New measurements of charged jet fragmentation properties in pp and p–Pb collisions with ALICE

Zoltán Varga
for the ALICE collaboration
varga.zoltan@wigner.hu

This work has been supported by the Hungarian NKFIH OTKA FK131979 and K135515, as well as the NKFIH grant 2021-4.1.2-NEMZ_KI-2022-00007.
Background

- Jets are collimated showers of particles which are produced by fragmentation and hadronization of hard-scattered partons

- Collectivity in high-multiplicity p-p collisions
 - Substantial v_n \cite{Yan-Ollitrault, PRL 112, 082301 (2014)}
 - Enhancement of strange hadrons
 - Ridge-like structure
 - Intra-jet properties (such as z_{ch}) are promising observables, since they are sensitive to the parton shower and hadronization processes

- Jets in p-Pb collisions:
 - Help testing the impact of cold nuclear matter effects
 - Valuable tools to understand the possible medium formation in small collision systems
The ALICE Detector

ElectroMagnetic Calorimeter
sampling scintillator calorimeter
full jet reconstruction
$|\eta| < 0.7$, $1.4 < \varphi < \pi$

Inner Tracking System
silicon detectors
charged-particle tracking, secondary vertex

Time Projection Chamber:
gas detector
charged-particle tracking and identification

Time of Flight detector:
precise identification

Muon spectrometer:
forward: $-4 < \eta < -2.5$
muon trigger and tracking

V0: event characterization

central barrel: $|\eta| < 0.9$
Measuring the average jet multiplicity as a function of leading jet p_T:

- For both MB and HM events: average jet multiplicity is monotonically increasing,
- EPOS LHC simulations underestimate the data, but PYTHIA 8 describes it well within systematic uncertainties.
- $\langle N_{ch} \rangle$ is larger for HM events, especially in the (10 GeV/c) < p_T < (25 GeV/c) region.
Jet fragmentation functions compared to PYTHIA 8 and EPOS LHC

DATA is compared to PYTHIA 8 (Monash 2013 tune) and EPOS LHC simulations:

- For low z_{ch} (< 0.5): both models predict the data within systematic uncertainties,
- For high z_{ch} (> 0.5): EPOS LHC explains data better than PYTHIA 8 for lower jet p_T ranges, while both models predict the data well for high jet p_T ranges.

Fragmentation function: $z_{ch} = \frac{p_T^{\text{particle}}}{p_T^{\text{jet}}}$
Jet Fragmentation Function for MB and HM events

1st measurement of the jet multiplicity dependence of the jet fragmentation function:

- Indicates a scaling of the charged-particle jet fragmentation function with jet p_T except at highest and lowest z_{ch},
- Jet fragmentation is softer in HM events and this effect is not explained by the change in shape of jet p_T spectra between HM and MB.

Fragmentation function: $z_{ch} = \frac{p_T^{\text{particle}}}{p_T^{\text{jet}}}$

Average multiplicity: $\langle N_{ch} \rangle = \frac{1}{N_{jets}} \sum_{i=1}^{N_{jets}} N_{ch,i}$
Average multiplicity distributions in p-Pb

Average multiplicity measured as a function of $p_T^{jet, ch}$:

- $<N_{ch}>$ monotonically increases with $p_T^{jet, ch}$,
- while the UE contribution decreases with $p_T^{jet, ch}$.
- UE contribution is significant (~15-30% in the measured range).
The **UE contribution is significant** in the low z^{ch} range, but it **falls off exponentially** with increasing z^{ch} values. In the final corrected result a **scaling of the charged-jet fragmentation function** is observed, for both 20-30 GeV/c and 40-60 GeV/c ranges.
Summary

1st measurements of the multiplicity dependence of intra-jet properties of leading charged-particle jets in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV

- The mean charged-particle multiplicity is measured in both minimum-bias and high-multiplicity \(pp \) collisions.
- The mean charged-particle multiplicity inside the leading jet rises monotonically, in qualitative agreement with previous measurements.
- Measurements of jet fragmentation functions:
 \(\rightarrow \) Scaling of the fragmentation of leading jets with \(p_T^{\text{jet, ch}} \) in the middle of the measured \(z^{\text{ch}} \) range.

Measurements of mean charged-particle multiplicity and fragmentation functions in \(p-Pb \) collisions at \(\sqrt{s}=5.02 \) TeV

- Scaling of charged-jet fragmentation function is observed for the middle ranges of \(z^{\text{ch}} \) values.

These measurements provide important constraints to pQCD-based Monte Carlo models.
Thank you for your attention!