QCD in the Early Universe

Michal Šumbera1,2

Nuclear Physics Inst. CAS, 25068 Řež/Prague, Czech Republic and
Faculty of Nuclear Science and Engineering, Czech Technical University, 115 19 Prague, Czech Republic

August 21, 2023

52nd International Symposium on Multiparticle Dynamics,
MATE, Győngyös, Hungary, August 21-26, 2023

1) In collaboration with R. Pasechnik.
2) Based on the review article A. Addazi, T. Lundberg, A. Marcianò, R. Pasechnik and M. Šumbera,

Cosmology from Strong Interactions, Universe 8, no.9, 451 (2022), [arXiv:2204.02950 [hep-ph]].
Table of Contents

1. Introduction: Equation of State of the Early Universe
2. Saturated QCD matter in the Early Universe
3. Summary
4. Backup Slides
Introduction: Equation of State of the Early Universe
Einstein equations of general relativity

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} (R - 2\Lambda) = -8\pi G T_{\mu\nu} \] (1)

\(g^{\mu\nu} \) – metric tensor, \(R_{\mu\nu} = f(g_{\mu\nu}, \partial_\lambda g_{\mu\nu}, \partial^2_\lambda g_{\mu\nu}) \) – Ricci tensor,
\(R = R_{\mu\nu} g^{\mu\nu} \) – scalar curvature, \(\Lambda, G \) – cosmological, gravitational constants,
\(T_{\mu\nu} \) – energy-momentum tensor.

Cosmological principle: the Universe is Homogenous and Isotropic

Solution of (1) preserving space homogeneity and isotropy under its time evolution is spacetime of constant curvature \(k = \{+1, 0, -1\} \) with FLRW metrics

\[ds^2 = g^{FLRW}_{\mu\nu} dx^\mu dx^\nu = dt^2 - a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 (d\theta^2 + \sin^2\theta d\phi^2) \right] \] (2)

\(a(t) \) – scale factor of the Universe connects co-moving (Lagrange) and physical (Euler) coordinates \(\hat{r}(t) = a(t)r \).
A Brief History of the Universe

Today
- Life on earth

Acceleration
- Dark energy dominates
- Solar system forms
- Star formation peak

Galaxy formation era
- Earliest visible galaxies

Recombination
- Atoms form
- Relic radiation decouples (CMB)

Matter domination
- Onset of gravitational collapse

Nucleosynthesis
- Light elements created – D, He, Li
 - Nuclear fusion begins

Quark–hadron transition
- Protons and neutrons formed

Electroweak transition
- Electromagnetic and weak nuclear forces first differentiate
 - Supersymmetry breaking
 - Axions etc.?

Grand unification transition
- Electroweak and strong nuclear forces differentiate

Inflation

Quantum gravity wall
- Spacetime description breaks down
Friedman equation: $g^{FLRW}_{\mu\nu} \rightarrow$ Eq. (1) with $\mu=\nu=0$

\[
H^2(t) \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \epsilon - \frac{k}{a^2} + \frac{\Lambda}{3}
\]

(3)

Perfect fluid: $\mathcal{T}_{\nu}^{\mu} = \text{diag}(\epsilon, -p, -p, -p) \Rightarrow$ Fluid equation

\[
\dot{\epsilon} + 3(\epsilon + p)H(t) = 0
\]

(4)

- **Ornik, Weiner: 1987** Early Universe: $\epsilon \gtrsim 1\text{GeV fm}^{-3}$ \Rightarrow neglect k and Λ in (3):

\[
- \frac{d\epsilon}{3\sqrt{\epsilon(\epsilon + p)}} = \sqrt{\frac{8\pi G}{3}} \, dt \quad \Rightarrow \quad \dot{\epsilon} + \sqrt{\frac{24\pi G}{3}} (\sqrt{\epsilon(\epsilon + p)})) = 0
\]

(5)

- Integration of (5) using barotropic form of EoS $p(\epsilon)$ yields $\epsilon(t)$.

