateaux, or a flat rapidity distribution,
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which does not describe any of the high energy experimental data at RHIC or LHC en-

ergies (except perhaps in a narrow interval near midrapidity, where the distribution is

approximately constant near its maximum). However, one of the great advantages of this

Hwa-Bjorken solution is that it uses simple formulas, and from this solution Bjorken de-

rived his famous formula for estimating the initial energy density of the hot and dense

matter created in heavy ion collisions [2]. This solution has previously been generalised to

the case of an accelerating velocity field [3, 4], but these generalisations only satisfy the

equations of hydrodynamics under strong constraints. In one of these new exact solutions

[3, 4] the rate of acceleration may have an arbitrary constant value, but only for a super-

hard, non-realistic equation of state, where the speed of sound and the speed of light are

equal. Recently, Csörgő, Kasza, Csanád and Jiang published a 1+1 dimensional general-

ization of the Hwa-Bjorken solution, where the rate of acceleration of the velocity field

may have an arbitrary constant value, even for a realistic equations of state [5], referred

to as the CKCJ solution.

This CKCJ family of perfect fluid solutions and its applications have been published

previously. The calculation of the pseudorapidity distribution and the fitting of the re-

sulting formula to experimental data were published in refs. [5, 6, 7]. The correction to

Bjorken’s initial energy density estimate was presented in detail in ref. [8]. Based on

measured data, we have determined the lifetime parameter of heavy ion collisions for
√
sNN = 130 and 200 GeV Au+ Au reactions and published the result in refs. [7, 9]. We

calculated the initial energy density in
√
sNN = 130 and 200 GeV Au + Au collisions,

which was also published in [7]. The most recent result is the evaluation of the thermal

photon spectrum, which we compared with experimental data in ref. [10].

In this manuscript we show that, using a new formula computed from the solution

reported in ref. [5], we find a data collapsing or scaling behaviour of experimental rapidity

distribution data. This observation is one of the manifestations of a beautiful hydrody-

namic scaling behaviour. Our theoretical insight is cross-checked on experimental data

successfully, as shown explicitly in Section 4.

2 Recapitulation of the CKCJ Solution

In this section, we briefly recapitulate the 1+1 dimensional, analytical, accelerating

family of CKCJ solutions of relativistic perfect fluid hydrodynamics from ref. [5]. The

solutions of this family solve the equations of hydrodynamics at zero chemical potential

(µ = 0) under the following equation of state:

ε = κ0p, (1)



where κ0 is the inverse square of the speed of sound: κ0 = c−2
s , assumed to be a constant

for simplicity. For the velocity field, the CKCJ generalization of the Hwa-Bjorken flow

that allows the description of accelerating fluids reads as follows [5]:

uµ = (cosh (Ω) , sinh (Ω)) , (2)

where Ω is the fluid-rapidity, which is the function of the coordinate-rapidity ηz, but it is

independent from the longitudinal proper time τ (i.e. Ω ≡ Ω(ηz)). [5] The new family of

CKCJ solutions [5] can be summarized as follows:

ηz(H) = Ω(H)−H, (3)

Ω(H) =
λ√
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where T is the temperature and σ stands for the entropy density. The trajectory equation of

the fluid element is defined by the scale variable s satisfying the scale equation uµ∂µs = 0.

The function T (s) is an arbitrary function of the scale variable s. The parameter λ is an

integration constant, but it has an important physical meaning, since it determines the

acceleration of the velocity field: for λ > 1 we talk about accelerating expansion, while for

0 < λ < 1 we consider decelerating expansion.

The above equations can be considered as a parametric family of solutions in the sense

that the coordinate-rapidity dependence of the thermodynamic quantities (T , σ, p, ε) and

the elements of the velocity field (Ω, vz) is given through the parameter H = Ω(ηz)−ηz. [5]

It is important to note that the above equations define a finite family of solutions in

terms of the coordinate rapidity, and the range of validity of the solutions is affected by

the values of λ and κ0. However, in the accelerationless limiting case λ → 1, the width of

the range of validity goes to infinity. [5] Thus for low accelerations, this family of solutions

can be applied in the physical domain of high energy collisions and in the λ → 1 limit,

the Hwa-Bjorken solution is recovered.



