

Collective phenomena in small systems (soft probes)

Debojit Sarkar

Niels Bohr Institute University of Copenhagen Denmark

NIVERSITY OF COPENHAGEN

ISMD 2023 Aug 24, 2023 52nd International Symposium on Multiparticle Dynamics (ISMD 2023)

THE VELUX FOUNDATIONS VILLUM FONDEN 🚿 VELUX FONDEN

Collectivity in small systems?

Everything flows (?) - Initial state geometry + Final state interaction (hydro description)

ISMD 2023 Aug 24, 2023

Debojit Sarkar

Page

Collectivity in small systems?

Everything flows (?) - Initial state geometry + Final state interaction (hydro description) J. L. Nagle, W. A. Zajc; Phys Rev C 99, 054908 (2019) Or A Dumitru et al, Phys. Lett. B 697:21-25,2011

Initial State effect(?):

"Glasma flux tube": Longitudinal extension of color domains with transerse size $\sim 1/Q_{\rm S}$

Domains are uncorrelated and randomly oriented (in both coordinate space and color space)

Many resolved color domains in the interaction region - reduces the anisotropy

Q_S - saturation momentum scale

T. Lappi et al, JHEP volume 2016: 61 (2016)

Debojit Sarkar

Page

Initial Geometry or Initial Momentum anisotropy?

0.6
0.5
0.4
0.3
0.2
0.1
0.0 ^E

- Hydro prediction (initial nucleonic geometry + Final state interactions):
- Geometry scan

ISMD 2023 Aug 24, 2023

$$v_n \propto \epsilon_n$$

n results (PHENIX): consistent with hydro prediction

$$v_{2}^{p+Au} < v_{2}^{d+Au} \approx v_{2}^{^{3}He+Au}$$

$$v_{3}^{p+Au} \approx v_{3}^{^{d}+Au} < v_{3}^{^{3}He+Au}$$
Debojit Sarkar
$$e CGC expectation v_{n}^{p+Au} > v_{n}^{^{d}+Au} > v_{$$

ISMD 2023 Aug 24, 2023

Or both?

STAR measurement adds more to this scenario:

 $v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^3He+Au}$ (Expected hydro ordering) $v_3^{p+Au} \approx v_3^{d+Au} \approx v_3^{^3He+Au}$ (!!)

v₃(p_T) is system independent! Simple Hydro description missing something?

ISMD 2023 Aug 24, 2023

Maybe both...

STAR measurement adds more to this scenario:

 $v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^3He+Au}$ (Expected hydro ordering) $v_3^{p+Au} \approx v_3^{d+Au} \approx v_3^{3He+Au}$ (!!)

• $v_3(p_T)$ is system independent! Simple Hydro description missing something?

• Posible missing factors: sub-nucleonic fluctuations (initial geometry) initial momentum anistropy (CGC) hydrodynamic gradient-expansion corrections ?? • IP-Glasma+MUSIC+URQMD: describes system independent v₃!

What else (for discrepancy between STAR and PHENIX v₃)?

Longitudinal flow decorrelations

- STAR

PHENIX, Nature Physics 15, 214-219 (2019) Consistent with latest results: PHENIX: PRC 107 (2023) 024907 • PHENIX: particles from mid and backward/forward rapidities.

: particles from mid rapidity only. STAR, Phys. Rev. Lett. 130, 242301 (2023)

Longitudinal flow decorrelations

ISMD 2023 Aug 24, 2023

Consistent with latest results: PHENIX: PRC 107 (2023) 024907

: particles from mid rapidity only. STAR, Phys. Rev. Lett. 130, 242301 (2023)

Zhao, Ryu, Shen, Schenke, PRC 107 (2023) 1, 014904

Debojit Sarkar

G. Giacalone et al, Phys. Rev. C 103, 024909 (2021) Bożek, Phys. Rev. C 93, 044908 (2016)

of initial state momentum anisotropy?

ISMD 2023 Aug 24, 2023

Tracing back "Initial Cause" from "Final Effect"

Pearson correlation coefficient:

$$\rho_n\left(v_n^2, \left[p_T\right]\right) = \frac{\operatorname{cov}\left(v_n^2, \left[p_T\right]\right)}{\sqrt{\operatorname{var}\left(v_n^2\right)}\sqrt{\operatorname{var}\left(\left[p_T\right]\right)}}$$

Traces back "initial cause" from "final effect":

Initial State Final State $\rho(v_n^2, < p_T >) \approx \quad \rho(v_n^2, < p_T >) \approx$ $\rho(\epsilon_{n/p}^2, E)$ (Model) (Data) (Model) Possible initial causes: (ϵ_n or ϵ_p) Initial geometry (eccentricity) $\epsilon_n =$ Initial momentum anisotropy $\epsilon_n =$

• ρ in small system- different qualitative response to different initial causes(ϵ_n or ϵ_p) - different sign and slope!