- **Example:** Time-independent speed of sound $c_s^2 = dp/d\epsilon$ [Sanches et al. 2014]

\[
\epsilon(t) = \frac{1}{6\pi G(1 + c_s^2)^2 t^2} \quad \Rightarrow \quad H(t) \sim \frac{1}{t}, \quad \dot{a} \sim t^{-\alpha}, \quad \alpha = \frac{1 + 3c_s^2}{3(1 + c_s^2)}
\]

(6)
Evolution of the Early Universe

Cooling of the Universe: The Insight from the Asymptotic Freedom

Universe cooled down via series of first- or second-order phase transitions (PT) associated with the various spontaneous symmetry breakings (SSBs) of the basic non-Abelian gauge fields, see e.g. the classical textbooks [Linde:1978], [Bailin and Love:2004], [Boyanovsky et al:2006].

Standard Model Predicts Two Phase Transitions

1. The electroweak (EW) PT at $T \sim m_H$ provides masses to elementary particles. LQFT calculations show that for $m_H \geq 67 \text{ GeV}$ this PT is an analytic crossover [Kajantie et al.:1996], [Csikor et al.:1999].

2. At $T < 200 \text{ MeV}$ the SSB of the chiral symmetry of the SU(3)$_c$ color group, the QCD, takes place. In a strong first-order PT scenario, the de-confined matter supercools before bubbles of hadron gas are formed. \Rightarrow Produced inhomogeneities in this phase could have a strong effect on the nucleosynthesis epoch.
Figure 1: Evolution of the inverse of the three coupling constants $\alpha_1 = \alpha_{\text{EM}}, \alpha_2 = \alpha_{\text{W}}, \alpha_3 = \alpha_{\text{S}}$ in the Standard Model $U(1)_Y \times SU(2)_L \times SU(3)_C$ (left) and in its supersymmetric extension MSSM (right).

- **Thermodynamics** is applicable if the Universe is in global equilibrium.
- **Hydrodynamical** description needs only local thermal equilibrium (LTE).
- For $10^{15} - 10^{17} \text{ GeV} \gtrsim T \gtrsim T_{\text{QCD}}^{\text{QCD}} \approx 160 \text{ MeV}$ LTE in expanding fluid persists, see Slide 27.
What is Changing: Effective Degrees of Freedom

\[g_{\text{eff}}(T) \equiv \frac{\epsilon(T)}{\epsilon_0(T)}, \quad \epsilon_0(T) = \frac{\pi^2}{30} T^4 \] (7)

\[h_{\text{eff}}(T) \equiv \frac{s(T)}{s_0(T)}, \quad s_0(T) = \frac{2\pi^2}{45} T^3 \] (8)

\[g_{\text{eff}}^d(T) = h_{\text{eff}}^d(T) = \frac{7}{8} 4N_F + 3N_V + 2N_{V0} + N_S \] (9)

- For an adiabatic process
 \[s(T) = \frac{\epsilon(T) + p(T)}{T} \] (10)

- EoS in cosmology \(p = w \epsilon \)
 \[w(T) = \frac{sT}{\epsilon} - 1 = \frac{4h_{\text{eff}}(T)}{3g_{\text{eff}}(T)} - 1 \] (11)

\(g_{\text{eff}}(T) \) in the SM taking into account interactions between particles, obtained with both perturbative and lattice methods. [Hindmarsh et al.:2020].
Simultaneous presence of the EW and the QCD matter in thermal equilibrium is one of the remarkable differences between the QGP produced in accelerator experiments and the deconfined QCD matter in the early universe.

Including only the particles which at $T \lesssim T_{\text{EW}} = 160\,\text{GeV}$ considered as massless:

$$g_{\text{eff}}^{\text{EW}} = \frac{7}{8}(12 + 6) + 2 = 17.75 \quad \text{and} \quad g_{\text{eff}}^{\text{QCD}} = 2 \times 8 + \frac{7}{8}(3 \times N_F \times 2 \times 2).$$

At $T \lesssim T_{\text{EW}}$ and for N_F active quark flavors, the QGP contains a factor of

$$\frac{g_{\text{eff}}^{\text{QCD}}}{g_{\text{eff}}^{\text{EW}}} \simeq 2 \div 4$$

more energy and pressure than the EW matter.

Even for $T \gg T_{\text{EW}}$ with $g_{\text{eff}}^{\text{QCD}} = 79$ and $g_{\text{eff}}^{\text{EW}} = 26.75$ the QCD matter has a factor of

$$\frac{g_{\text{eff}}^{\text{QCD}}}{g_{\text{eff}}^{\text{EW}}} \simeq 3$$

larger energy density and pressure than the EW matter.