3 Evaluation of the rapidity density

The Cooper-Frye formula can be used to calculate the rapidity distribution:

dN

dy
=

1

2πℏ

∫
dΣµp

µ exp

(
− pµu

µ

TF (τf , ηz)

)
, (9)

where dΣµ is the normal vector of the freeze-out hypersurface, while pµ is the four-

momentum of the detected particles. The integral is performed on the freeze-out hyper-

surface, which is the set of points in spacetime (τ, ηz) where the hadronic medium is

freezing-out. This integral is evaluated at vanishing chemical potential, thus the fugacity

yields a trivial factor of unity in the Boltzmann integral, where TF is the temperature

of the freeze-out hypersurface, which is not a constant, since the points of the freeze-out

hypersurface have different temperatures. The proper time associated with the freeze-out

is denoted by τf . For the temperature, we use eq. (6), and we consider the simplest possible

case, i.e., when the scale function is chosen to be unity: T (s) = 1.

The new solution was found in 1+1 dimensional spacetime, so we had to embed the

formula for the rapidity distribution in 1+3 dimensional spacetime. To do this, we first

assumed that the temperature of the medium is homogeneous in the transverse plane, and

thus the rapidity density is independent of the transverse coordinates. As a second step,

we introduced the transverse mass mT instead of the particle mass m. In such a case, the

integration of the distribution on the surface perpendicular to the beam direction can be

performed trivially, but the integration on the momentum space must also be performed.

Turning to the transverse mass as an integration variable, the rapidity distribution em-

bedded in the 3-dimensional space can be obtained by integrating the double-differential

spectrum over the transverse mass. We used saddle point approximation in the calcula-

tions, which led to the following result:

dN

dy
≈ dN

dy

∣∣∣∣
y=0

cosh−
α(κ0)

2
−1
( y
α

)
exp

(
−m

Tf

[
coshα(κ0)

( y
α

)
− 1
])

, (10)

where α(κ0) = (2λ − κ0)/(λ − κ), and α(1) = α. The kinetic freeze-out temperature is

denoted by Tf and y stands for the rapidity.

In eq. (10) the contribution of radial flow is not present, but from the pT-spectra it is

known that the radial flow effect is not negligible. While the embedding of the rapidity

distribution in 3 spatial dimensions is an efficient tool, it makes the assumption that the

temperature is homogeneous in the transverse plane. For this reason, the effect of radial

flow does not appear, so we artificially include it in the equations. We introduce the effec-

tive temperature Teff , which is equal to the sum of the kinetic freeze-out temperature Tf

and the contribution of the radial flow. In the formula for the rapidity distribution, we sim-

ply use the notation Tf → Teff to sneak the radial flow contribution into the distribution [5,



6]:
dN

dy
≈ dN

dy

∣∣∣∣
y=0

cosh−
α(κ0)

2
−1
( y
α

)
exp

(
− m

Teff

[
coshα(κ0)

( y
α

)
− 1
])

. (11)

The midrapidity density can be expressed by the following formulae:

dN

dy

∣∣∣∣
y=0

=
1√
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VxVp

(2πℏ)3
exp

(
− m
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Vx = R2πτf , (13)

Vp = (2πmTeff)
3/2. (14)

Here, R2π is the finite size of the transverse plane, Vx is the volume of the coordinate

space, and Vp is the volume of the momentum space. While the midrapidity density de-

pends on several parameters of the model, for simplicity we will now consider it only as a

normalization constant, which will greatly facilitate the fitting of experimental data.

3.1 The approximate formula for the rapidity distribution

We now summarize in a few lines that further approximations can be made on eq. (11)

of the rapidity distribution in the region where |y| ≪ α = 2 + 1/(λ − 1). Obviously, this

region widens rapidly if one goes to the accelerationless limiting case (λ → 1). In this

approximation, the rapidity distribution becomes a Gaussian distribution [7]:

dN

dy
≈ ⟨N⟩

(2π∆y2)1/2
exp

(
− y2

2∆y2

)
. (15)

In this approximation, the two new parameters are the average multiplicity ⟨N⟩ and ∆y,

which characterizes the width of the distribution. Both quantities can be expressed in

terms of the parameters of the rapidity density embedded in the 3-dimensional space [7]:

