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• Transverse collective flow is a crucial observable in studying the

properties of quark-gluon plasma (QGP)

• Collective flow is anisotropic and depends on the equation of

state and transport coefficients of the system

• Hydrodynamic response to the initial eccentricity of the system

• Anisotropic flow appears to be developed in the early partonic

phase, evolves through relativistic hydrodynamics, and later

gets influenced by hadronic rescatterings

• First deep learning-based estimator for elliptic flow (𝒗𝟐)

• Machine learning model to learn from multiparticle production

dynamics and its correlation to estimate any physical

observable of interest
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Pb-Pb collisions, 𝑠NN = 5.02 TeV, AMPT simulation

• Particle freezeout surface to elliptic flow mapping

• (𝜂 − 𝜙) space as the primary input space 

• 𝑝𝑇, mass, and log 𝑠𝑁𝑁/𝑠0 weighted layers serve as the 

secondary input space 

• Model trained on Pb-Pb, 𝑠𝑁𝑁 = 5.02 TeV (Minimum Bias)

• Feature size = 32 × 32 × 3 = 3072 per event

• Increasing sparsity and model parameters with pixel size

• Optimzer: adam , Loss function: mse

• Max epoch: 100

Batch Size: 32, callback = early_stopping

• Training: 2 × 105 events (~60 GB) 

• Validation: 10% Events  

A multiphase transport model (AMPT)

1. Initialization: Glauber MC with HIJING

2. Parton Cascade: Zhang’s Parton Cascade 

3. Hadronization: Quark Coalescence Model

4. Hadron Cascade: A Relativistic Transport Model

2. Deep learning estimator

Input, output, and training



3. Results
• Predictions are obtained for the collision

centrality, energy, system size, particle

mass, particle species, and transverse

momentum dependence of elliptic flow

• The number-of-constituent-quark scaling

behavior across different collision systems

at different energies is also predicted by

the DNN

• AMPT explains the data to a reasonable

extent from low- 𝑝𝑇 to intermediate-

𝑝𝑇 but deviates for high-𝑝𝑇

• DNN preserves the centrality, 𝑝𝑇, energy,

and meson-baryon dependent behavior of

elliptic flow

• Applicable to RHIC and LHC energies

• Faster and more efficient prediction as

compared to the conventional methods

Summary


