J/W HADROPRODUCTION WITH COLOR RECONNECTIONS

PIOTR KOTKO

AGH University of Krakow

in collaboration with: L. MOTYKA, A. STASTO, based on: Phys.Lett.B 844 (2023) 138104

supported by: NATIONAL SCIENCE CENTRE POLAND, GRANT NO. DEC-2020/39/0/ST2/03011

MOTIVATION

Puzzle of $pp \rightarrow 2J/\psi + X$ and $pp \rightarrow 3J/\psi + X$ processes

standard approach for double parton scattering (DPS)

$$\sigma_{AB} = \frac{1}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

- σ_{eff} for DPS is about 3 times smaller than for other processes \implies strong correlations
- single charmonium production is well described by Color Singlet model (CSM) and Color Octet models (COM); both depend on universal fragmentation of partonic Fock states to charmonium
 - \implies factorization breaking?

[see eg. J. Collins, 2016]

General Idea

- [CMS, Nature Phys. 19 (2023)]
- study charmonium hadroproduction using controllable explicit mechanism, where particle production depends on the environment
- our choice: PYTHIA with Color Reconnection (CR) mechanism
- we study production of low invariant mass $c\bar{c}$ singlets, and how they are affected by the CR

[motivated by Edin, Ingleman, Rathsman, 1997]

	_	
	CMS , √ s=13 TeV, J/ψ+J/ψ+J/ψ	This we
	CMS *, √ s=7 TeV, J/ψ+J/ψ	Ref. 60
—	ATLAS , √ s=8 TeV, J/ψ+J/ψ	Ref. 24
	D0 , √ s=1.96 TeV, J/ψ+J/ψ	Ref. 22
←	D0 *, √ s=1.96 TeV, J/ψ+Y	Ref. 58
	ATLAS *, √ s=7 TeV, W+J/ψ	Ref. 59
—	ATLAS *, √ s=8 TeV, Z+J/ψ	Ref. 60
	ATLAS *, √ s=8 TeV, Z+b→J/ψ	Ref. 57
·	D0 , √ s=1.96 TeV, γ+b/c+2-jet	Ref. 55
	D0 , √s=1.96 TeV, γ+3-jet	Ref. 55
I	D0 , √s=1.96 TeV, 2-γ+2-jet	Ref. 56
_ 	D0 , √s=1.96 TeV, γ+3-jet	Ref. 54
	CDF , √ s=1.8 TeV, γ+3-jet	Ref. 53
	UA2 , √s=640 GeV, 4-jet	Ref. 51
· · · · · · · · · · · · · · · · · · ·	CDF, vs=1.8 TeV, 4-jet	Ref. 52
_ 	ATLAS, √s=7 TeV, 4-jet	Ref. 15
- -	CMS, √s=7 TeV, 4-jet	Ref. 24
	CMS , √ s=13 TeV, 4-jet	Ref. 19
· · ·	CMS, √s=7 TeV, W+2-jet	Ref. 14
	ATLAS, √s=7 TeV, W+2-jet	Ref. 13
· <u> </u>	CMS, vs=13 TeV, WW	Ref. 18
0 20		

 $\sigma_{
m eff,DPS}$ [mb]

INTRODUCTION

INTRODUCTION

Each line has a "color tag" *i* or "anti-color tag" \overline{i} . In Pythia $i, \overline{j} = 101, 102, 103, 104, ...$ Partons are characterized by a pair of tags $\{i, \overline{j}\}$.

Requires switching the color tags for final state particles.

COLOR RECONNECTIONS

COLOR RECONNECTIONS

QCD-based Pythia CR model

- possible color topologies are SU(3) QCD-driven
- detailed modeling of the beam remnants
- reconnections are such, that the color topology for which the "string length" is minimized, are passed on to hadronization

Algorithm

- we **do not** use COM or other models available in Pythia for charmonium production
- we take default Pythia 8.3, no tuning, with MPI and showers turned on
- the hadronization is turned off
- we scan through the event record to look for $c\bar{c}$ quarks
- if present, we look for $c\bar{c}$ pairs with matching color and anti-color tags - these are J/ ψ candidates
- we apply the invariant mass cut: $3.0 \,\text{GeV} \le M \le M_{\text{max}}$ - the color singlets satisfying this cut are treated as J/ψ
- $M_{\rm max}$ is our free parameter; we fix $M_{\rm max} \approx 3.3 \,{\rm GeV}$ to have best description of data
- we compute p_T spectra in central rapidity window $|y| \le 2.4$
- we test color reconnection on/off

Results for ATLAS kinematics

- comparison with ATLAS data [ATLAS, Eur.Phys.J C (2016) 283]
- good description of data for most rapidity bins, provided the CR is on (red histograms)
- without CR J/ ψ production rate is dramatically insufficient to describe the data
- some deviations at large p_T , but also large statistical MC errors
- challenging computation; we used the PLGrid facility and Prometheus supercomputer to create sufficient statistics

Results for CMS kinematics

- comparison with CMS data [CMS, JHEP (2012) 011]
- similar conclusions

Origin of $c\bar{c}$ singlets in Pythia

• we analyze event records with low invariant mass $c\bar{c}$ singlets

mother

- we extract information on mother partons and its production mechanism
- each plot is normalized by the total number of events, independently for CR on and CR off

Interpretation

• in the Leading Color (large N_c) no perturbative mechanism can contribute to class A ("single gluon mother")

- the very few events in class A with **CR off** are due to color reshuffling in the MPI and beam remnant; it dies out with p_T
- dominant mechanism when CR is off is via "different gluon mothers", but this has small probability due to less likely phase space overlap
- when **CR is on**, class A mechanism dominates; narrow angle quark pair is favored by the smallness of the string length and tend to be color-reconnected to become the singlet

SUMMARY

- The model of J/ψ hadroproduction using the Color Reconnection reproduces both the magnitude and p_T dependence.
- No tuning of PYTHIA parameters; just one extra parameter cut on $c\bar{c}$ invariant mass, being in the expected range.
- Color Reconnection is essential to reproduce the data.
- Gluons from showers are the dominant source of J/ψ .
- What about double J/ψ hadroproduction in this model? Very challenging (statistics)...