1

∆y2
= (λ− 1)2
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1
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)(
1

2
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, (16)
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(
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)1/2 dN
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y=0

. (17)

Such a Gaussian rapidity distribution is by no means a unique result that is characteristic

to the CKCJ solution only. Other calculations and model results, that are based on Landau

hydrodynamics usually predict a similar result, see e.g. refs. [11, 12, 13]. Using eq. (15),

the experimental data can be described by fitting two parameters (⟨N⟩ and ∆y), while

the original formula (11) has four parameters to be fitted (κ0, λ, Teff , dN/dy|y=0). This

result is a wonderful manifestation of hydrodynamic scaling behavior: two different fits

of the data, resulting in different parameter sets, can lead to the same curve, provided

that the values of the two relevant combinations of the four original parameters, (16) and

(17), remain the same. From eq. (15) of the rapidity distribution, it is also clear that the



rapidity density can be normalized by both the midrapidity value of the distribution and

the mean multiplicity.

3.2 The approximate formula for the pseudorapidity distribution

The pseudorapidity distribution can be calculated from the double-differential invari-

ant momentum spectrum and can be written as the product of two factors. One is the

rapidity density, which written in eq. (11). The other factor is the Jacobian determinant

J , calculated for a mean rapidity dependent transverse momentum: ⟨pT(y)⟩. [7]
The pseudorapidity distribution and the partial results of its derivation were described

in details in ref. [7], so we will leave it aside for now. In this manuscript, we focus on

an approximate formula that holds in the limiting case λ → 1. In this case, the Jacobi

determinant and the pseudorapidity distribution can be approximated by the following

equations [7]:

J ≈ cosh(ηp)√
D2 + cosh2(ηp)

, (18)

dN

dηp
≈ ⟨N⟩√

2π∆y2

cosh(ηp)√
D2 + cosh2(ηp)

exp

(
−y2 (ηp)

2∆y2

)
, (19)

where ηp is the pseudorapidity, D = m/⟨pT⟩ stands for the depthness-parameter. In

eq. (19), the y(ηp) rapidity can be approximated as follows [7]:

y(ηp) ≈ tanh−1

 cosh(ηp)√
D2 + cosh2(ηp)

tanh (ηp)

 . (20)

4 The scaling of dN/dy data

The Gaussian density is expressed by (15) and is determined by the normalization

factor and the width of the distribution. These parameters thus carry the characteristics

of the different reactions, such as the collision energy, the size of the colliding system and

the centrality of the collision. The normalization factor and the width of the distribution

can be scaled out from eq. (15), and with that we obtain a curve independent from the

characteristics of the reactions. We introduce the variable x, which is the quotient of the

rapidity y and the width ∆y:

x =
y

∆y
. (21)

Then we divide the rapidity distribution by the normalization factor, introducing a scale-

independent distribution: (
dN

dy

∣∣∣∣
y=0

)−1
dN

dy
= exp

(
−x2

2

)
, (22)



where the expression of the normalization factor is given by eq. (17), which is valid in

the |y| ≪ α range. Our idea is that if we scale back the rapidity distribution data from

different reactions with the normalization factor and ∆y as above, then regardless of the

reaction, all the data series will line up on the curve of eq. (22). However, in most cases,

we do not have dN/dy measurements available, so in order to check our conjecture, we

have transformed the available pseudorapidity density data. For this reason, first we used

eq. (19) to determine the parameters D, ⟨N⟩ and ∆y from the pseudorapidity distribution

data. Thus, for each dataset we obtained different values of D, ⟨N⟩ and ∆y. Using the D

parameter, we could determine the Jacobian determinant to transform the pseudorapidity

distribution data points into rapidity distribution data points. Then the mean multiplicity

⟨N⟩ and the width parameter ∆y were used to rescale the rapidity distributions. Thus

this scale function can be written as:

f(x) = exp(−x2/2). (23)