QCD matter represents the densest form of matter filling the early universe during both the QCD and EW epochs and beyond.
Cosmological Parametrization of the EoS

- In cosmology the EoS is parametrized as \(p = w \epsilon \)

\[
s(T) = \frac{dp}{dT} = \frac{dp}{d\epsilon} \frac{d\epsilon}{dT} \tag{12}
\]

\[
c_s^2(T) = \frac{dp}{d\epsilon} = T \frac{ds}{d\epsilon} + s \frac{dT}{d\epsilon} - 1 = \frac{4}{3} \left[\frac{4h_{\text{eff}}(T) + Th'_{\text{eff}}(T)}{4g_{\text{eff}}(T) + Tg'_{\text{eff}}(T)} \right] - 1 \tag{13}
\]

where the prime indicates differentiation with respect to \(T \).

- Causality:

\[
c_s \leq 1 \implies \frac{h_{\text{eff}}(T)}{g_{\text{eff}}(T)} \leq \frac{3}{2} \tag{14}
\]

\(\Rightarrow \) upper bound at \(w = 1 \), i.e. \(p = \epsilon \), corresponds to absolutely stiff fluid: baryons interacting via massive vector particles [Zeldovich:1961] or free scalar field.

- The observation that the stiff fluid saturates the holographic covariant entropy bound was used to describe a cosmology of the very early universe [Banks:2001].

- Can the stiff fluid represent some form of QCD matter?
Figure 2: Combined EoS $p(\epsilon)$, $\epsilon \equiv \rho$ of QCD and EW matter, using lattice results of [Borsanyi et al:2016] extended to include other DoFs such as γ, neutrinos, leptons, EW, and Higgs bosons as well as perturbative results of [Laine,Mayer:2015]. Adapted from [Tawfik,Mishustin:2019].

- For details see page 28
The EoS parametrization

- GUT EoS ($\left(\begin{array}{c} \Delta \\ \end{array}\right)$ in Fig. 2) $p_{\text{GUT}} = (0.330 \pm 0.024)\epsilon$ valid for $10^8 \lesssim \epsilon \lesssim 10^{16}$ GeV·fm$^{-3}$ is already in the ideal gas limit.

- Combined EoS for QCD and EW eras has two independent contributions $p_1(\epsilon)$ and $p_2(\epsilon)$.
 \[p_{\text{SM}} = p_1(\epsilon) + p_2(\epsilon), \quad p_1(\epsilon) = b\epsilon, \quad p_2(\epsilon) = a + c\epsilon^d \]
 \[a = 0.048 \pm 0.016, \quad b = 0.316 \pm 0.031, \quad c = -0.21 \pm 0.014, \quad d = -0.576 \pm 0.034 \]

- $p_1(\epsilon) \approx \frac{1}{3}\epsilon$ – ideal gas of massless particles EoS.

- $p_2(\epsilon) = -B(\epsilon) = a + c\epsilon^d$ – density-dependent bag function (instanton liquid?)

- The sound velocities of both components are positive:
 \[c_{s,1}^2(\epsilon) = \frac{dp_1}{d\epsilon} = b > 0, \quad c_{s,2}^2(\epsilon) = \frac{dp_2}{d\epsilon} = c \cdot d \cdot \epsilon^{d-1} = \frac{d \cdot (p_2 - a)}{\epsilon} > 0 \]

- $a \approx 0 \Rightarrow$ EoS $p_2(\epsilon) \approx c\epsilon^d$, $c < 0$, $d < 0 \Rightarrow$ must have $p_2 < 0$! Coincides with generalized Chaplygin EoS often applied as a model of DE, see e.g. [Kamenshchik et al:2001].
Saturated QCD matter in the Early Universe
Evolution of the Strong Coupling Constant $\alpha_s(Q)$

Figure 3: $\alpha_s(Q)$ obtained from MSTW2008 NLO PDF set. [CMS:2017].

