

Recent results on jets and collective phenomena in ALICE experiment

Marek Bombara on behalf of the ALICE Collaboration

(Pavol Jozef Šafárik University, Košice, Slovakia)

52nd International Symposium on Multiparticle Dynamics Gyöngyös, Hungary 21-26 August 2023

-	
1	
1	
1	
1	
1	
J	
L	
J	
]	
_	

Marek Bombara, 52nd International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, August 23, 2023

Tracking calorimetry

Calorimetry + conversions

Long-range correlations in heavy-ion collisions

gluon plasma

• long-range, near-side correlations (large $\Delta \eta$ and small $\Delta \phi$) in Pb–Pb connected to hydrodynamic expansion of the quark-

Azimuthal anisotropy in heavy-ion collisions

- initial spatial asymmetry of partonic matter leads to azimuthal momentum space anisotropy in hadron distribution due to different pressure gradients
- anisotropy can be quantified by second Fourier coefficient of the particle distribution (i.e. v_2 a.k.a. elliptic flow)
- "lumpiness" of the fireball (due to fluctuations of the initial energy density profile of the colliding nucleons) can give rise to higher harmonics (v_n , n=3,4,...)

 $E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{\infty} v_{n}(p_{T}, y)\cos[n(\phi - \Psi_{R})]\right)$ $v_n(p_T, y) = \langle \cos[n(\phi - \Psi_R)] \rangle$

 Ψ_R - reaction plane angle

- **non-zero ridge yield** even for events with low multiplicities

Iong-range two-particle correlations measured by ALICE up to the smallest multiplicities with very high precision

Long-range correlations in small systems comparison to e⁺e⁻ collisions

- the cleanest environment (e⁺e⁻) does not show any significant ridge structure at $\Delta \phi = 0$
- ridge yields in pp higher than yields (upper limits) in (e+e-) at the same multiplicities (10, 15)

Flow in Pb–Pb, Xe–Xe, p–Pb and pp collisions

- similar multiplicity dependence of v_n in pp and p-Pb collisions to that observed in large systems
 - anisotropic flow is created as a response to initial geometry via final state interactions of produced matter
- non-zero flow coefficients using multiparticle correlations in pp and p-Pb collisions, compatible with those in large systems
 - presence of long-range and multiparticle correlations ->collectivity
- data cannot be described by purely non-flow based models
- hydrodynamic calculations show qualitative agreement with Pb–Pb, Xe–Xe and p–Pb collisions, while they fail for pp collisions

quark-gluon plasma

hadron gas

- [J. Rafelski, B. Müller, Phys. Rev. Lett. 48 (1982) 1066–1069]
- nucleon-nucleon (or nucleon-nucleus) collision strangeness enhancement confirmed

Strangeness enhancement

production of strange quarks in QGP should be energetically favoured and faster than production in hadron gas

• experimental variable based on comparison of strange hadron production in nucleus-nucleus collision with

Strangeness enhancement

- N_{part}-scaling does not hold at LHC energies a different experimental variable is used: ratio to pion **production** as a function of multiplicity
- remarkable overlap of p–Pb and peripheral Pb–Pb with Cu–Cu and Au–Au - even for 25 times smaller energy (RHIC) the strangeness production is similar!
- a smooth transition from pp to central Pb-Pb seems the only parameter needed to estimate strangeness production is **multiplicity**

Marek Bombara, 52nd International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, August 23, 2023

Strangeness enhancement

- N_{part}-scaling does not hold at LHC energies a different experimental variable is used: ratio to pion **production** as a function of multiplicity
- remarkable overlap of p–Pb and peripheral Pb–Pb with Cu–Cu and Au–Au - even for 25 times smaller energy (RHIC) the strangeness production is similar!
- a smooth transition from pp to central Pb-Pb seems the only parameter needed to estimate strangeness production is **multiplicity**
- hierarchy of the enhancement determined by the hadron strangeness!

