Observation of the dead cone effect in charm and **bottom quark jets** and its QCD explanation

S. Kluth (Speaker)¹, W. Ochs¹,
R. Perez Ramos²
¹: MPI für Physik, Munich
²: IPSA, LPTHE, Paris
Phys. Rev. D107 (2023) 094039
ISMD 2023, 22.08.2023

Last episode of this series:

Gear-obsessed editors choose every product we review. We may earn commission if you buy from a link. Why Trust Us?

Finally, Scientists Prove the 'Dead Cone Effect,' Shaking Up Particle Physics

Operators of the ALICE detector have observed the first direct evidence of the "dead cone effect," allowing them to assess the mass of the elusive charm quark.

The dead cone effect in QCD

QCD MLLA dead cone spectra

QCD MLLA prediction for momentum spectra $D_Q(\xi)$ of *accompanying particles* in heavy quark jets

 $\begin{array}{l} D_Q(\xi,W) = D_q(\xi,W) - D_q(\xi - \overline{\xi}_Q,m_Q\sqrt{e}) \\ \overline{\xi}_Q = \ln(1/\overline{x}_Q), \ \overline{x}_Q: \ \text{average } x_Q \end{array}$

LPHD: hadronisation correction via scaling factor $K^{ch} \approx 1.28$ at $\sqrt{s} = m_Z$

Momentum space analysis: no direct dependence on jet axes

LEP data "raw" (OPAL)

Tag B or C hadron décay in one Thrust-hemisphere, measure tracks in opposite

Correct for track efficiency and event selection biases to "hadron level" ($\tau < 3 \times 10^{-10}$ s)

Accompanying particles *and* B or C hadron decay products

(Could separate B or C hadron decay products with track IP)

[OPAL coll., Eur. Phys. J. C7 (1999) 369]

Decay and prompt particles

Separate B or C hadron decay products and prompt particles using MC (Pythia 8.3)

Apply to data with corrections (scaling) and systematics for B decay multiplicity in MC

LEP data "cooked"

Subtract MC simulated ξ spectra of B or C hadron decay products

Scale MC to $n_b^{dec} = 11.10 \pm 0.18$; MC consistent w/ $n_c^{dec} = 5.2 \pm 0.3$

Dead cone effect

Dead cone confirmed at > 5 σ , ratios Q/uds up to factor 10

Dead cone in b- and c-jets

Dead cone effect in MLLA

QCD MLLA dead cone subtraction consistent with data Prediction: $D_Q(\xi,W) = D_q(\xi,W) - D_q(\xi - \overline{\xi}_Q, m_Q \sqrt{e})$

Excess at large ξ_p

MLLA prediction at large ξ_p above data

Corresponds to result of multiplicity analysis: $\delta_{bl}^{MLLA} - \delta_{bl}^{exp} = 1.26 \pm 0.42$

[Dokshitzer, Fabbri, Khoze, Ochs, Eur. Phys. J. C45 (2006) 387] Dead cone in b- and c-jets

Sensitivity to b quark mass

Fit central region $1.6 < \xi_p < 2.6$ with free energy scale W_0

 $W_0^{exp} = (7.2 \pm 0.5) \text{ GeV (DELPHI, OPAL)}$

 $W_0^{MLLA} = m_b \sqrt{e} = (8.0 \pm 0.2) \text{ GeV}$ ($m_b(m_b) = (4.85 \pm 0.15) \text{ GeV}$)

Sensitivity to $m_b(m_b)$ at few % level, but not competitive with other analyses

MLLA LPHD in good agreement with data where approximations valid

Relevant today?

- Yes
- Heavy flavour jet tagging at LHC
 - Dist'n of $x = p/p_{jet}$ of acc. part. sensitive to m_Q
 - Inclusive (DNN) flavour tagging should profit
- MC heavy flavour modelling
 - Compare acc. part. and Q decay ξ spectra
- Top quark fragmentation
 - Measure acc. part. spectra in top decays?

Conclusion

- Dead cone effect confirmed with LEP data
 - Momentum space analysis for b and c-quark jets
 - $E_{jet} \approx 45 \text{ GeV}$ (ALICE $E_{Radiator} < 10 \text{ GeV}$)
 - Model independent (except B, C decay subtraction)
 - No direct jet axis dependence \Rightarrow effect larger w.r.t. ALICE
- Consequences for top quark dead cone studies at LHC?

ALICE in dead cone land

ALICE in dead cone land

Introduction

Consider transverse separation of γ (gluon) from e^+e^- (parton) pair with $\Delta t \Delta E > \hbar/2 \Rightarrow$ angular ordering $\theta_{e^+e^-} > \theta_{e\gamma}$ ($\theta_{partons} > \theta_{parton,g}$)

[Dokshitzer, Khoze, Mueller, Troyan, Basics of perturbative QCD, www.lpthe.jussieu.fr/~yuri/BPQCD/BPQCD.pdf]

Soft gluon interference

Charged particle momentum spectra $\xi_p = \log(1/x_p), x_p = 2p/\sqrt{s}$