• Sign change of $\rho(v_n^2, [p_T])$ at $dN_{ch}/d\eta \sim 5-10$ (for p-Pb, d+Au, and p+Au) in data? — experimental evidence

Data shows something like that?

- $\rho(v_2^2, [p_T])$: Sign changes disappear with larger $|\Delta \eta| cut(> 2.0)!$ Also, depends on p_T .
- PYTHIA generates similar pattern (similar to the IP-Glasma+MUSIC+UrQMD)!
- Sign change in $\rho(v_2^2, [p_T])$ NOT unique to the presence of initial momentum anisotropy.
- $\rho(v_2^2, [p_T])$ is sensitive to the kinematic cuts...BUT not only for non-flow effects.

Lim, Nagle, Phys. Rev. C 103, 064906 (2021) Behera, Bhatta, Jia, Zhang, Phys Lett. B 822, 2021, 136702

- Event geometry (transverse) correlated across large rapidity intervals.
- Initial state momentum correlations relatively short-range!
- $\rho(v_n^2, [p_T])$: constructed from long range correlations to suppress non-flow (jets, resonance etc).

Perhaps looking at a wrong place...

- Initial state momentum correlations relatively short-range!
- $\rho(v_n^2, [p_T])$: constructed from long range correlations to suppress non-flow (jets, resonance etc).
- Challenge (Exp): Construct short range correlations with effective non-flow suppression?
- Challenge (Theory): Is there a better way to probe the initial state momentum anisotropy?

ISMD 2023 Aug 24, 2023

Perhaps looking at a wrong place...

Debojit Sarkar

Never mind, Let's turn the tables

- Qualitative similarity between small systems and heavy-ion collisions. lacksquare
- **Baseline: Heavy-ion Collisions (check the similarity and differences).**

We can learn about the small systems from identified particle spectra, and flow measurements.

- low pT ($p_{\rm T} \lesssim 3 \, {\rm GeV}/c$) Mass ordering described by hydrodynamics. •
- collectivity, hadronization via quark coalescence (ϕ plays an important role)

Flow of Identified particles

Intermediate pT ($3 < p_T \lesssim 10 \text{ GeV}/c$) — NCQ driven Baryon-meson splitting and grouping — partonic

• What about small systems?

- low pT ($p_{\rm T} \lesssim 3 \, {\rm GeV}/c$) Mass ordering described by hydrodynamics. •
- Intermediate pT ($3 < p_T \lesssim 10 \text{ GeV}/c$) NCQ driven Baryon-meson splitting and grouping partonic • collectivity, hadronization via quark coalescence (ϕ plays an important role).
- Small systems: Qualitatively similar to the heavy-ion results (ϕ will add more to this picture).

• Any model comparison?

Flow of Identified particles

- Small systems: Qualitatively similar to the heavy-ion results.
- For p-Pb: Hydro+Coal+Frag can explain the results but not with Hydro+Frag only. \bullet
- Partonic collectivity in high multiplicity p-Pb collisions!

Need model input for pp

Partonic flow in high multiplicity p-Pb collisions!

- ullet
- Can any model(s) explain the small system results over all the multiplicity classes? ullet
- Initial state effects can be probed in low multiplicity classes? ullet

Still flowing?

Mass ordering and Baryon-meson splitting and grouping exists upto lower multiplicity classes of p-Pb!

• What is the "small" (pA, pp, ee...) and "dilute" (lower multiplicity) limit of onset of collectivity?

