

Supported in part by

Recent flow results from STAR experiment at RHIC

Vinh Luong (for the STAR Collaboration) Joint Institute for Nuclear Research

52nd International Symposium on Multiparticle Dynamics Gyöngyös, Hungary, 21–26 August 2023

Azimuthal anisotropic flow

- Anisotropy of initial spacial geometry transfers to anisotropy of particles in momentum space via medium created in collisions
 - sensitive to early stages of the collisions
 - useful probe to study initial state, viscosity, equation of state (EoS), etc.

S. Voloshin, Y. Zhang, Z.Phys.C 70 (1996) 665

 Fourier series decomposition of azimuthal distribution of emitted particles:

$$\frac{dN}{d(\phi - \Psi_n)} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n(\phi - \Psi_n)\right]$$

$$v_n = \langle \cos\left[n(\phi - \Psi_n)\right] \rangle$$

- Ψ_n event plane (EP)
- v_n flow coefficients
 - \bullet v_1 directed flow
 - \bullet v_2 elliptic flow
 - v_3 triangle flow

STAR detector

- Beam energy scan II (BES-II) upgrades
 - iTPC (2019+): extended η acceptance and improved tracking, dE/dxresolution
 - eTOF (2019+): extended PID coverage
 - ► EPD (2018+): EP determination away from mid-rapidity, improved EP resolution compared to BBC

• Fixed-target (FXT) setup

Access to energies $\sqrt{s_{\rm NN}} < 7.7 \,\,{\rm GeV}$

Vinh Luong | ISMD 2023

Colliding systems and energies at STAR

- BES-II and FXT program: Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3.0 54.4 GeV
- Top RHIC energy $\sqrt{s_{NN}}$ = 200 GeV:, Au+Au, Zr+Zr, Ru+Ru, p+Au, d+Au, t+Au, O+O etc.

Hypernuclei v_1 at $\sqrt{s_{NN}} = 3$ GeV

- Midrapidity v_1 slope of $^3_\Lambda H$ and $^4_\Lambda H$ follow baryon number scaling
 - Coalescence is the dominant mechanism for hypernuclei production

v_1 at forward and backward pseudorapidity

- $v_1(\eta)$ changes sign near beam rapidity at all centralities
- UrQMD fails to describe the measurements
- Can be used to constrain Tdependence of medium viscosity

24.08.2023

Test of limiting fragmentation: v_1 collapse to a common curve with other energies in a region of $\eta - y_{\text{beam}}$

Number-of-constituent-quark (NCQ) scaling

• At $\sqrt{s_{\rm NN}}$ = 19.6 GeV (BES-II), NCQ scaling holds within 10% for $(m_{\rm T} - m_0)/n_q > 0.5 \text{ GeV}/c^2$

Dominance of partonic interactions

• At $\sqrt{s_{\rm NN}}$ = 3 GeV, the NCQ scaling is absent Dominance of baryonic interactions

Flow in small systems

STAR, PRL 130 (2023) 242301

(E³)

ratio

ð

d+Au

.5

		<u> </u>
	Nucleon Glauber	Sub-Nucleon Glauber
	$arepsilon_2(arepsilon_3)$	$arepsilon_2(arepsilon_3)$
0-5% pAu	0.23(0.16)	0.38(0.30)
0-5% dAu	0.54(0.18)	0.51(0.31)
0-5% 3 He+Au	0.50(0.28)	0.52(0.35)
	· •	

Nucleon Glauber: J. L. Nagle, et. al., PRL 113 (2014) 112301 Sub-nucleon: K. Welsh, et. al., PRC 94 (2016) 024919

•
$$v_2^{\text{He}+\text{Au}} \approx v_2^{d+\text{Au}} > v_2^{p+\text{Au}}$$

•
$$v_3^{\text{He}+\text{Au}} \thickapprox v_3^{d+\text{Au}} \thickapprox v_3^{p+\text{Au}}$$

- Suggests significant influence of sub-nucleonic fluctuations
- Need to study pre-flow

Nuclear deformation from isobar collision

24.08.2023

Vinh Luong | ISMD 2023

- Assuming a Gaussian distribution of v_2
 - $v_2\{2\} \approx \langle v_2 \rangle + \sigma^2/(2 \langle v_2 \rangle)$
 - $v_2{4} \approx v_2{6} \approx \langle v_2 \rangle \sigma^2/(2 \langle v_2 \rangle)$
 - $v_2\{4\}/v_2\{2\}$ ratio serves as a metric for v_2 fluctuations

 $v_2\{k\}$ increasing with increasing colliding energy

- $v_2\{4\}/v_2\{2\}$ show a weak colliding energy dependence
 - Weak energy dependence of flow fluctuations

• $v_2{6}/v_2{4}$ are consistent with unity within uncertainties

Vinh Luong | ISMD 2023

Constraints on initial conditions

24.08.2023

11

	Hydro-I	Hydro-II
η/s	0.12	0.05
Initial conditions	IP-Glasma	TRENTO
Contributions	Hydro + Hadronic cascade	Hydro + Direct decays

• Both models describe $v_2\{k\}$ well

• $\varepsilon_2\{4\}/\varepsilon_2\{2\} \approx v_2\{4\}/v_2\{2\}$ for central collisions

Initial-state eccentricity fluctuations dominate v_2 fluctuations

• $v_2\{4\}/v_2\{2\}$ from Hydro-I agrees well with the data

Feasible constraints on the initial stages

 $v_3{\{\Psi_1\}}$ at $\sqrt{s_{NN}} = 3 \text{ GeV}$

• $v_3{\Psi_1}$ measured at 3 GeV with STAR is much weaker than one observed at 2.4 GeV*, further decreases at

 $\sqrt{s_{\rm NN}} = 3.2 - 3.9 \,{\rm GeV^{**}}$

- Signal could only be reproduced with including mean field potential
- Can be used to constrain EoS

*HADES, PRL 125 (2020) 262301

**Sharang Rav Sharma, Mon. 10:20

Summary

- v_1 of ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H
 - Measured for the first time
 - \triangleright v_1 slope follows baryon number scaling
- $v_1^{\text{EPD}}(\eta)$
 - Limited fragmentation check
 - Useful to constrain T-dependent shear viscosity
- Number-of-constituent-quark scaling
 - Holds at $\sqrt{s_{\rm NN}} = 19.6 \, {\rm GeV}$
 - Absent at $\sqrt{s_{\rm NN}} = 3 \,{\rm GeV}$

13

- v_2 , v_3 in He+Au, d+Au, p+Au collisions
 - Suggests significant influence of subnucleonic fluctuations
- Strange hadron v_2 from isobar collisions
 - Give access to nuclei deformation
- $v_2\{4\}/v_2\{2\}$
 - Flow fluctuations show weak energy dependence
 - Provide constraints for initial conditions
- $v_3{\Psi_1}$ at $\sqrt{s_{NN}} = 3 \text{ GeV}$
 - Useful to constrain EoS
- Stay tuned for more flow results from BES-11 and FXT programs!

Vinh Luong | ISMD 2023

Back-up

System size dependence

• v_2 at high p_T incresases with atomic mass number of colliding nuclei

Indicating a nuclear size dependence

Vinh Luong | ISMD 2023