- For $0.2 \lesssim \alpha_s \lesssim 0.08$ “temperatures” $T \approx Q/(2\pi) \in (1, 200)$ GeV are reachable?
Figure 4: Parton density and size as a function $Y = \ln(1/x)$ and $\ln Q^2$. From [Gelis et al:2010].
Partons “overlap” when \(\sigma_{gg} \sim \alpha_S/Q^2 \) times \(xG_A(x, Q^2) \) – the probability to find at fixed \(Q \) a parton carrying a fraction \(x \) of the parent parton momentum – becomes comparable to the geometrical cross section \(\pi R_A^2 \) of the object \(A \) occupied by the gluons.

\[
Q_s^2(x) = \frac{\alpha_S(Q_s)}{2(N_c^2 - 1)} \frac{xG_A(x, Q_s^2)}{\pi R_A^2} \sim \frac{1}{x^\lambda} \Rightarrow \ln Q_s^2(x) = \lambda Y
\]

\(Q_s(x) \) – Fixed point of the PDF evolution in \(x \) or, equivalently, the emergent “close packing” scale

Repulsive \(gg \) interactions \(\Rightarrow \) occupation number \(f_g \) (\# of gluons with a given \(x \) times the area each gluon fills up divided by the transverse size of the object) saturates at \(f_g \sim 1/\alpha_S \).

The same scaling as for the Higgs condensate, superconductivity or the inflaton field.

Saturated gluonic matter is weakly coupled. \(\Rightarrow \) weakly interacting means semi-classical.

See page 29.
Glass properties of the Glasma and CGC–Black Hole correspondence

- In condensed matter physics, glass is a non-equilibrium, disordered state of matter acting like solids on short time scales but liquids on long time scales [Mauro:2014, Sethna:2021].

- Two scales of glasma:
 \[\tau_{\text{wee}} = \frac{1}{k^-} = \frac{2k^+}{k^2} = \frac{2xP^+}{k^2} \ll \frac{2P^+}{k^2} \approx \tau_{\text{valence}}. \]
 \((18) \)

 \(\Rightarrow \) Valence modes are static over the time scales of wee modes [Berges:2020].

- Glasses are formed when liquids are cooled too fast to form the crystalline equilibrium state. This leads to an enormous \(\# \) of possible configurations \(N_{\text{gl}}(T) \) into which the glasses can freeze \(\Rightarrow \) large entropy \(S = \ln N_{\text{gl}}(T) \), such that \(S(T = 0) > 0 \), [Sethna:1988].

- Correspondence between Black Holes as highly occupied condensates of \(N \) weakly interacting gravitons and CGCs as highly occupied gluon states [Dvali, Venugopalan:2021].

- Both BH and CGC attain a maximal entropy \(S_{\text{max}} \) permitted by unitarity when the occupation number \(f \) and the coupling \(\alpha \) of the respective constituents (gravitons, gluons) satisfy \(f = 1/\alpha(Q_s) \), where \(Q_s \) represents the point of optimal balance between the kinetic energies of the individual constituents and their potential energies.
Consider partons at fixed temperature $T \approx Q/2\pi$.

The QCD saturation scale $R_S = 1/Q_S$ is now given by thermal de Broglie wavelength of massless gluons $\lambda_S = \pi^{2/3}/T_S$, where T_S is the saturation temperature.

Consider a period of cosmological evolution when $T \gtrsim T_S \gg \Lambda_{QCD}/(2\pi)$. For $T_S \gtrsim 1$ GeV the running coupling $\alpha_S(2\pi T_S) \lesssim 0.2$.

At $T \approx T_{EW}$ for YM bosons $g_{eff}^{QCD}/g_{eff}^{EW} \approx 8/3 \Rightarrow$

Glasma might have been prevalent form of matter also during EW era.

$T \gg T_{EW}$: the gluon exchange between quarks (antiquarks) becomes surpassed by the exchange of EW massless gauge bosons W^\pm, W^0, B^0, \ldots

...GUT YM bosons can also form the classical condensate.
Abelian vector field can not be isotropic \Rightarrow one needs at least triplet of vector fields to ensure the isotropy.

Basic features of the Einstein-Yang-Mills homogeneous and isotropic cosmological solutions can be attributed to the conformal nature of the YM field.

Non-linear nature of YM field configurations makes field-supported radiation-dominated universes (with zero temperature) possible. It may reconcile the hot Big Bang geometry with the non-thermal matter which arises quite naturally within the context of grand unified theories.

Q: How can we change this EoS?

A: By breaking the conformal invariance (needs effective action).

