

Itaru Nakagawa

ISMD 2023

Conclusion

No Physics Yet

Conclusion

- sPHENIX is new Jet and heavy flavor Detector at RHIC for QGP and cold-QCD.
- Commissioning ongoing.
- Some detectors are ready to take physics, while some needs are not yet.

sPHENIX Physics Program

Zhaozhong Shi's talk on Thursday 08/24

Cold-QCD: Proton Spin Decomposition

sPHENIX Detector

■ 1.4T Solenoid from BaBar

Hermetic coverage:|η|<1.1, 2π in φ

■ Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!

High data rates: 15 kHz for all subdetectors

Precise tracking with tracking system in stream readout

2023: Commissioning Au+Au

May

2024 : p+p

2025 : Au+Au

 $\sqrt{s} = 200 \text{GeV}$

Tracking system

Aug Oct

TPC

Calorimeter system

MAGNET

2023 Jan

Install

Beam Commissioning

Physics Physic

sPHENIX Detector

■ 1.4T Solenoid from BaBar

Hermetic coverage:|η|<1.1, 2π in φ

■ Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!

■ High data rates: 15 kHz for all subdetectors

Precise tracking with tracking system in stream readout

2023: Commissioning Au+Au

May

2024: p+p

Install

2025 : Au+Au

 $\sqrt{s} = 200 \text{GeV}$

Aug

Tracking system

2023 Jan

Beam Commissioning

Physics₈

MVTX/

Oct

TPC

Calorimeter system

MAGNET

sPHENIX Detector

■ 1.4T Solenoid from BaBar

Hermetic coverage:|η|<1.1, 2π in φ

■ Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!

High data rates: 15 kHz for all subdetectors

Precise tracking with tracking system in stream readout

2023: Commissioning Au+Au

2024: p+p

Install

2025 : Au+Au

 $\sqrt{s} = 200 \text{GeV}$

Aug

Tracking system

2023 Jan May

Beam Commissioning

Cosmic

MVTX/

Oct

TPC

Calorimeter system

MAGNET

Hadron and EM Calorimeters

Inner HCal Installation

sPHENIX will have kinematic reach out to ~ 70 GeV for jets, kinematic overlap with the LHC.

Gluon TMD by Direct-γ

TMD: Transverse Momentum Dependence

$$p^{\uparrow} + p \rightarrow \gamma + X$$

Much improved direct photon TSSA -> gluon TMD

All Trackers installed in Position (March 30th, 2023)

INTT

Silicon pixel detector (MVTX)

- 29 um x 27 um, pixels
- 2.5 cm < R < 4.5 cm
- 20 BLCK integration time

Silicon strip detector (INTT)

- 78um, strip sensors
- 7 cm < R < 11 cm
- 1 BCLK timing resolution

Time projection Chamber (TPC)

- 20cm < R < 78cm
- Spatial resolution, ~100um
- Long drift time, ~13us

TPC Outer Tracker (TPOT)

Cosmic Ray Track INTT BCO: 883479809083 Reconstruction

Tracking System

08/17/2023

Tracking Detector Commissioning

- TPC Event Display in Au+Au @ 200GeV
- Multiplicity correlations between MBD-INTT-TPOT
- MVTX correlation between different layers
- More correlation hits in Zhaozhong Shi's talk on Thursday 08/24

Clear separation between 2S and 3S states

Vertex Reconstruction & Centrality SPHENIX Simulation

INTT-MBD Z-vertex Reconstruction

Confirmed fairly consistent z-vertex reconstruction between two independent detectors

Phys. Rev. C 71, 034908 (2005)

Published Centrality plot in PHENIX

sPHENIX Summary

- Large and hermetic EM and hadronic calorimetry.
- Highly precise tracking.
- 15kHz trigger rate and stream readout for trackers.
- Wide range of physics covered in sPHENIX
- A lot of progress in 2023 commissioning with Au+Au Collision at \sqrt{s} =200GeV and getting ready for 2024 Run.
- Will address on cold QCD in 2024!

Backup Slides

Jet Physics

Probing the QGP with precise jet, direct photon, and hadron measurements

- ✓ High data rates & hermetic EMCal+HCal offer wide p_T range for jet reconstruction.
- ✓ sPHENIX can precisely measure the low p_T region, which is challenging at the LHC.
- ✓ sPHENIX will have kinematic reach out to ~ 70 GeV for jets, kinematic overlap with the LHC.

Heavy Flavor

- ✓ Cleanly separate open bottom via DCA.
- ✓ Study mass dependence of energy loss and collectivity.
- ✓ Bottom quarks and light quarks are expected to be different for R_{AA} and v_2 for $p_T \lesssim 15$ GeV.

Polarized single spin asymmetry

Explores gluon spin contribution to proton spin

Cold QCD: Gluon TMD with Direct photons

$$p^{\uparrow} + p \rightarrow \gamma + X$$

Much improved direct photon TSSA -> gluon TMD

First Data from Commissioning: EMCal

Clear pi0 peak seen in the di-photon invariant mass spectrum

Heavy Flavor

- ✓ Cleanly separate open bottom via DCA.
- ✓ Study mass dependence of energy loss and collectivity.
- ✓ Bottom quarks and light quarks are expected to be different for R_{AA} and v_2 for $p_T \lesssim 15$ GeV.

Polarized single spin asymmetry

Explores gluon spin contribution to proton spin

Quarkonium spectroscopy

- ✓ Suppression with clear distinction of three Upsilon states. Color dipoles probing the QGP at three length scales.
- \checkmark The centrality dependence and particularly the p_T dependence are critical measurements for comparison between RHIC and the LHC.
- ✓ Signal enhancement with ML tools (BDT) is expected.