Debojit Sarkar

What is the small and dilute limit for collectivity? ALEPH Archived Data e^+e^- , $\sqrt{s} = 183-209$ GeV $e^-e^- \rightarrow hadrons, \sqrt{s=91} \text{ GeV}$ (↓ 3.8 MOD Thrust axis **ALEPH Archived Data** 1.6 < |∆η| < 3.2 $C_{7YAM}^{Data} = 1.28$ 0.4 LEP2 Data LEP1 Data $N_{track} \ge 50$ $C_{ZYAM}^{PYTHIA} = 1.30$ 3.6 0.3 CZYAM CZYAM 0.25 v²{2, I∆η*I>2} Thrust coordinates 3.4 Archived PYTHIA 6.1 d∆∲ d∆∲ 0.2 1.6 < l∆ηl < 3.2 N_{trig} $N_{trk} \ge 30$ 0.15 3.2 0.1 0.1 Data 0.05 Simulation Preliminary 0. **O** 0.5 1.5 2.5 2 0 0.5 1.5 2.5 2 $\Delta \phi$ ALEPH archived data PRL 123, 212002 (2019)

- Interactions (MPI).
- No significant long range correlation in $e^+e^- \rightarrow q\overline{q}$ process. New baseline for collectivity?
- Ridge in high multiplicity e^+e^- collisions ($e^+e^- \rightarrow W^+W^- \rightarrow q\overline{q}q\overline{q}$ process)!

• e⁺e⁻ collisions — point-like collision — no uncertainties on initial geometry or PDF description, no Multi-Parton

A single high multiplicity jet can generate a ridge-like structure. QCD ridge? What about ridge from MPI?

Debojit Sarkar

What is the small and dilute limit for collectivity?

- Ridge Yield: $Y^{pp} > Y^{e^+e^-}$ at <Nch> ~15 with ~3 sigma.
- Photonuclear Collisions with PbPb UPC at the LHC: Finite v_2 ! A good probe to study initial state conditions.
- MPI can generate ridge structures even in low multiplicity.
- Interplay between the "Multiplicity" and "MPI" on ridge in small and dilute systems to be explored...

ISMD 2023 Aug 24, 2023

Debojit Sarkar

Page

Small systems: Partonic collectivity in high multiplicity classes of small systems! Similar pattern in lower multiplicity classes! Same origin?

- perfect combination (?) is still in making.
- What is the small and dilute limit of collectivity?
- multiplicity, MPI, initial and final state effects on collectivity.
- of the experimental results.

Summary

• Initial state effects are important (sub-nucleonic fluctuations + momentum anisotropy + ? + ?). The

• Ongoing analyses of pPb, pp, ep, γ Pb, e⁺e⁻... collisions — to determine the role of system size,

• Non-flow subtraction, longitudinal flow decorrelation to be understood in detail for correct interpretation

• The new high statistics dataset at the LHC for low multiplicity pp collisions, UPC would be useful.

ISMD 2023 Aug 24, 2023

Back Up

Tracing back "Initial Cause" from "Final Effect"

ATLAS Collaboration, Eur. Phys. J. C 79, 12, 985 (2019)

- effects ($\rho(v_n^2, [p_T])$)!
- \bullet

ISMD 2023 Aug 24, 2023

• Pearson correlation coefficient:

$$\rho \left(v_n^2, [p_T] \right) = \frac{\operatorname{cov} \left(v_n^2, [p_T] \right)}{\sqrt{\operatorname{var} \left(v_n^2 \right)} \sqrt{\operatorname{var} \left([p_T] \right)}}$$

• Traces back "initial cause" from "final effect":

• Correlation between the initial state effects ($\rho(\epsilon_n^2, E)$) explains the correlation between the final state

Important tool to trace back the initial state effects responsible for the observed final state effects.

Debojit Sarkar

large v2

Initial Geometry or Initial Momentum anisotropy?

ISMD 2023

Not really...

- $\rho(v_2^2, [p_T])$: Sign changes disappear with larger $|\Delta \eta| cut(> 2.0)!$ Also, depends on p_T .
- PYTHIA generates similar pattern (similar to the IP-Glasma+MUSIC+UrQMD)!
- Sign change in $\rho(v_2^2, [p_T])$ NOT unique to the presence of initial momentum anisotropy.
- $\rho(v_2^2, [p_T])$ is sensitive to the kinematic cuts...BUT not only for non-flow effects.

Lim, Nagle, Phys. Rev. C 103, 064906 (2021)

Plots from: <u>https://indico.cern.ch/event/1043736/contributions/5441955/</u>

ISMD 2023 Aug 24, 2023

ZEUS DIS JHEP 04 (2020) 070 ZEUS Photoproduction JHEP 12 (2021) 102

Data shows something like that?

- $\rho(v_2^2, [p_T])$ changes sign with multiplicity in p-Pb and pp at the LHC (CMS).
- No sign change in ALICE for pp!
- $\rho(v_2^2, [p_T])$ is sensitive to the kinematic cuts??