- N.B. The breakdown of translation invariance is due to the extended geometry of the object.
Modified Bag Model EoS

\[\epsilon(T) = \sigma T^4 - CT^2 + B, \quad p(T) = \frac{\sigma}{3} T^4 - DT^2 - B. \]

(19)

\[\sigma = \frac{\pi^2}{30} g_{\text{eff}}^{\text{QCD}}, \quad g_{\text{eff}}^{\text{QCD}} = 2 \times 8 + \frac{7}{8} (3 \times N_F \times 2 \times 2) \]

(20)

\[\sigma(N_F = 0, 2, 3, 4, 5) \approx 5, 12, 16, 18, 23; \quad B^{1/4} \approx 220 \text{ MeV}. \]

2. \(C = -D < 0 \): Gluonic q-particle EoS with \(B(T) = -CT^2 + B \) [Schneider:2001].

- In pure gauge theory up to \(T \approx (2 - 5) T_c \), the dominant power-like correction to pQCD behavior is \(O(T^{-2}) \) rather than \(O(T^{-4}) \).
- Quadratic thermal terms in the deconfined phase can also be obtained from gauge/string duality [Zuo:2014vga].
Stiff EoS from Modified Bag Model EoS?

- The trace anomaly for $T \geq 1$ GeV
 \[
 \Theta(T) = \frac{\epsilon - 3p}{T^4} = \frac{4B}{T^4} + \frac{3D - C}{T^2} \approx \frac{3D - C}{T^2} \equiv \frac{A}{T^2}
 \]
 \[\text{(21)}\]

- The barotropic form of the EoS
 \[
 p(\epsilon) = \frac{1}{3} \left(\epsilon - \Theta(T) T^4 \right) = \frac{\epsilon}{3} - \frac{A}{3} T^2(\epsilon), \quad T^2(\epsilon) \equiv \frac{C + \sqrt{C^2 + 4\sigma \epsilon}}{2\sigma} > 0.
 \]
 \[\text{(22)}\]

- Speed of sound:
 \[
 c_s^2(\epsilon) = \frac{dp(\epsilon)}{d\epsilon} = \frac{1}{3} \left(1 - \frac{2A\sigma}{\sqrt{C^2 + 4\sigma \epsilon}} \right) \geq 0
 \]
 \[\text{(23)}\]

- Recall: $h_{\text{eff}} = s/s_0 \neq \text{eff.d.o.f. in entropy}$, $g_{\text{eff}} = \epsilon/\epsilon_0 \neq \text{eff.d.o.f. in energy}$
 \[
 w(T) = \frac{p(T)}{\epsilon(T)} = \frac{4h_{\text{eff}}}{3g_{\text{eff}}} - 1 = \frac{1}{3} - \frac{A}{3} \frac{T^2(\epsilon)}{\epsilon}
 \]
 \[\text{(24)}\]

- Stiff EoS: $p = \epsilon$:
 \[
 w(T) = 1 \Rightarrow A = 3D - C < 0, \quad \epsilon_s = \frac{3C^2 - 12CD + 9D^2}{4\sigma}
 \]
 \[\text{(25)}\]
The fast cooling of the universe has stiffened its EoS $w = 1/3 \rightarrow w = 1$.

Saturation energy density $\epsilon_s(T_s) = \sigma T_s^4 - CT_s^2$

For $T_s = 1\text{GeV}$, $\epsilon_s(T_s = 1\text{GeV}) = \sigma - C$

Solutions satisfying conditions $A = 3D - C < 0 \land C > 0$

1. $D < 0$:
 - Works for $C = -D < 0$: Gluonic q-particle EoS [Schneider:2001]. In this case
 \[\epsilon_s = \frac{6C^2}{\sigma} = \sigma - C \Rightarrow C = \frac{\sigma}{3}. \] \hfill (26)

2. $D > 0 \land x = C/D > 3$:
 \[\epsilon_s = \frac{C^2}{4\sigma} \phi(x) = \sigma - C, \quad \phi(x) = (9x^2 - 12x + 3) \] \hfill (27)
 \[C = 2\sigma \frac{\sqrt{1 + \phi(x)}}{\phi(x)} \approx \frac{1}{7} - \frac{(x - 3)}{15} + O((x - 3)^2) \] \hfill (28)
Summary
QCD represents a fruitful theory when applied to the early history of our Universe.

It predicts the state of saturated QCD matter with large entropy which existed immediately before the creation of the QGP. It is likely that this classical Yang-Mills matter has played an essential role in the evolution of our Universe over a broad range of temperatures $T_P \gtrsim T \gtrsim T_{QGP}$.