Using this method, we checked the manifestation of the scaling behavior on eleven data

sets: PHOBOS 0-30% Au + Au at
√
sNN = 20, 62.4, 130 [14], CMS p + p at

√
s = 7,

8 and 13 TeV and 0-80% Xe + Xe at
√
sNN = 5.44 TeV [15, 16, 17, 18], and ALICE

Pb + Pb at
√
sNN = 5.02 TeV for central, mid-central and peripheral collisions [19]. A

comparison of these data with eq. (22) is shown in Fig. 1. The vertical errors of the

data points consist of the statistical errors of the pseudorapidity distributions and the

uncertainty of the Jacobian determinants. For the PHOBOS data we had to use a special

method, as PHOBOS did not publish separately the statistical and systematic errors of

the pseudorapidity distributions. For this reason, we used an estimate for the statistical

errors of the PHOBOS data, which is described in detail in ref. [7]. The horizontal error

of the data points is due to the uncertainty of ∆y. Fig. 1 convincingly illustrates that

our conjecture was right, i.e. all the data points measured in the different reactions are

clustered within error on the blue curve, which is the manifestation of hydrodynamic

scaling behaviour in the experimental data.

For the pseudorapidity distributions, we could not find a scale function similar to

eq. (23) to describe the collapse of the experimental datasets of dN/dηp, as we saw for

the rapidity distributions in Fig. 1. It is due to the appearance of the depth parameter D,

which controls the dip of the pseudorapidity distribution around midrapidity. This can be

easily seen by evaluating eq. (19) in zero pseudorapidity:

dN

dηp

∣∣∣∣
ηp=0

=
dN

dy

∣∣∣∣
y=0

1√
1 +D2

, (24)

where we used eq. (17) for the midrapidity density. Thus, if this dip is close to zero (D ≈ 0),



Figure 1: Manifestation of hydrodynamic scaling behaviour on experimental data: by trans-

forming the pseudorapidity distributions measured in different reactions, we calculated the

data points associated with the rapidity densities, which we rescaled by the normalization

factor. The width of the distributions were also scaled out by introducing the variable

x. All of the resulting data points lie within error on the scale independent blue curve

obtained from our theoretical calculations. The datasets were taken from CMS [15, 16, 17,

18], ALICE [19] and PHOBOS [14].

we recover the formula of the rapidity distribution and the scaling behavior is restored.

This phenomenon is illustrated in Fig. 2.



Figure 2: The pseudorapidity distribution (divided by dN/dy|y=0) for different D values.

The width parameter ∆y is fixed to 1. It can be clearly seen that the closer D approaches

0, the smaller the midrapidity dip of the pseudorapidity distribution, and for D = 0, we

recover eq. (15) for the shape of the rapidity distribution.

5 Conclusions

In this manuscript, we introduced a new approximate formula to describe the rapidity

distributions, based on the solution published in ref. [5]. By rescaling the new formula,

we introduced a new scale function to show the data collapsing of the rapidity distribu-

tion measurements. This data collapsing behaviour was tested on 11 datasets from three

different experiments (CMS, PHOBOS, ALICE). It is important to emphasize that these

datasets are not only from nucleus-nucleus collisions, but also from proton-proton colli-

sions, which are also described by the curve of the scale function. From this result we

can conclude that p+ p collisions can also be treated as collective systems, as far as their

rapidity or pseudo-rapidity distributions are concerned. Let us mention, that the p + p

data can be well described with low speed of sound values (c2s = 0.1), which is typical for

fluids. This suggests that a strongly interacting quark-gluon plasma my be formed in p+p

collisions at RHIC and at LHC energies.

Let us emphasize that the hydrodynamical description of small systems (hadron-hadron



collisions) is not a new idea. The EHS/NA22 collaboration previously estimated some

hydrodynamic model parameters (radial flow, kinetic freeze-out temperature, geometric

radius of the particle source, mean lifetime) via invariant momentum distributions of π−

particles and Bose-Einstein correlation functions in (π+/K+)p reactions at
√
s ≈ 22 GeV,

where the mean multiplicity of charged particles was less then 10. [20]
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[4] M. I. Nagy, T. Csörgő, and M. Csanád. “Detailed description of accelerating, simple

solutions of relativistic perfect fluid hydrodynamics”. In: Phys. Rev. C 77 (2008),

p. 024908. doi: 10.1103/PhysRevC.77.024908. arXiv: 0709.3677 [nucl-th].
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