What are the roles of jet/underlying event in strangeness production in high-multiplicity pp or p–Pb collisions?

nature

ALICE, Nature Physics 13 (2017) 535

Marek Bombara, 52nd International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, August 23, 2023

- toward-leading spectra of strange hadrons harder than transverse-to-leading spectra or full spectra
- behaviour also for same different multiplicity classes and different collision energy (13 TeV)

- with each other the increase is driven by soft processes
- no difference in trends for different collision energies
- toward-leading yields do not depend on multiplicity (or depend very mildly)

• strange hadron yields from transverse-to-leading and full samples increase with multiplicity and they are consistent

Marek Bombara, 52nd International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, August 23, 2023

14

- transverse-to-leading and full yield ratios show an enhancement as a function of multiplicity (resembling the enhancement of the inclusive strangeness production w.r.t. pions) - can be attributed to the strangeness difference: Ξ^- vs. K_{0S}^{0} ($|\Delta S|=1$)
- toward-leading contributes less to the enhancement
- transverse-to-leading and toward-leading trends are compatible

40

Deuteron production

- if proton and neutron are close in phase space and match the spin state, they can form the deuteron [S. T. Butler et al., Phys. Rev. 129 (1963) 836]
- the parameter B_2 quantifies the probabiliby of the coalescence
- small collision systems ideal for studying coalescense - the phase space smaller than in heavy-ion collisions - the coalescence should be more probable

$$B_{2} = \left(\frac{1}{2\pi p_{T}^{d}} \frac{d^{2}N_{d}}{dydp_{T}^{d}}\right) / \left(\frac{1}{2\pi p_{T}^{p}} \frac{d^{2}N_{p}}{dydp_{T}^{p}}\right)^{2}$$

$$P_{p} = \frac{1}{p} \frac{1}{p} \frac{1}{p} \frac{d^{2}N_{p}}{dydp_{T}^{p}} \frac{1}{p} \frac{1}{p} \frac{d^{2}N_{p}}{dydp_{T}^{p}}$$

$$P_{p} = \frac{1}{p} \frac{1}$$

coalescence probability in jets should be enhanced w.r.t. underlying event

recoil jet + UE

Martin, T., Skands, P. & Farrington, S. Eur. Phys. J. C 76, 299 (2016) ALICE, arXiv:2301.10120

Deuteron production in jets

• phase-space distance between nucleons in jet smaller than in underlying event (UE) - naively the

Deuteron production in jets

ALI-PREL-537261

- in-jet = Toward Transverse
- underlying event = Transverse
- B_2 for jets larger than for UE as predicted by coalescence model
- underlying event: *B*₂ for p–Pb smaller than for pp - source size is bigger in p-Pb
- in-jet: B₂ for **p-Pb larger(!) than for** pp - assuming same source size for the nucleons in jet, the nucleons are closer in phase-space in p-Pb jets than in pp jets
- could be the difference related to particle composition in jets (p-Pb vs. pp)?

81

Deuteron production in jets

ALICE, arXiv:2211.15204v1 ALICE, arXiv:2301.10120

• d/p ratio for jets in p–Pb bigger than for the pp - different particle composition in the two collision systems?

ALICE 2.0 in Run 3

- new Inner Tracking System 7 pixel layers, first layer at 20 mm
- new Forward Muon Tracker forward vertexing and tracking for muons
- new readout chambers of the TPC (Time Projection Chamber) based on GEM (Gas Electron Multipliers) technology
- new FIT (Fast Interaction Trigger) interaction trigger, multiplicity estimator
- from < 1 kHz single events in Run 2 to 50 kHz of **continuous** readout data in Run 3
- building new reconstruction and analysis framework O² (Online/Offline) from scratch
- expected **50-100 times** more statistics for selected rare probes than in Run1+Run2

- **long-range correlations** (connected to the flow in Pb–Pb):
 - observed also in small systems
- strangeness enhancement in small systems:

 - non-negligible contribution also from in-jet processes
- deuteron production in jet and in underlying event:
 - higher coalescence probability B_2 in jets than in underlying event
 - higher coalescence probability B_2 in jets in p–Pb than in jets in pp collisions
- stay tuned for the new Run 3 results

Summary

ridge yields in pp collisions bigger than the yields in e^+e^- (events with comparable multiplicity)

out-of-jet processes give dominant contribution to strangeness enhancement in small systems