Power-like correction $\mathcal{O}(T^{-2})$ to conformal invariance of the classical YM theory describe the stiffening of the EoS of QCD matter during the expansion of the universe.

(Not included due to time limitation): Breaking of the Mirror symmetry of the QCD vacuum by gravitational interactions induces non-vanishing leading order contribution to the QCD ground state energy compatible with the observed value of the cosmological constant Λ.

Thank you for your attention!
Backup Slides
How do we know that the Early Universe was in the state of LTE? [Mukhanov:2005]

- Collision time among the constituents \(t_c = 1/(\sigma n v) \)

- LTE \(\iff \) Local equilibrium must be reached well before expansion becomes relevant.

\[\Rightarrow \text{At the cosmic time } t_H \sim 1/H(t): \ t_c \ll t_H. \]

- At \(T > T_{EW} \) all (most of) particles of the SM are ultra-relativistic \((k^2 \gg m^2) \) and gauge bosons are massless. \(\Rightarrow \sigma \approx \mathcal{O}(1)\alpha^2 \lambda^2 \sim \alpha^2/k^2 \sim \alpha^2/E^2 \sim \alpha^2/T^2 \),

For \(n \sim T^3, v = 1 \) and \(\alpha \approx 10^{-1} - 10^{-2}, \alpha = \alpha_{EM}, \alpha_W, \alpha_S \):

\[t_c \sim \frac{1}{\alpha^2 T} \ll t_H \sim \frac{1}{H} \sim \frac{1}{\sqrt{\epsilon}} \sim \frac{1}{T^2}. \]

\[\Rightarrow \text{For } 10^{15} - 10^{17} \text{ GeV} \gtrsim T \gtrsim T_{EW} \text{ LTE in expanding fluid persists.} \]

- For \(T_{EW} > T > T_{cQCD} \approx 160 \text{ MeV} \) the LTE continues due to large effective cross-section among the particles forming the QGP medium.
In the SM

\[p_B(T) = \lim_{V \to \infty} \frac{T}{V} \ln Z(T, V) \]

\[Z(T, V) = \exp \left[\frac{p_B(T)V}{T} \right] , \quad p_B(T) = p_E(T) + p_M(T) + p_G(T) \] \hspace{1cm} (29)

- \(p_B \) is the “bare” result related to the physical (renormalized) pressure as \(p(T) = p_B(T) - p_B(0) \).

- \(p_E(T), p_M(T), p_G(T) \) collect the contributions from the momentum scales \(k \sim \pi T \), \(k \sim gT \), and \(k \sim g^2 T/\pi \), respectively.

- Couplings of SM are \(g \in \{ h_t, g_1, g_2, g_3 \} \), where \(h_t \) is the Yukawa coupling between the top quark and the Higgs boson, and \(g_1, g_2, g_3 \) are related to \(U_Y(1), SL(2) \) and \(SU_c(3) \) gauge groups, respectively.

- Calculations of the dimensionless function \(p(T)/T^4 \) and of the trace anomaly \(\Theta(T) \) up to \(\mathcal{O}(g^5) \) were performed in [Laine, Mayer:2015].
QCD in the classical regime [Kharzeev:2002]

- Introduce coupling-independent field tensors
 \[A^a_\mu \to A^a_\mu \equiv g_S A^a_\mu, \quad g^2_S = 4\pi \alpha_S \]

 \[F^a_{\mu\nu} \to g_S F^a_{\mu\nu} \equiv F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^{abc} A^b_\mu A^c_\nu, \quad (30) \]

- Calculate action of the gluon field
 \[S_g = -\frac{1}{4} \int F^a_{\mu\nu} F^{\mu\nu,a} d^4x = -\frac{1}{4g^2_S} \int F^{\mu\nu,a} F^a_{\mu\nu} d^4x \quad (31) \]

- Gluon occupation number
 \[f_g \sim \frac{S_g}{\hbar} = \frac{1}{\hbar g^2_S} \rho_4 V_4 \quad (32) \]

 where \(\rho_4 \sim \langle F^{\mu\nu,a} F^a_{\mu\nu} \rangle \) is four-dimensional gluon condensate density.

- Saturated gluon matter is weakly coupled.
- The limits \(g^2_S \to 0 \) and \(\hbar \to 0 \) are equivalent! \(\Rightarrow \) weakly interacting means semi-classical.