Ultra-high-energy hadronic physics at the Pierre Auger Observatory

Jan Ebr for the Pierre Auger Collaboration ebr@fzu.cz

Pierre Auger Observatory

Fluorescence detector: longitudinal shower profile

Surface detector: particles arriving at ground

Hadronic interactions in cosmic ray showers

Heitler-Matthews model (Astropart. Phys. 22 (2005) 387)

 $X_{\rm max} \approx \lambda_{\rm r} \ln[E_0/\xi_{\rm c}^{\rm e}] + X_0 - \lambda_{\rm r} \{\ln[3N_{\rm ch}] + \ln[A]\}$

$$N_{\mu} \approx \left(\frac{E_0}{\xi_{\rm c}^{\pi}}\right)^{\beta} A^{(1-\beta)} \qquad \beta \approx 1 - \frac{\kappa}{3\ln[N_{\rm ch}]} > 0.9$$

 $X_{
m max}$ and $N_{
m \mu}$ sensitive to both interaction properties and primary mass

$$\frac{E_{\rm em}}{E_0} = 1 - \left(\frac{E_0}{\xi_{\rm c}^{\pi} A}\right)^{\beta - 1} \qquad \qquad \xi_{\rm c}^{\pi} \approx 20 \,{\rm GeV}$$

$$\sqrt{s}$$

EM component dominant at UHE, less affected by interactions/mass - ground signal changes mainly with X_{max} due to attenuation

Hadronic interactions and UHECR

Primary interactions of CR observed at Auger mostly above the c.m.s energy of LHC (for p-p collisions)

- even at LHC energy, models uncertain due to lack of forward measurements
- below LHC energy: uncertainties in nuclear and pion interactions etc.

Models predict interaction properties above experimentally accessible data - modifications of predictions have strong impact on air-shower observables

4/12

The simplest test: are data between proton and iron?

5/12

- indicates insufficient understanding of hadronic interactions at UHE energies
- note the still large uncertainties

6/12

Beyond mean values: fluctuations

Is the "muon problem" really just a muon problem?

Simulations with general modified characteristics of hadronic interactions above experimental limits show that modifications change predictions for both X_{max} and N_{μ} .

- what do data say in the $X_{max} - N_{\mu}$ plane?

1.12

1.1

1.08

1.06

1.04

1.02

0.96

0.94

-40

1 0.98

S_µ(1000) / S_µ(1000) (ref)

Combined fits of full distributions of X_{max} and ground signals

PoS(ICRC2021)310

2D distributions of ground signal S(1000) and X_{max} for hybrid events with E between 10^{18.5}–10¹⁹ eV are split into zenith angle bins, adjusted to a reference energy and fitted with simulated templates of sets of p, He, O and Fe showers, with free parameters being:

- the fractions of individual nuclei in the primary beam
- a uniform shift in depth of maximum ΔX_{max}
- a rescaling parameter R_{had} for the hadronic part of the ground signal, closely related to R_{μ}
 - the split of the signal into hadronic/EM parts follows the simulations
 - secondary change of ground signal due to ΔX_{max} is accounted for separately

Fits of of X_{max} and ground signals

Both R_{had} and ΔX_{max} needed to account for data

V EPOS-LHC

Sibyll 2.3d

 $\Delta X_{max} [g/cm^2]$

▲ OGSJet II-04

 1σ stat

 -3σ stat.

- 5 σ stat.

1.4

2

1.1

1.0

-20 -10

0 10 20 30 40 50 60

 $R_{Had} \left(\theta_{min} \right)$

- dominant systematics is the energy scale
- note that the change of X_{\max} scale changes the composition interpretation of the data

1.4

1.3

2

1.1

1.0

 $R_{Had} (\theta_{max})$

(0)

(c) MC corrections: ΔX_{max} and $R_{\text{Had}}(\theta)$

Future prospects: AugerPrime upgrade

Surface detector upgrades for the entire array:

- Scintillator-based surface detector (SSD, muon/EM separation for lower zenith angles)
- Radio detector (RD, muon/EM separation for larger zenith angles)
- Upgraded Unified Board (faster electronics, more channels)
- Small PMT (increased dynamic range)

Underground Muon Detectors:

- smaller part of the array
- direct muon counting

Current status:

- UUB, SSD and Small PMT deployed in all accessible areas
- RD and UMD deployment underway

Relevant expectations for hadronic physics:

- improved muon measurements
- improved $X_{\rm max}$ from ground-only data

PoS(ICRC2021)262

Summary

• UHE Cosmic Rays detected by the Pierre Auger Observatory offer a unique look into the hadronic interactions at energies far beyond the capabilities of human-made accelerators.

• Multiple methods of measurement of the muon number point towards a discrepancy between models and data, which is most likely due to cumulative effects of small changes in several generations of hadronic interactions.

• The observed combined distributions of muon numbers and depth of maxima for well-observed showers indicate that the model predictions should be adjusted not only for the muon number, but also for the depth of maximum.

• The AugerPrime upgrade of the observatory has already started taking data and will bring significantly more precise measurements of the muon component of CR showers.