

Recent J/ψ results measured with PHENIX

T. Novák (for the PHENIX Collaboration)

MATE KRC, Gyöngyös, Hungary

21/08 – 26/08 2023 52nd ISMD

PHENIX Run History

Accomplished 16 years of operation with 9 collision species and 9 collision energies

Results from the recorded data are still coming out.

Progresses from larger systems to smaller systems

Species	Run Year
Au+Au	2001, 2002, 2004, 2007, 2008, 2010, 2011, 2014, 2016
d+Au	2003, 2008, 2016
Cu+Cu	2005
U+U	2012
Cu+Au	2012
³ He+Au	2014
<i>p</i> +Au	2015
<i>p</i> +Al	2015

Muon Arms

- Rapidity coverage: 1.2<|y|<2.2
- Muon Tracking followed by Muon Identifier
 - Stainless steel and copper absorbers for hadron rejection
- BBC measures collision vertex along beam axis

Central Arms

- Rapidity coverage: |y|<0.35
- Charged particle tracks and momentum pad and drift chambers
- Ring Imaging Cherenkov detector for pion rejection
- Energy / momentum matching of charged particles using EMCal clusters

Small Systems Results

CNM Effects

Gluon Shadowing/Anti-Shadowing:

Modification (suppression/enhancement) of heavy quark cross section due to modifications of the gluon structure function

• Parton Energy Loss:

The projectile gluon experiences multiple scattering while passing through the target before J/ ψ production, reducing the rapidity of the J/ ψ

• Cronin Effect:

Modification of the J/ ψ p_T distribution due to multiple elastic scattering of partons

• Nuclear Break-Up:

The break up of the bound J/ ψ (or precursor state) in collisions with other target nucleons that pass through J/ ψ production point

• Co-Movers Break-Up:

Final state break up of the J/ ψ through interactions with produced partons

J/ψ Nuclear Modification (2014)

- Forward rapidity: J/ψ suppression similar to open charm suppression
 - Consistent with shadowing and/or parton energy loss
- Backward rapidity: J/ψ suppressed relative to open charm
 - Expect open charm enhanced by antishadowing
 - J/ ψ suppression consistent with absorption from collisions with nucleons in target
 - Possible contribution also from co-movers

J/ψ Nuclear Modification (2020)

- Predictions for $p/{}^{3}$ He+Au based on Bayesian reweighting method using J/ ψ constraints from p+Pb data at the LHC
- Added PHENIX nuclear absorption estimate at backward rapidity

Charmonia Nuclear Modification in *p*+Au Collisions

- At forward rapidity, J/ ψ and ψ (2S) modification well described by shadowing models
 - Consistent with cold nuclear matter effects
- At backward rapidity, charmonium modification inconsistent with shadowing effects alone

Large Systems Results

 J/ψ Suppression puzzle

- $R_{AA}^{Fwd} < R_{AA}^{mid}$, contrary to expectation
- ~20 cc pairs in collisions at RHIC (mostly at mid-rapidity)

Can we attribute this significant difference in J/ ψ R_{AA} to regeneration of J/ ψ from cc̄ pairs at mid-rapidity?

Coalescence as the solution

• $R_{AA}^{LHC} > R_{AA}^{RHIC}$

- Greater J/ψ suppression predicted at higher T
- ~200 cc pairs at LHC
- Coalescence increases R_{AA}

J/ψ Reconstruction

J/ψ simulated with PYTHIA embedded in Au+Au data

• Obtain Crystal Ball fit parameters

Constructing the signal and fit

- Crystal Ball function (J/ψ)
- Crystal Ball function (ψ (2S))
- Exponential (residual background)

 $J/\psi v_2$ measurement

- PHENIX J/ ψ v₂ at forward rapidity is consistent with zero
- Forward and mid-rapidity results at RHIC are consistent, but the uncertainties are large
- The ALICE nonzero result is different from our measurement

Summary

- Small systems
 - Large enhancement seen in open heavy flavor decays at backward rapidity
 - J/ ψ R_{AA} suppression at backward rapidity consistent with nuclear absorption effects
 - ψ (2S) modification at backward rapidity consistent with final state effect
- Large systems
 - Forward rapidity J/ ψ R_{AA} slightly more suppressed than mid-rapidity results
 - Data at forward rapidity suggests little to no coalescence effects
 - J/ ψ v₂ measurements consistent with zero

Thank you for your attention!

Back up

 J/ψ Modification Ratio for ³He+Au to p+Au (0-20%)

16

Phys. Rev. C 102, 014902 (2020)

- Stronger suppression in ³He+Au than p+Au at bkwd rapidity with signicance 1.3 σ
- No final state effect at fwd rapidity, small final state effect at bkwd rapidity

$\psi(2S)$ to J/ ψ Ratio in p+A Collisions at RHIC and LHC

- The $\psi(2S)$ to J/ ψ ratio in p+p collisions at RHIC, LHC show no clear energy dependence
- Comparison of the *p*+A to *p*+*p* ratio strongly suggests the presence of final state effects in *p*+A collisions at backward rapidity, as initial state effects expected to largely cancel